/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.geometry.spherical.oned;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.partitioning.AbstractRegion;
import org.apache.commons.math3.geometry.partitioning.BSPTree;
import org.apache.commons.math3.geometry.partitioning.BoundaryProjection;
import org.apache.commons.math3.geometry.partitioning.Side;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;
This class represents a region of a circle: a set of arcs.
Note that due to the wrapping around \(2 \pi\), barycenter is ill-defined here. It was defined only in order to fulfill the requirements of the Region
interface, but its use is discouraged.
Since: 3.3
/** This class represents a region of a circle: a set of arcs.
* <p>
* Note that due to the wrapping around \(2 \pi\), barycenter is
* ill-defined here. It was defined only in order to fulfill
* the requirements of the {@link
* org.apache.commons.math3.geometry.partitioning.Region Region}
* interface, but its use is discouraged.
* </p>
* @since 3.3
*/
public class ArcsSet extends AbstractRegion<Sphere1D, Sphere1D> implements Iterable<double[]> {
Build an arcs set representing the whole circle.
Params: - tolerance – tolerance below which close sub-arcs are merged together
/** Build an arcs set representing the whole circle.
* @param tolerance tolerance below which close sub-arcs are merged together
*/
public ArcsSet(final double tolerance) {
super(tolerance);
}
Build an arcs set corresponding to a single arc.
If either lower
is equals to upper
or the interval exceeds \( 2 \pi \), the arc is considered to be the full circle and its initial defining boundaries will be forgotten. lower
is not allowed to be greater than upper
(an exception is thrown in this case).
Params: - lower – lower bound of the arc
- upper – upper bound of the arc
- tolerance – tolerance below which close sub-arcs are merged together
Throws: - NumberIsTooLargeException – if lower is greater than upper
/** Build an arcs set corresponding to a single arc.
* <p>
* If either {@code lower} is equals to {@code upper} or
* the interval exceeds \( 2 \pi \), the arc is considered
* to be the full circle and its initial defining boundaries
* will be forgotten. {@code lower} is not allowed to be greater
* than {@code upper} (an exception is thrown in this case).
* </p>
* @param lower lower bound of the arc
* @param upper upper bound of the arc
* @param tolerance tolerance below which close sub-arcs are merged together
* @exception NumberIsTooLargeException if lower is greater than upper
*/
public ArcsSet(final double lower, final double upper, final double tolerance)
throws NumberIsTooLargeException {
super(buildTree(lower, upper, tolerance), tolerance);
}
Build an arcs set from an inside/outside BSP tree.
The leaf nodes of the BSP tree must have a Boolean
attribute representing the inside status of the corresponding cell (true for inside cells, false for outside cells). In order to avoid building too many small objects, it is recommended to use the predefined constants Boolean.TRUE
and Boolean.FALSE
Params: - tree – inside/outside BSP tree representing the arcs set
- tolerance – tolerance below which close sub-arcs are merged together
Throws: - InconsistentStateAt2PiWrapping – if the tree leaf nodes are not
consistent across the \( 0, 2 \pi \) crossing
/** Build an arcs set from an inside/outside BSP tree.
* <p>The leaf nodes of the BSP tree <em>must</em> have a
* {@code Boolean} attribute representing the inside status of
* the corresponding cell (true for inside cells, false for outside
* cells). In order to avoid building too many small objects, it is
* recommended to use the predefined constants
* {@code Boolean.TRUE} and {@code Boolean.FALSE}</p>
* @param tree inside/outside BSP tree representing the arcs set
* @param tolerance tolerance below which close sub-arcs are merged together
* @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not
* consistent across the \( 0, 2 \pi \) crossing
*/
public ArcsSet(final BSPTree<Sphere1D> tree, final double tolerance)
throws InconsistentStateAt2PiWrapping {
super(tree, tolerance);
check2PiConsistency();
}
Build an arcs set from a Boundary REPresentation (B-rep).
The boundary is provided as a collection of sub-hyperplanes
. Each sub-hyperplane has the interior part of the region on its minus side and the exterior on its plus side.
The boundary elements can be in any order, and can form several non-connected sets (like for example polygons with holes or a set of disjoints polyhedrons considered as a whole). In fact, the elements do not even need to be connected together (their topological connections are not used here). However, if the boundary does not really separate an inside open from an outside open (open having here its topological meaning), then subsequent calls to the
checkPoint
method will not be meaningful anymore.
