/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.geometry.euclidean.oned;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.partitioning.AbstractRegion;
import org.apache.commons.math3.geometry.partitioning.BSPTree;
import org.apache.commons.math3.geometry.partitioning.BoundaryProjection;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.util.Precision;
This class represents a 1D region: a set of intervals.
Since: 3.0
/** This class represents a 1D region: a set of intervals.
* @since 3.0
*/
public class IntervalsSet extends AbstractRegion<Euclidean1D, Euclidean1D> implements Iterable<double[]> {
Default value for tolerance. /** Default value for tolerance. */
private static final double DEFAULT_TOLERANCE = 1.0e-10;
Build an intervals set representing the whole real line.
Params: - tolerance – tolerance below which points are considered identical.
Since: 3.3
/** Build an intervals set representing the whole real line.
* @param tolerance tolerance below which points are considered identical.
* @since 3.3
*/
public IntervalsSet(final double tolerance) {
super(tolerance);
}
Build an intervals set corresponding to a single interval.
Params: - lower – lower bound of the interval, must be lesser or equal to
upper
(may be Double.NEGATIVE_INFINITY
) - upper – upper bound of the interval, must be greater or equal to
lower
(may be Double.POSITIVE_INFINITY
) - tolerance – tolerance below which points are considered identical.
Since: 3.3
/** Build an intervals set corresponding to a single interval.
* @param lower lower bound of the interval, must be lesser or equal
* to {@code upper} (may be {@code Double.NEGATIVE_INFINITY})
* @param upper upper bound of the interval, must be greater or equal
* to {@code lower} (may be {@code Double.POSITIVE_INFINITY})
* @param tolerance tolerance below which points are considered identical.
* @since 3.3
*/
public IntervalsSet(final double lower, final double upper, final double tolerance) {
super(buildTree(lower, upper, tolerance), tolerance);
}
Build an intervals set from an inside/outside BSP tree.
The leaf nodes of the BSP tree must have a Boolean
attribute representing the inside status of the corresponding cell (true for inside cells, false for outside cells). In order to avoid building too many small objects, it is recommended to use the predefined constants Boolean.TRUE
and Boolean.FALSE
Params: - tree – inside/outside BSP tree representing the intervals set
- tolerance – tolerance below which points are considered identical.
Since: 3.3
/** Build an intervals set from an inside/outside BSP tree.
* <p>The leaf nodes of the BSP tree <em>must</em> have a
* {@code Boolean} attribute representing the inside status of
* the corresponding cell (true for inside cells, false for outside
* cells). In order to avoid building too many small objects, it is
* recommended to use the predefined constants
* {@code Boolean.TRUE} and {@code Boolean.FALSE}</p>
* @param tree inside/outside BSP tree representing the intervals set
* @param tolerance tolerance below which points are considered identical.
* @since 3.3
*/
public IntervalsSet(final BSPTree<Euclidean1D> tree, final double tolerance) {
super(tree, tolerance);
}
Build an intervals set from a Boundary REPresentation (B-rep).
The boundary is provided as a collection of sub-hyperplanes
. Each sub-hyperplane has the interior part of the region on its minus side and the exterior on its plus side.
The boundary elements can be in any order, and can form several non-connected sets (like for example polygons with holes or a set of disjoints polyhedrons considered as a whole). In fact, the elements do not even need to be connected together (their topological connections are not used here). However, if the boundary does not really separate an inside open from an outside open (open having here its topological meaning), then subsequent calls to the
checkPoint
method will not be meaningful anymore.
If the boundary is empty, the region will represent the whole
space.
Params: - boundary – collection of boundary elements
- tolerance – tolerance below which points are considered identical.
Since: 3.3
/** Build an intervals set from a Boundary REPresentation (B-rep).
* <p>The boundary is provided as a collection of {@link
* SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the
* interior part of the region on its minus side and the exterior on
* its plus side.</p>
* <p>The boundary elements can be in any order, and can form
* several non-connected sets (like for example polygons with holes
* or a set of disjoints polyhedrons considered as a whole). In
* fact, the elements do not even need to be connected together
* (their topological connections are not used here). However, if the
* boundary does not really separate an inside open from an outside
* open (open having here its topological meaning), then subsequent
* calls to the {@link
* org.apache.commons.math3.geometry.partitioning.Region#checkPoint(org.apache.commons.math3.geometry.Point)
* checkPoint} method will not be meaningful anymore.</p>
* <p>If the boundary is empty, the region will represent the whole
* space.</p>
* @param boundary collection of boundary elements
* @param tolerance tolerance below which points are considered identical.
* @since 3.3
*/
public IntervalsSet(final Collection<SubHyperplane<Euclidean1D>> boundary,
final double tolerance) {
super(boundary, tolerance);
}
Build an intervals set representing the whole real line.
