/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.geometry.partitioning;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.TreeSet;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.Space;
import org.apache.commons.math3.geometry.Vector;
Abstract class for all regions, independently of geometry type or dimension.
Type parameters: - <S> – Type of the space.
- <T> – Type of the sub-space.
Since: 3.0
/** Abstract class for all regions, independently of geometry type or dimension.
* @param <S> Type of the space.
* @param <T> Type of the sub-space.
* @since 3.0
*/
public abstract class AbstractRegion<S extends Space, T extends Space> implements Region<S> {
Inside/Outside BSP tree. /** Inside/Outside BSP tree. */
private BSPTree<S> tree;
Tolerance below which points are considered to belong to hyperplanes. /** Tolerance below which points are considered to belong to hyperplanes. */
private final double tolerance;
Size of the instance. /** Size of the instance. */
private double size;
Barycenter. /** Barycenter. */
private Point<S> barycenter;
Build a region representing the whole space.
Params: - tolerance – tolerance below which points are considered identical.
/** Build a region representing the whole space.
* @param tolerance tolerance below which points are considered identical.
*/
protected AbstractRegion(final double tolerance) {
this.tree = new BSPTree<S>(Boolean.TRUE);
this.tolerance = tolerance;
}
Build a region from an inside/outside BSP tree.
The leaf nodes of the BSP tree must have a Boolean
attribute representing the inside status of the corresponding cell (true for inside cells, false for outside cells). In order to avoid building too many small objects, it is recommended to use the predefined constants Boolean.TRUE
and Boolean.FALSE
. The tree also must have either null internal nodes or internal nodes representing the boundary as specified in the getTree
method).
Params: - tree – inside/outside BSP tree representing the region
- tolerance – tolerance below which points are considered identical.
/** Build a region from an inside/outside BSP tree.
* <p>The leaf nodes of the BSP tree <em>must</em> have a
* {@code Boolean} attribute representing the inside status of
* the corresponding cell (true for inside cells, false for outside
* cells). In order to avoid building too many small objects, it is
* recommended to use the predefined constants
* {@code Boolean.TRUE} and {@code Boolean.FALSE}. The
* tree also <em>must</em> have either null internal nodes or
* internal nodes representing the boundary as specified in the
* {@link #getTree getTree} method).</p>
* @param tree inside/outside BSP tree representing the region
* @param tolerance tolerance below which points are considered identical.
*/
protected AbstractRegion(final BSPTree<S> tree, final double tolerance) {
this.tree = tree;
this.tolerance = tolerance;
}
Build a Region from a Boundary REPresentation (B-rep).
The boundary is provided as a collection of sub-hyperplanes
. Each sub-hyperplane has the interior part of the region on its minus side and the exterior on its plus side.
The boundary elements can be in any order, and can form several non-connected sets (like for example polygons with holes or a set of disjoints polyhedrons considered as a whole). In fact, the elements do not even need to be connected together (their topological connections are not used here). However, if the boundary does not really separate an inside open from an outside open (open having here its topological meaning), then subsequent calls to the checkPoint
method will not be meaningful anymore.
If the boundary is empty, the region will represent the whole
space.
Params: - boundary – collection of boundary elements, as a collection of
SubHyperplane
objects - tolerance – tolerance below which points are considered identical.
/** Build a Region from a Boundary REPresentation (B-rep).
* <p>The boundary is provided as a collection of {@link
* SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the
* interior part of the region on its minus side and the exterior on
* its plus side.</p>
* <p>The boundary elements can be in any order, and can form
* several non-connected sets (like for example polygons with holes
* or a set of disjoints polyhedrons considered as a whole). In
* fact, the elements do not even need to be connected together
* (their topological connections are not used here). However, if the
* boundary does not really separate an inside open from an outside
* open (open having here its topological meaning), then subsequent
* calls to the {@link #checkPoint(Point) checkPoint} method will not be
* meaningful anymore.</p>
* <p>If the boundary is empty, the region will represent the whole
* space.</p>
* @param boundary collection of boundary elements, as a
* collection of {@link SubHyperplane SubHyperplane} objects
* @param tolerance tolerance below which points are considered identical.