If the boundary is empty, the region will represent the whole
space.
Params: - boundary – collection of boundary elements
- tolerance – tolerance below which close sub-arcs are merged together
Throws: - InconsistentStateAt2PiWrapping – if the tree leaf nodes are not
consistent across the \( 0, 2 \pi \) crossing
/** Build an arcs set from a Boundary REPresentation (B-rep).
* <p>The boundary is provided as a collection of {@link
* SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the
* interior part of the region on its minus side and the exterior on
* its plus side.</p>
* <p>The boundary elements can be in any order, and can form
* several non-connected sets (like for example polygons with holes
* or a set of disjoints polyhedrons considered as a whole). In
* fact, the elements do not even need to be connected together
* (their topological connections are not used here). However, if the
* boundary does not really separate an inside open from an outside
* open (open having here its topological meaning), then subsequent
* calls to the {@link
* org.apache.commons.math3.geometry.partitioning.Region#checkPoint(org.apache.commons.math3.geometry.Point)
* checkPoint} method will not be meaningful anymore.</p>
* <p>If the boundary is empty, the region will represent the whole
* space.</p>
* @param boundary collection of boundary elements
* @param tolerance tolerance below which close sub-arcs are merged together
* @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not
* consistent across the \( 0, 2 \pi \) crossing
*/
public ArcsSet(final Collection<SubHyperplane<Sphere1D>> boundary, final double tolerance)
throws InconsistentStateAt2PiWrapping {
super(boundary, tolerance);
check2PiConsistency();
}
Build an inside/outside tree representing a single arc.
Params: - lower – lower angular bound of the arc
- upper – upper angular bound of the arc
- tolerance – tolerance below which close sub-arcs are merged together
Throws: - NumberIsTooLargeException – if lower is greater than upper
Returns: the built tree
/** Build an inside/outside tree representing a single arc.
* @param lower lower angular bound of the arc
* @param upper upper angular bound of the arc
* @param tolerance tolerance below which close sub-arcs are merged together
* @return the built tree
* @exception NumberIsTooLargeException if lower is greater than upper
*/
private static BSPTree<Sphere1D> buildTree(final double lower, final double upper,
final double tolerance)
throws NumberIsTooLargeException {
if (Precision.equals(lower, upper, 0) || (upper - lower) >= MathUtils.TWO_PI) {
// the tree must cover the whole circle
return new BSPTree<Sphere1D>(Boolean.TRUE);
} else if (lower > upper) {
throw new NumberIsTooLargeException(LocalizedFormats.ENDPOINTS_NOT_AN_INTERVAL,
lower, upper, true);
}
// this is a regular arc, covering only part of the circle
final double normalizedLower = MathUtils.normalizeAngle(lower, FastMath.PI);
final double normalizedUpper = normalizedLower + (upper - lower);
final SubHyperplane<Sphere1D> lowerCut =
new LimitAngle(new S1Point(normalizedLower), false, tolerance).wholeHyperplane();
if (normalizedUpper <= MathUtils.TWO_PI) {
// simple arc starting after 0 and ending before 2 \pi
final SubHyperplane<Sphere1D> upperCut =
new LimitAngle(new S1Point(normalizedUpper), true, tolerance).wholeHyperplane();
return new BSPTree<Sphere1D>(lowerCut,
new BSPTree<Sphere1D>(Boolean.FALSE),
new BSPTree<Sphere1D>(upperCut,
new BSPTree<Sphere1D>(Boolean.FALSE),
new BSPTree<Sphere1D>(Boolean.TRUE),
null),
null);
} else {
// arc wrapping around 2 \pi
final SubHyperplane<Sphere1D> upperCut =
new LimitAngle(new S1Point(normalizedUpper - MathUtils.TWO_PI), true, tolerance).wholeHyperplane();
return new BSPTree<Sphere1D>(lowerCut,
new BSPTree<Sphere1D>(upperCut,
new BSPTree<Sphere1D>(Boolean.FALSE),
new BSPTree<Sphere1D>(Boolean.TRUE),
null),
new BSPTree<Sphere1D>(Boolean.TRUE),
null);
}
}
Check consistency.
Throws: - InconsistentStateAt2PiWrapping – if the tree leaf nodes are not
consistent across the \( 0, 2 \pi \) crossing
/** Check consistency.