Deprecated: as of 3.1 replaced with IntervalsSet(double)
/** Build an intervals set representing the whole real line.
* @deprecated as of 3.1 replaced with {@link #IntervalsSet(double)}
*/
@Deprecated
public IntervalsSet() {
this(DEFAULT_TOLERANCE);
}
Build an intervals set corresponding to a single interval.
Params: - lower – lower bound of the interval, must be lesser or equal to
upper
(may be Double.NEGATIVE_INFINITY
) - upper – upper bound of the interval, must be greater or equal to
lower
(may be Double.POSITIVE_INFINITY
)
Deprecated: as of 3.3 replaced with IntervalsSet(double, double, double)
/** Build an intervals set corresponding to a single interval.
* @param lower lower bound of the interval, must be lesser or equal
* to {@code upper} (may be {@code Double.NEGATIVE_INFINITY})
* @param upper upper bound of the interval, must be greater or equal
* to {@code lower} (may be {@code Double.POSITIVE_INFINITY})
* @deprecated as of 3.3 replaced with {@link #IntervalsSet(double, double, double)}
*/
@Deprecated
public IntervalsSet(final double lower, final double upper) {
this(lower, upper, DEFAULT_TOLERANCE);
}
Build an intervals set from an inside/outside BSP tree.
The leaf nodes of the BSP tree must have a Boolean
attribute representing the inside status of the corresponding cell (true for inside cells, false for outside cells). In order to avoid building too many small objects, it is recommended to use the predefined constants Boolean.TRUE
and Boolean.FALSE
Params: - tree – inside/outside BSP tree representing the intervals set
Deprecated: as of 3.3, replaced with IntervalsSet(BSPTree<Euclidean1D>, double)
/** Build an intervals set from an inside/outside BSP tree.
* <p>The leaf nodes of the BSP tree <em>must</em> have a
* {@code Boolean} attribute representing the inside status of
* the corresponding cell (true for inside cells, false for outside
* cells). In order to avoid building too many small objects, it is
* recommended to use the predefined constants
* {@code Boolean.TRUE} and {@code Boolean.FALSE}</p>
* @param tree inside/outside BSP tree representing the intervals set
* @deprecated as of 3.3, replaced with {@link #IntervalsSet(BSPTree, double)}
*/
@Deprecated
public IntervalsSet(final BSPTree<Euclidean1D> tree) {
this(tree, DEFAULT_TOLERANCE);
}
Build an intervals set from a Boundary REPresentation (B-rep).
The boundary is provided as a collection of sub-hyperplanes
. Each sub-hyperplane has the interior part of the region on its minus side and the exterior on its plus side.
The boundary elements can be in any order, and can form several non-connected sets (like for example polygons with holes or a set of disjoints polyhedrons considered as a whole). In fact, the elements do not even need to be connected together (their topological connections are not used here). However, if the boundary does not really separate an inside open from an outside open (open having here its topological meaning), then subsequent calls to the
checkPoint
method will not be meaningful anymore.
If the boundary is empty, the region will represent the whole
space.
Params: - boundary – collection of boundary elements
Deprecated: as of 3.3, replaced with IntervalsSet(Collection<SubHyperplane<Euclidean1D>>, double)
/** Build an intervals set from a Boundary REPresentation (B-rep).
* <p>The boundary is provided as a collection of {@link
* SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the
* interior part of the region on its minus side and the exterior on
* its plus side.</p>
* <p>The boundary elements can be in any order, and can form
* several non-connected sets (like for example polygons with holes
* or a set of disjoints polyhedrons considered as a whole). In
* fact, the elements do not even need to be connected together
* (their topological connections are not used here). However, if the
* boundary does not really separate an inside open from an outside
* open (open having here its topological meaning), then subsequent
* calls to the {@link
* org.apache.commons.math3.geometry.partitioning.Region#checkPoint(org.apache.commons.math3.geometry.Point)
* checkPoint} method will not be meaningful anymore.</p>
* <p>If the boundary is empty, the region will represent the whole
* space.</p>
* @param boundary collection of boundary elements
* @deprecated as of 3.3, replaced with {@link #IntervalsSet(Collection, double)}
*/
@Deprecated
public IntervalsSet(final Collection<SubHyperplane<Euclidean1D>> boundary) {
this(boundary, DEFAULT_TOLERANCE);
}
Build an inside/outside tree representing a single interval.
Params: - lower – lower bound of the interval, must be lesser or equal to
upper
(may be Double.NEGATIVE_INFINITY
) - upper – upper bound of the interval, must be greater or equal to
lower
(may be Double.POSITIVE_INFINITY
) - tolerance – tolerance below which points are considered identical.
Returns: the built tree
/** Build an inside/outside tree representing a single interval.