*/
protected AbstractRegion(final Collection<SubHyperplane<S>> boundary, final double tolerance) {
this.tolerance = tolerance;
if (boundary.size() == 0) {
// the tree represents the whole space
tree = new BSPTree<S>(Boolean.TRUE);
} else {
// sort the boundary elements in decreasing size order
// (we don't want equal size elements to be removed, so
// we use a trick to fool the TreeSet)
final TreeSet<SubHyperplane<S>> ordered = new TreeSet<SubHyperplane<S>>(new Comparator<SubHyperplane<S>>() {
{@inheritDoc} /** {@inheritDoc} */
public int compare(final SubHyperplane<S> o1, final SubHyperplane<S> o2) {
final double size1 = o1.getSize();
final double size2 = o2.getSize();
return (size2 < size1) ? -1 : ((o1 == o2) ? 0 : +1);
}
});
ordered.addAll(boundary);
// build the tree top-down
tree = new BSPTree<S>();
insertCuts(tree, ordered);
// set up the inside/outside flags
tree.visit(new BSPTreeVisitor<S>() {
{@inheritDoc} /** {@inheritDoc} */
public Order visitOrder(final BSPTree<S> node) {
return Order.PLUS_SUB_MINUS;
}
{@inheritDoc} /** {@inheritDoc} */
public void visitInternalNode(final BSPTree<S> node) {
}
{@inheritDoc} /** {@inheritDoc} */
public void visitLeafNode(final BSPTree<S> node) {
if (node.getParent() == null || node == node.getParent().getMinus()) {
node.setAttribute(Boolean.TRUE);
} else {
node.setAttribute(Boolean.FALSE);
}
}
});
}
}
Build a convex region from an array of bounding hyperplanes.
Params: - hyperplanes – array of bounding hyperplanes (if null, an
empty region will be built)
- tolerance – tolerance below which points are considered identical.
/** Build a convex region from an array of bounding hyperplanes.
* @param hyperplanes array of bounding hyperplanes (if null, an
* empty region will be built)
* @param tolerance tolerance below which points are considered identical.
*/
public AbstractRegion(final Hyperplane<S>[] hyperplanes, final double tolerance) {
this.tolerance = tolerance;
if ((hyperplanes == null) || (hyperplanes.length == 0)) {
tree = new BSPTree<S>(Boolean.FALSE);
} else {
// use the first hyperplane to build the right class
tree = hyperplanes[0].wholeSpace().getTree(false);
// chop off parts of the space
BSPTree<S> node = tree;
node.setAttribute(Boolean.TRUE);
for (final Hyperplane<S> hyperplane : hyperplanes) {
if (node.insertCut(hyperplane)) {
node.setAttribute(null);
node.getPlus().setAttribute(Boolean.FALSE);
node = node.getMinus();
node.setAttribute(Boolean.TRUE);
}
}
}
}
{@inheritDoc} /** {@inheritDoc} */
public abstract AbstractRegion<S, T> buildNew(BSPTree<S> newTree);
Get the tolerance below which points are considered to belong to hyperplanes.
Returns: tolerance below which points are considered to belong to hyperplanes
/** Get the tolerance below which points are considered to belong to hyperplanes.
* @return tolerance below which points are considered to belong to hyperplanes
*/
public double getTolerance() {
return tolerance;
}
Recursively build a tree by inserting cut sub-hyperplanes.
Params: - node – current tree node (it is a leaf node at the beginning
of the call)
- boundary – collection of edges belonging to the cell defined
by the node
/** Recursively build a tree by inserting cut sub-hyperplanes.