* @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not
* consistent across the \( 0, 2 \pi \) crossing
*/
private void check2PiConsistency() throws InconsistentStateAt2PiWrapping {
// start search at the tree root
BSPTree<Sphere1D> root = getTree(false);
if (root.getCut() == null) {
return;
}
// find the inside/outside state before the smallest internal node
final Boolean stateBefore = (Boolean) getFirstLeaf(root).getAttribute();
// find the inside/outside state after the largest internal node
final Boolean stateAfter = (Boolean) getLastLeaf(root).getAttribute();
if (stateBefore ^ stateAfter) {
throw new InconsistentStateAt2PiWrapping();
}
}
Get the first leaf node of a tree.
Params: - root – tree root
Returns: first leaf node (i.e. node corresponding to the region just after 0.0 radians)
/** Get the first leaf node of a tree.
* @param root tree root
* @return first leaf node (i.e. node corresponding to the region just after 0.0 radians)
*/
private BSPTree<Sphere1D> getFirstLeaf(final BSPTree<Sphere1D> root) {
if (root.getCut() == null) {
return root;
}
// find the smallest internal node
BSPTree<Sphere1D> smallest = null;
for (BSPTree<Sphere1D> n = root; n != null; n = previousInternalNode(n)) {
smallest = n;
}
return leafBefore(smallest);
}
Get the last leaf node of a tree.
Params: - root – tree root
Returns: last leaf node (i.e. node corresponding to the region just before \( 2 \pi \) radians)
/** Get the last leaf node of a tree.
* @param root tree root
* @return last leaf node (i.e. node corresponding to the region just before \( 2 \pi \) radians)
*/
private BSPTree<Sphere1D> getLastLeaf(final BSPTree<Sphere1D> root) {
if (root.getCut() == null) {
return root;
}
// find the largest internal node
BSPTree<Sphere1D> largest = null;
for (BSPTree<Sphere1D> n = root; n != null; n = nextInternalNode(n)) {
largest = n;
}
return leafAfter(largest);
}
Get the node corresponding to the first arc start.
Returns: smallest internal node (i.e. first after 0.0 radians, in trigonometric direction),
or null if there are no internal nodes (i.e. the set is either empty or covers the full circle)
/** Get the node corresponding to the first arc start.
* @return smallest internal node (i.e. first after 0.0 radians, in trigonometric direction),
* or null if there are no internal nodes (i.e. the set is either empty or covers the full circle)
*/
private BSPTree<Sphere1D> getFirstArcStart() {
// start search at the tree root
BSPTree<Sphere1D> node = getTree(false);
if (node.getCut() == null) {
return null;
}
// walk tree until we find the smallest internal node
node = getFirstLeaf(node).getParent();
// walk tree until we find an arc start
while (node != null && !isArcStart(node)) {
node = nextInternalNode(node);
}
return node;
}
Check if an internal node corresponds to the start angle of an arc.
Params: - node – internal node to check
Returns: true if the node corresponds to the start angle of an arc
/** Check if an internal node corresponds to the start angle of an arc.
* @param node internal node to check
* @return true if the node corresponds to the start angle of an arc
*/
private boolean isArcStart(final BSPTree<Sphere1D> node) {
if ((Boolean) leafBefore(node).getAttribute()) {
// it has an inside cell before it, it may end an arc but not start it
return false;
}
if (!(Boolean) leafAfter(node).getAttribute()) {
// it has an outside cell after it, it is a dummy cut away from real arcs
return false;
}
// the cell has an outside before and an inside after it
// it is the start of an arc
return true;
}
Check if an internal node corresponds to the end angle of an arc.
Params: - node – internal node to check
Returns: true if the node corresponds to the end angle of an arc
/** Check if an internal node corresponds to the end angle of an arc.
* @param node internal node to check
* @return true if the node corresponds to the end angle of an arc
*/
private boolean isArcEnd(final BSPTree<Sphere1D> node) {
if (!(Boolean) leafBefore(node).getAttribute()) {
// it has an outside cell before it, it may start an arc but not end it
return false;
}
if ((Boolean) leafAfter(node).getAttribute()) {
// it has an inside cell after it, it is a dummy cut in the middle of an arc
return false;
}
// the cell has an inside before and an outside after it
// it is the end of an arc
return true;
}
Get the next internal node.
Params: - node – current internal node
Returns: next internal node in trigonometric order, or null
if this is the last internal node
/** Get the next internal node.
* @param node current internal node
* @return next internal node in trigonometric order, or null
* if this is the last internal node
*/
private BSPTree<Sphere1D> nextInternalNode(BSPTree<Sphere1D> node) {
if (childAfter(node).getCut() != null) {
// the next node is in the sub-tree
return leafAfter(node).getParent();
}
// there is nothing left deeper in the tree, we backtrack
while (isAfterParent(node)) {
node = node.getParent();
}
return node.getParent();
}
Get the previous internal node.
Params: - node – current internal node
Returns: previous internal node in trigonometric order, or null
if this is the first internal node
/** Get the previous internal node.
* @param node current internal node
* @return previous internal node in trigonometric order, or null
* if this is the first internal node
*/
private BSPTree<Sphere1D> previousInternalNode(BSPTree<Sphere1D> node) {
if (childBefore(node).getCut() != null) {
// the next node is in the sub-tree
return leafBefore(node).getParent();
}
// there is nothing left deeper in the tree, we backtrack
while (isBeforeParent(node)) {
node = node.getParent();
}
return node.getParent();
}
Find the leaf node just before an internal node.
Params: - node – internal node at which the sub-tree starts
Returns: leaf node just before the internal node
/** Find the leaf node just before an internal node.
* @param node internal node at which the sub-tree starts
* @return leaf node just before the internal node
*/
private BSPTree<Sphere1D> leafBefore(BSPTree<Sphere1D> node) {
node = childBefore(node);
while (node.getCut() != null) {
node = childAfter(node);
}
return node;
}
Find the leaf node just after an internal node.
Params: - node – internal node at which the sub-tree starts
Returns: leaf node just after the internal node
/** Find the leaf node just after an internal node.
* @param node internal node at which the sub-tree starts
* @return leaf node just after the internal node
*/
private BSPTree<Sphere1D> leafAfter(BSPTree<Sphere1D> node) {
node = childAfter(node);
while (node.getCut() != null) {
node = childBefore(node);
}
return node;
}
Check if a node is the child before its parent in trigonometric order.
Params: - node – child node considered
Returns: true is the node has a parent end is before it in trigonometric order
/** Check if a node is the child before its parent in trigonometric order.
* @param node child node considered
* @return true is the node has a parent end is before it in trigonometric order
*/
private boolean isBeforeParent(final BSPTree<Sphere1D> node) {
final BSPTree<Sphere1D> parent = node.getParent();
if (parent == null) {
return false;
} else {
return node == childBefore(parent);
}
}
Check if a node is the child after its parent in trigonometric order.
Params: - node – child node considered
Returns: true is the node has a parent end is after it in trigonometric order
/** Check if a node is the child after its parent in trigonometric order.
* @param node child node considered
* @return true is the node has a parent end is after it in trigonometric order
*/
private boolean isAfterParent(final BSPTree<Sphere1D> node) {
final BSPTree<Sphere1D> parent = node.getParent();
if (parent == null) {
return false;
} else {
return node == childAfter(parent);
}
}
Find the child node just before an internal node.
Params: - node – internal node at which the sub-tree starts
Returns: child node just before the internal node
/** Find the child node just before an internal node.
* @param node internal node at which the sub-tree starts
* @return child node just before the internal node
*/
private BSPTree<Sphere1D> childBefore(BSPTree<Sphere1D> node) {
if (isDirect(node)) {
// smaller angles are on minus side, larger angles are on plus side
return node.getMinus();
} else {
// smaller angles are on plus side, larger angles are on minus side
return node.getPlus();
}
}
Find the child node just after an internal node.
Params: - node – internal node at which the sub-tree starts
Returns: child node just after the internal node
/** Find the child node just after an internal node.
* @param node internal node at which the sub-tree starts
* @return child node just after the internal node
*/
private BSPTree<Sphere1D> childAfter(BSPTree<Sphere1D> node) {
if (isDirect(node)) {
// smaller angles are on minus side, larger angles are on plus side
return node.getPlus();
} else {
// smaller angles are on plus side, larger angles are on minus side
return node.getMinus();
}
}
Check if an internal node has a direct limit angle.
Params: - node – internal node to check
Returns: true if the limit angle is direct
/** Check if an internal node has a direct limit angle.
* @param node internal node to check
* @return true if the limit angle is direct
*/
private boolean isDirect(final BSPTree<Sphere1D> node) {
return ((LimitAngle) node.getCut().getHyperplane()).isDirect();
}
Get the limit angle of an internal node.