* @param node current tree node (it is a leaf node at the beginning
* of the call)
* @param boundary collection of edges belonging to the cell defined
* by the node
*/
private void insertCuts(final BSPTree<S> node, final Collection<SubHyperplane<S>> boundary) {
final Iterator<SubHyperplane<S>> iterator = boundary.iterator();
// build the current level
Hyperplane<S> inserted = null;
while ((inserted == null) && iterator.hasNext()) {
inserted = iterator.next().getHyperplane();
if (!node.insertCut(inserted.copySelf())) {
inserted = null;
}
}
if (!iterator.hasNext()) {
return;
}
// distribute the remaining edges in the two sub-trees
final ArrayList<SubHyperplane<S>> plusList = new ArrayList<SubHyperplane<S>>();
final ArrayList<SubHyperplane<S>> minusList = new ArrayList<SubHyperplane<S>>();
while (iterator.hasNext()) {
final SubHyperplane<S> other = iterator.next();
final SubHyperplane.SplitSubHyperplane<S> split = other.split(inserted);
switch (split.getSide()) {
case PLUS:
plusList.add(other);
break;
case MINUS:
minusList.add(other);
break;
case BOTH:
plusList.add(split.getPlus());
minusList.add(split.getMinus());
break;
default:
// ignore the sub-hyperplanes belonging to the cut hyperplane
}
}
// recurse through lower levels
insertCuts(node.getPlus(), plusList);
insertCuts(node.getMinus(), minusList);
}
{@inheritDoc} /** {@inheritDoc} */
public AbstractRegion<S, T> copySelf() {
return buildNew(tree.copySelf());
}
{@inheritDoc} /** {@inheritDoc} */
public boolean isEmpty() {
return isEmpty(tree);
}
{@inheritDoc} /** {@inheritDoc} */
public boolean isEmpty(final BSPTree<S> node) {
// we use a recursive function rather than the BSPTreeVisitor
// interface because we can stop visiting the tree as soon as we
// have found an inside cell
if (node.getCut() == null) {
// if we find an inside node, the region is not empty
return !((Boolean) node.getAttribute());
}
// check both sides of the sub-tree
return isEmpty(node.getMinus()) && isEmpty(node.getPlus());
}
{@inheritDoc} /** {@inheritDoc} */
public boolean isFull() {
return isFull(tree);
}
{@inheritDoc} /** {@inheritDoc} */
public boolean isFull(final BSPTree<S> node) {
// we use a recursive function rather than the BSPTreeVisitor
// interface because we can stop visiting the tree as soon as we
// have found an outside cell
if (node.getCut() == null) {
// if we find an outside node, the region does not cover full space
return (Boolean) node.getAttribute();
}
// check both sides of the sub-tree
return isFull(node.getMinus()) && isFull(node.getPlus());
}
{@inheritDoc} /** {@inheritDoc} */
public boolean contains(final Region<S> region) {
return new RegionFactory<S>().difference(region, this).isEmpty();
}
{@inheritDoc}
Since: 3.3
/** {@inheritDoc}
* @since 3.3
*/
public BoundaryProjection<S> projectToBoundary(final Point<S> point) {
final BoundaryProjector<S, T> projector = new BoundaryProjector<S, T>(point);
getTree(true).visit(projector);
return projector.getProjection();
}
Check a point with respect to the region.
Params: - point – point to check
Returns: a code representing the point status: either Location.INSIDE
, Location.OUTSIDE
or Location.BOUNDARY
/** Check a point with respect to the region.
* @param point point to check
* @return a code representing the point status: either {@link
* Region.Location#INSIDE}, {@link Region.Location#OUTSIDE} or
* {@link Region.Location#BOUNDARY}
*/
public Location checkPoint(final Vector<S> point) {
return checkPoint((Point<S>) point);
}
{@inheritDoc} /** {@inheritDoc} */
public Location checkPoint(final Point<S> point) {
return checkPoint(tree, point);
}
Check a point with respect to the region starting at a given node.
Params: - node – root node of the region
- point – point to check
Returns: a code representing the point status: either INSIDE
,
OUTSIDE
or BOUNDARY
/** Check a point with respect to the region starting at a given node.
* @param node root node of the region
* @param point point to check
* @return a code representing the point status: either {@link
* Region.Location#INSIDE INSIDE}, {@link Region.Location#OUTSIDE
* OUTSIDE} or {@link Region.Location#BOUNDARY BOUNDARY}
*/
protected Location checkPoint(final BSPTree<S> node, final Vector<S> point) {
return checkPoint(node, (Point<S>) point);
}
Check a point with respect to the region starting at a given node.
Params: - node – root node of the region
- point – point to check
Returns: a code representing the point status: either INSIDE
,
OUTSIDE
or BOUNDARY
/** Check a point with respect to the region starting at a given node.
* @param node root node of the region
* @param point point to check
* @return a code representing the point status: either {@link
* Region.Location#INSIDE INSIDE}, {@link Region.Location#OUTSIDE
* OUTSIDE} or {@link Region.Location#BOUNDARY BOUNDARY}
*/
protected Location checkPoint(final BSPTree<S> node, final Point<S> point) {
final BSPTree<S> cell = node.getCell(point, tolerance);
if (cell.getCut() == null) {
// the point is in the interior of a cell, just check the attribute
return ((Boolean) cell.getAttribute()) ? Location.INSIDE : Location.OUTSIDE;
}
// the point is on a cut-sub-hyperplane, is it on a boundary ?
final Location minusCode = checkPoint(cell.getMinus(), point);
final Location plusCode = checkPoint(cell.getPlus(), point);
return (minusCode == plusCode) ? minusCode : Location.BOUNDARY;
}
{@inheritDoc} /** {@inheritDoc} */
public BSPTree<S> getTree(final boolean includeBoundaryAttributes) {
if (includeBoundaryAttributes && (tree.getCut() != null) && (tree.getAttribute() == null)) {
// compute the boundary attributes
tree.visit(new BoundaryBuilder<S>());
}
return tree;
}
{@inheritDoc} /** {@inheritDoc} */
public double getBoundarySize() {
final BoundarySizeVisitor<S> visitor = new BoundarySizeVisitor<S>();
getTree(true).visit(visitor);
return visitor.getSize();
}
{@inheritDoc} /** {@inheritDoc} */
public double getSize() {
if (barycenter == null) {
computeGeometricalProperties();
}
return size;
}
Set the size of the instance.
Params: - size – size of the instance
/** Set the size of the instance.
* @param size size of the instance
*/
protected void setSize(final double size) {
this.size = size;
}
{@inheritDoc} /** {@inheritDoc} */
public Point<S> getBarycenter() {
if (barycenter == null) {
computeGeometricalProperties();
}
return barycenter;
}
Set the barycenter of the instance.
Params: - barycenter – barycenter of the instance
/** Set the barycenter of the instance.
* @param barycenter barycenter of the instance
*/
protected void setBarycenter(final Vector<S> barycenter) {
setBarycenter((Point<S>) barycenter);
}
Set the barycenter of the instance.
Params: - barycenter – barycenter of the instance
/** Set the barycenter of the instance.
* @param barycenter barycenter of the instance
*/
protected void setBarycenter(final Point<S> barycenter) {
this.barycenter = barycenter;
}
Compute some geometrical properties.
The properties to compute are the barycenter and the size.
/** Compute some geometrical properties.
* <p>The properties to compute are the barycenter and the size.</p>
*/
protected abstract void computeGeometricalProperties();
{@inheritDoc} /** {@inheritDoc} */
@Deprecated
public Side side(final Hyperplane<S> hyperplane) {
final InsideFinder<S> finder = new InsideFinder<S>(this);
finder.recurseSides(tree, hyperplane.wholeHyperplane());
return finder.plusFound() ?
(finder.minusFound() ? Side.BOTH : Side.PLUS) :
(finder.minusFound() ? Side.MINUS : Side.HYPER);
}
{@inheritDoc} /** {@inheritDoc} */
public SubHyperplane<S> intersection(final SubHyperplane<S> sub) {
return recurseIntersection(tree, sub);
}
Recursively compute the parts of a sub-hyperplane that are
contained in the region.
Params: - node – current BSP tree node
- sub – sub-hyperplane traversing the region
Returns: filtered sub-hyperplane
/** Recursively compute the parts of a sub-hyperplane that are
* contained in the region.