Params: - node – internal node to check
Returns: limit angle
/** Get the limit angle of an internal node.
* @param node internal node to check
* @return limit angle
*/
private double getAngle(final BSPTree<Sphere1D> node) {
return ((LimitAngle) node.getCut().getHyperplane()).getLocation().getAlpha();
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public ArcsSet buildNew(final BSPTree<Sphere1D> tree) {
return new ArcsSet(tree, getTolerance());
}
{@inheritDoc} /** {@inheritDoc} */
@Override
protected void computeGeometricalProperties() {
if (getTree(false).getCut() == null) {
setBarycenter(S1Point.NaN);
setSize(((Boolean) getTree(false).getAttribute()) ? MathUtils.TWO_PI : 0);
} else {
double size = 0.0;
double sum = 0.0;
for (final double[] a : this) {
final double length = a[1] - a[0];
size += length;
sum += length * (a[0] + a[1]);
}
setSize(size);
if (Precision.equals(size, MathUtils.TWO_PI, 0)) {
setBarycenter(S1Point.NaN);
} else if (size >= Precision.SAFE_MIN) {
setBarycenter(new S1Point(sum / (2 * size)));
} else {
final LimitAngle limit = (LimitAngle) getTree(false).getCut().getHyperplane();
setBarycenter(limit.getLocation());
}
}
}
{@inheritDoc}
Since: 3.3
/** {@inheritDoc}
* @since 3.3
*/
@Override
public BoundaryProjection<Sphere1D> projectToBoundary(final Point<Sphere1D> point) {
// get position of test point
final double alpha = ((S1Point) point).getAlpha();
boolean wrapFirst = false;
double first = Double.NaN;
double previous = Double.NaN;
for (final double[] a : this) {
if (Double.isNaN(first)) {
// remember the first angle in case we need it later
first = a[0];
}
if (!wrapFirst) {
if (alpha < a[0]) {
// the test point lies between the previous and the current arcs
// offset will be positive
if (Double.isNaN(previous)) {
// we need to wrap around the circle
wrapFirst = true;
} else {
final double previousOffset = alpha - previous;
final double currentOffset = a[0] - alpha;
if (previousOffset < currentOffset) {
return new BoundaryProjection<Sphere1D>(point, new S1Point(previous), previousOffset);
} else {
return new BoundaryProjection<Sphere1D>(point, new S1Point(a[0]), currentOffset);
}
}
} else if (alpha <= a[1]) {
// the test point lies within the current arc
// offset will be negative
final double offset0 = a[0] - alpha;
final double offset1 = alpha - a[1];
if (offset0 < offset1) {
return new BoundaryProjection<Sphere1D>(point, new S1Point(a[1]), offset1);
} else {
return new BoundaryProjection<Sphere1D>(point, new S1Point(a[0]), offset0);
}
}
}
previous = a[1];
}
if (Double.isNaN(previous)) {
// there are no points at all in the arcs set
return new BoundaryProjection<Sphere1D>(point, null, MathUtils.TWO_PI);
} else {
// the test point if before first arc and after last arc,
// somewhere around the 0/2 \pi crossing
if (wrapFirst) {
// the test point is between 0 and first
final double previousOffset = alpha - (previous - MathUtils.TWO_PI);
final double currentOffset = first - alpha;
if (previousOffset < currentOffset) {
return new BoundaryProjection<Sphere1D>(point, new S1Point(previous), previousOffset);
} else {
return new BoundaryProjection<Sphere1D>(point, new S1Point(first), currentOffset);
}
} else {
// the test point is between last and 2\pi
final double previousOffset = alpha - previous;
final double currentOffset = first + MathUtils.TWO_PI - alpha;
if (previousOffset < currentOffset) {
return new BoundaryProjection<Sphere1D>(point, new S1Point(previous), previousOffset);
} else {
return new BoundaryProjection<Sphere1D>(point, new S1Point(first), currentOffset);
}
}
}
}
Build an ordered list of arcs representing the instance.
This method builds this arcs set as an ordered list of Arc
elements. An empty tree will build an empty list while a tree representing the whole circle will build a one element list with bounds set to \( 0 and 2 \pi \).
Returns: a new ordered list containing Arc
elements
/** Build an ordered list of arcs representing the instance.
* <p>This method builds this arcs set as an ordered list of
* {@link Arc Arc} elements. An empty tree will build an empty list
* while a tree representing the whole circle will build a one
* element list with bounds set to \( 0 and 2 \pi \).</p>
* @return a new ordered list containing {@link Arc Arc} elements
*/
public List<Arc> asList() {
final List<Arc> list = new ArrayList<Arc>();
for (final double[] a : this) {
list.add(new Arc(a[0], a[1], getTolerance()));
}
return list;
}
{@inheritDoc}
The iterator returns the limit angles pairs of sub-arcs in trigonometric order.
The iterator does not support the optional remove
operation.
/** {@inheritDoc}
* <p>
* The iterator returns the limit angles pairs of sub-arcs in trigonometric order.
* </p>
* <p>
* The iterator does <em>not</em> support the optional {@code remove} operation.
* </p>
*/
public Iterator<double[]> iterator() {
return new SubArcsIterator();
}
Local iterator for sub-arcs. /** Local iterator for sub-arcs. */
private class SubArcsIterator implements Iterator<double[]> {
Start of the first arc. /** Start of the first arc. */
private final BSPTree<Sphere1D> firstStart;
Current node. /** Current node. */
private BSPTree<Sphere1D> current;
Sub-arc no yet returned. /** Sub-arc no yet returned. */
private double[] pending;
Simple constructor.
/** Simple constructor.
*/
SubArcsIterator() {
firstStart = getFirstArcStart();
current = firstStart;
if (firstStart == null) {
// all the leaf tree nodes share the same inside/outside status
if ((Boolean) getFirstLeaf(getTree(false)).getAttribute()) {
// it is an inside node, it represents the full circle
pending = new double[] {
0, MathUtils.TWO_PI
};
} else {
pending = null;
}
} else {
selectPending();
}
}
Walk the tree to select the pending sub-arc.
/** Walk the tree to select the pending sub-arc.
*/
private void selectPending() {
// look for the start of the arc
BSPTree<Sphere1D> start = current;
while (start != null && !isArcStart(start)) {
start = nextInternalNode(start);
}
if (start == null) {
// we have exhausted the iterator
current = null;
pending = null;
return;
}
// look for the end of the arc
BSPTree<Sphere1D> end = start;
while (end != null && !isArcEnd(end)) {
end = nextInternalNode(end);
}
if (end != null) {
// we have identified the arc
pending = new double[] {
getAngle(start), getAngle(end)
};
// prepare search for next arc
current = end;
} else {
// the final arc wraps around 2\pi, its end is before the first start
end = firstStart;
while (end != null && !isArcEnd(end)) {
end = previousInternalNode(end);
}
if (end == null) {
// this should never happen
throw new MathInternalError();
}
// we have identified the last arc
pending = new double[] {
getAngle(start), getAngle(end) + MathUtils.TWO_PI
};
// there won't be any other arcs
current = null;
}
}
{@inheritDoc} /** {@inheritDoc} */
public boolean hasNext() {
return pending != null;
}
{@inheritDoc} /** {@inheritDoc} */
public double[] next() {
if (pending == null) {
throw new NoSuchElementException();
}
final double[] next = pending;
selectPending();
return next;
}
{@inheritDoc} /** {@inheritDoc} */
public void remove() {
throw new UnsupportedOperationException();
}
}
Compute the relative position of the instance with respect
to an arc.
The Side.MINUS
side of the arc is the one covered by the arc.
Params: - arc – arc to check instance against
Returns: one of Side.PLUS
, Side.MINUS
, Side.BOTH
or Side.HYPER
Deprecated: as of 3.6, replaced with split(Arc)
.Split.getSide()
/** Compute the relative position of the instance with respect
* to an arc.
* <p>
* The {@link Side#MINUS} side of the arc is the one covered by the arc.
* </p>
* @param arc arc to check instance against
* @return one of {@link Side#PLUS}, {@link Side#MINUS}, {@link Side#BOTH}
* or {@link Side#HYPER}
* @deprecated as of 3.6, replaced with {@link #split(Arc)}.{@link Split#getSide()}
*/
@Deprecated
public Side side(final Arc arc) {
return split(arc).getSide();
}
Split the instance in two parts by an arc.
Params: - arc – splitting arc
Returns: an object containing both the part of the instance
on the plus side of the arc and the part of the
instance on the minus side of the arc
/** Split the instance in two parts by an arc.