* @param node current BSP tree node
* @param sub sub-hyperplane traversing the region
* @return filtered sub-hyperplane
*/
private SubHyperplane<S> recurseIntersection(final BSPTree<S> node, final SubHyperplane<S> sub) {
if (node.getCut() == null) {
return (Boolean) node.getAttribute() ? sub.copySelf() : null;
}
final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane);
if (split.getPlus() != null) {
if (split.getMinus() != null) {
// both sides
final SubHyperplane<S> plus = recurseIntersection(node.getPlus(), split.getPlus());
final SubHyperplane<S> minus = recurseIntersection(node.getMinus(), split.getMinus());
if (plus == null) {
return minus;
} else if (minus == null) {
return plus;
} else {
return plus.reunite(minus);
}
} else {
// only on plus side
return recurseIntersection(node.getPlus(), sub);
}
} else if (split.getMinus() != null) {
// only on minus side
return recurseIntersection(node.getMinus(), sub);
} else {
// on hyperplane
return recurseIntersection(node.getPlus(),
recurseIntersection(node.getMinus(), sub));
}
}
Transform a region.
Applying a transform to a region consist in applying the
transform to all the hyperplanes of the underlying BSP tree and
of the boundary (and also to the sub-hyperplanes embedded in
these hyperplanes) and to the barycenter. The instance is not
modified, a new instance is built.
Params: - transform – transform to apply
Returns: a new region, resulting from the application of the
transform to the instance
/** Transform a region.
* <p>Applying a transform to a region consist in applying the
* transform to all the hyperplanes of the underlying BSP tree and
* of the boundary (and also to the sub-hyperplanes embedded in
* these hyperplanes) and to the barycenter. The instance is not
* modified, a new instance is built.</p>
* @param transform transform to apply
* @return a new region, resulting from the application of the
* transform to the instance
*/
public AbstractRegion<S, T> applyTransform(final Transform<S, T> transform) {
// transform the tree, except for boundary attribute splitters
final Map<BSPTree<S>, BSPTree<S>> map = new HashMap<BSPTree<S>, BSPTree<S>>();
final BSPTree<S> transformedTree = recurseTransform(getTree(false), transform, map);
// set up the boundary attributes splitters
for (final Map.Entry<BSPTree<S>, BSPTree<S>> entry : map.entrySet()) {
if (entry.getKey().getCut() != null) {
@SuppressWarnings("unchecked")
BoundaryAttribute<S> original = (BoundaryAttribute<S>) entry.getKey().getAttribute();
if (original != null) {
@SuppressWarnings("unchecked")
BoundaryAttribute<S> transformed = (BoundaryAttribute<S>) entry.getValue().getAttribute();
for (final BSPTree<S> splitter : original.getSplitters()) {
transformed.getSplitters().add(map.get(splitter));
}
}
}
}
return buildNew(transformedTree);
}
Recursively transform an inside/outside BSP-tree.
Params: - node – current BSP tree node
- transform – transform to apply
- map – transformed nodes map
Returns: a new tree
/** Recursively transform an inside/outside BSP-tree.
* @param node current BSP tree node
* @param transform transform to apply
* @param map transformed nodes map
* @return a new tree
*/
@SuppressWarnings("unchecked")
private BSPTree<S> recurseTransform(final BSPTree<S> node, final Transform<S, T> transform,
final Map<BSPTree<S>, BSPTree<S>> map) {
final BSPTree<S> transformedNode;
if (node.getCut() == null) {
transformedNode = new BSPTree<S>(node.getAttribute());
} else {
final SubHyperplane<S> sub = node.getCut();
final SubHyperplane<S> tSub = ((AbstractSubHyperplane<S, T>) sub).applyTransform(transform);
BoundaryAttribute<S> attribute = (BoundaryAttribute<S>) node.getAttribute();
if (attribute != null) {
final SubHyperplane<S> tPO = (attribute.getPlusOutside() == null) ?
null : ((AbstractSubHyperplane<S, T>) attribute.getPlusOutside()).applyTransform(transform);
final SubHyperplane<S> tPI = (attribute.getPlusInside() == null) ?
null : ((AbstractSubHyperplane<S, T>) attribute.getPlusInside()).applyTransform(transform);
// we start with an empty list of splitters, it will be filled in out of recursion
attribute = new BoundaryAttribute<S>(tPO, tPI, new NodesSet<S>());
}
transformedNode = new BSPTree<S>(tSub,
recurseTransform(node.getPlus(), transform, map),
recurseTransform(node.getMinus(), transform, map),
attribute);
}
map.put(node, transformedNode);
return transformedNode;
}
}