* @param arc splitting arc
* @return an object containing both the part of the instance
* on the plus side of the arc and the part of the
* instance on the minus side of the arc
*/
public Split split(final Arc arc) {
final List<Double> minus = new ArrayList<Double>();
final List<Double> plus = new ArrayList<Double>();
final double reference = FastMath.PI + arc.getInf();
final double arcLength = arc.getSup() - arc.getInf();
for (final double[] a : this) {
final double syncedStart = MathUtils.normalizeAngle(a[0], reference) - arc.getInf();
final double arcOffset = a[0] - syncedStart;
final double syncedEnd = a[1] - arcOffset;
if (syncedStart < arcLength) {
// the start point a[0] is in the minus part of the arc
minus.add(a[0]);
if (syncedEnd > arcLength) {
// the end point a[1] is past the end of the arc
// so we leave the minus part and enter the plus part
final double minusToPlus = arcLength + arcOffset;
minus.add(minusToPlus);
plus.add(minusToPlus);
if (syncedEnd > MathUtils.TWO_PI) {
// in fact the end point a[1] goes far enough that we
// leave the plus part of the arc and enter the minus part again
final double plusToMinus = MathUtils.TWO_PI + arcOffset;
plus.add(plusToMinus);
minus.add(plusToMinus);
minus.add(a[1]);
} else {
// the end point a[1] is in the plus part of the arc
plus.add(a[1]);
}
} else {
// the end point a[1] is in the minus part of the arc
minus.add(a[1]);
}
} else {
// the start point a[0] is in the plus part of the arc
plus.add(a[0]);
if (syncedEnd > MathUtils.TWO_PI) {
// the end point a[1] wraps around to the start of the arc
// so we leave the plus part and enter the minus part
final double plusToMinus = MathUtils.TWO_PI + arcOffset;
plus.add(plusToMinus);
minus.add(plusToMinus);
if (syncedEnd > MathUtils.TWO_PI + arcLength) {
// in fact the end point a[1] goes far enough that we
// leave the minus part of the arc and enter the plus part again
final double minusToPlus = MathUtils.TWO_PI + arcLength + arcOffset;
minus.add(minusToPlus);
plus.add(minusToPlus);
plus.add(a[1]);
} else {
// the end point a[1] is in the minus part of the arc
minus.add(a[1]);
}
} else {
// the end point a[1] is in the plus part of the arc
plus.add(a[1]);
}
}
}
return new Split(createSplitPart(plus), createSplitPart(minus));
}
Add an arc limit to a BSP tree under construction.
Params: - tree – BSP tree under construction
- alpha – arc limit
- isStart – if true, the limit is the start of an arc
/** Add an arc limit to a BSP tree under construction.
* @param tree BSP tree under construction
* @param alpha arc limit
* @param isStart if true, the limit is the start of an arc
*/
private void addArcLimit(final BSPTree<Sphere1D> tree, final double alpha, final boolean isStart) {
final LimitAngle limit = new LimitAngle(new S1Point(alpha), !isStart, getTolerance());
final BSPTree<Sphere1D> node = tree.getCell(limit.getLocation(), getTolerance());
if (node.getCut() != null) {
// this should never happen
throw new MathInternalError();
}
node.insertCut(limit);
node.setAttribute(null);
node.getPlus().setAttribute(Boolean.FALSE);
node.getMinus().setAttribute(Boolean.TRUE);
}
Create a split part.
As per construction, the list of limit angles is known to have
an even number of entries, with start angles at even indices and
end angles at odd indices.
Params: - limits – limit angles of the split part
Returns: split part (may be null)
/** Create a split part.
* <p>
* As per construction, the list of limit angles is known to have
* an even number of entries, with start angles at even indices and
* end angles at odd indices.
* </p>
* @param limits limit angles of the split part
* @return split part (may be null)
*/
private ArcsSet createSplitPart(final List<Double> limits) {
if (limits.isEmpty()) {
return null;
} else {
// collapse close limit angles
for (int i = 0; i < limits.size(); ++i) {
final int j = (i + 1) % limits.size();
final double lA = limits.get(i);
final double lB = MathUtils.normalizeAngle(limits.get(j), lA);
if (FastMath.abs(lB - lA) <= getTolerance()) {
// the two limits are too close to each other, we remove both of them
if (j > 0) {
// regular case, the two entries are consecutive ones
limits.remove(j);
limits.remove(i);
i = i - 1;
} else {
// special case, i the the last entry and j is the first entry
// we have wrapped around list end
final double lEnd = limits.remove(limits.size() - 1);
final double lStart = limits.remove(0);
if (limits.isEmpty()) {
// the ends were the only limits, is it a full circle or an empty circle?
if (lEnd - lStart > FastMath.PI) {
// it was full circle
return new ArcsSet(new BSPTree<Sphere1D>(Boolean.TRUE), getTolerance());
} else {
// it was an empty circle
return null;
}
} else {
// we have removed the first interval start, so our list
// currently starts with an interval end, which is wrong
// we need to move this interval end to the end of the list
limits.add(limits.remove(0) + MathUtils.TWO_PI);
}
}
}
}
// build the tree by adding all angular sectors
BSPTree<Sphere1D> tree = new BSPTree<Sphere1D>(Boolean.FALSE);
for (int i = 0; i < limits.size() - 1; i += 2) {
addArcLimit(tree, limits.get(i), true);
addArcLimit(tree, limits.get(i + 1), false);
}
if (tree.getCut() == null) {
// we did not insert anything
return null;
}
return new ArcsSet(tree, getTolerance());
}
}
Class holding the results of the split
method. /** Class holding the results of the {@link #split split} method.
*/
public static class Split {
Part of the arcs set on the plus side of the splitting arc. /** Part of the arcs set on the plus side of the splitting arc. */
private final ArcsSet plus;
Part of the arcs set on the minus side of the splitting arc. /** Part of the arcs set on the minus side of the splitting arc. */
private final ArcsSet minus;
Build a Split from its parts.
Params: - plus – part of the arcs set on the plus side of the
splitting arc
- minus – part of the arcs set on the minus side of the
splitting arc
/** Build a Split from its parts.
* @param plus part of the arcs set on the plus side of the
* splitting arc
* @param minus part of the arcs set on the minus side of the
* splitting arc
*/
private Split(final ArcsSet plus, final ArcsSet minus) {
this.plus = plus;
this.minus = minus;
}
Get the part of the arcs set on the plus side of the splitting arc.
Returns: part of the arcs set on the plus side of the splitting arc
/** Get the part of the arcs set on the plus side of the splitting arc.
* @return part of the arcs set on the plus side of the splitting arc
*/
public ArcsSet getPlus() {
return plus;
}
Get the part of the arcs set on the minus side of the splitting arc.
Returns: part of the arcs set on the minus side of the splitting arc
/** Get the part of the arcs set on the minus side of the splitting arc.
* @return part of the arcs set on the minus side of the splitting arc
*/
public ArcsSet getMinus() {
return minus;
}
Get the side of the split arc with respect to its splitter.
Returns: Side.PLUS
if only getPlus()
returns non-null, Side.MINUS
if only getMinus()
returns non-null, Side.BOTH
if both getPlus()
and getMinus()
return non-null or Side.HYPER
if both getPlus()
and getMinus()
return nullSince: 3.6
/** Get the side of the split arc with respect to its splitter.
* @return {@link Side#PLUS} if only {@link #getPlus()} returns non-null,
* {@link Side#MINUS} if only {@link #getMinus()} returns non-null,
* {@link Side#BOTH} if both {@link #getPlus()} and {@link #getMinus()}
* return non-null or {@link Side#HYPER} if both {@link #getPlus()} and
* {@link #getMinus()} return null
* @since 3.6
*/
public Side getSide() {
if (plus != null) {
if (minus != null) {
return Side.BOTH;
} else {
return Side.PLUS;
}
} else if (minus != null) {
return Side.MINUS;
} else {
return Side.HYPER;
}
}
}
Specialized exception for inconsistent BSP tree state inconsistency.
This exception is thrown at ArcsSet
construction time when the inside/outside
state is not consistent at the 0, \(2 \pi \) crossing.
/** Specialized exception for inconsistent BSP tree state inconsistency.
* <p>
* This exception is thrown at {@link ArcsSet} construction time when the
* {@link org.apache.commons.math3.geometry.partitioning.Region.Location inside/outside}
* state is not consistent at the 0, \(2 \pi \) crossing.
* </p>
*/
public static class InconsistentStateAt2PiWrapping extends MathIllegalArgumentException {
Serializable UID. /** Serializable UID. */
private static final long serialVersionUID = 20140107L;
Simple constructor.
/** Simple constructor.
*/
public InconsistentStateAt2PiWrapping() {
super(LocalizedFormats.INCONSISTENT_STATE_AT_2_PI_WRAPPING);
}
}
}