* @param lower lower bound of the interval, must be lesser or equal
* to {@code upper} (may be {@code Double.NEGATIVE_INFINITY})
* @param upper upper bound of the interval, must be greater or equal
* to {@code lower} (may be {@code Double.POSITIVE_INFINITY})
* @param tolerance tolerance below which points are considered identical.
* @return the built tree
*/
private static BSPTree<Euclidean1D> buildTree(final double lower, final double upper,
final double tolerance) {
if (Double.isInfinite(lower) && (lower < 0)) {
if (Double.isInfinite(upper) && (upper > 0)) {
// the tree must cover the whole real line
return new BSPTree<Euclidean1D>(Boolean.TRUE);
}
// the tree must be open on the negative infinity side
final SubHyperplane<Euclidean1D> upperCut =
new OrientedPoint(new Vector1D(upper), true, tolerance).wholeHyperplane();
return new BSPTree<Euclidean1D>(upperCut,
new BSPTree<Euclidean1D>(Boolean.FALSE),
new BSPTree<Euclidean1D>(Boolean.TRUE),
null);
}
final SubHyperplane<Euclidean1D> lowerCut =
new OrientedPoint(new Vector1D(lower), false, tolerance).wholeHyperplane();
if (Double.isInfinite(upper) && (upper > 0)) {
// the tree must be open on the positive infinity side
return new BSPTree<Euclidean1D>(lowerCut,
new BSPTree<Euclidean1D>(Boolean.FALSE),
new BSPTree<Euclidean1D>(Boolean.TRUE),
null);
}
// the tree must be bounded on the two sides
final SubHyperplane<Euclidean1D> upperCut =
new OrientedPoint(new Vector1D(upper), true, tolerance).wholeHyperplane();
return new BSPTree<Euclidean1D>(lowerCut,
new BSPTree<Euclidean1D>(Boolean.FALSE),
new BSPTree<Euclidean1D>(upperCut,
new BSPTree<Euclidean1D>(Boolean.FALSE),
new BSPTree<Euclidean1D>(Boolean.TRUE),
null),
null);
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public IntervalsSet buildNew(final BSPTree<Euclidean1D> tree) {
return new IntervalsSet(tree, getTolerance());
}
{@inheritDoc} /** {@inheritDoc} */
@Override
protected void computeGeometricalProperties() {
if (getTree(false).getCut() == null) {
setBarycenter((Point<Euclidean1D>) Vector1D.NaN);
setSize(((Boolean) getTree(false).getAttribute()) ? Double.POSITIVE_INFINITY : 0);
} else {
double size = 0.0;
double sum = 0.0;
for (final Interval interval : asList()) {
size += interval.getSize();
sum += interval.getSize() * interval.getBarycenter();
}
setSize(size);
if (Double.isInfinite(size)) {
setBarycenter((Point<Euclidean1D>) Vector1D.NaN);
} else if (size >= Precision.SAFE_MIN) {
setBarycenter((Point<Euclidean1D>) new Vector1D(sum / size));
} else {
setBarycenter((Point<Euclidean1D>) ((OrientedPoint) getTree(false).getCut().getHyperplane()).getLocation());
}
}
}
Get the lowest value belonging to the instance.
Returns: lowest value belonging to the instance (Double.NEGATIVE_INFINITY
if the instance doesn't have any low bound, Double.POSITIVE_INFINITY
if the instance is empty)
/** Get the lowest value belonging to the instance.
* @return lowest value belonging to the instance
* ({@code Double.NEGATIVE_INFINITY} if the instance doesn't
* have any low bound, {@code Double.POSITIVE_INFINITY} if the
* instance is empty)
*/
public double getInf() {
BSPTree<Euclidean1D> node = getTree(false);
double inf = Double.POSITIVE_INFINITY;
while (node.getCut() != null) {
final OrientedPoint op = (OrientedPoint) node.getCut().getHyperplane();
inf = op.getLocation().getX();
node = op.isDirect() ? node.getMinus() : node.getPlus();
}
return ((Boolean) node.getAttribute()) ? Double.NEGATIVE_INFINITY : inf;
}
Get the highest value belonging to the instance.
Returns: highest value belonging to the instance (Double.POSITIVE_INFINITY
if the instance doesn't have any high bound, Double.NEGATIVE_INFINITY
if the instance is empty)
/** Get the highest value belonging to the instance.
* @return highest value belonging to the instance
* ({@code Double.POSITIVE_INFINITY} if the instance doesn't
* have any high bound, {@code Double.NEGATIVE_INFINITY} if the
* instance is empty)
*/
public double getSup() {
BSPTree<Euclidean1D> node = getTree(false);
double sup = Double.NEGATIVE_INFINITY;
while (node.getCut() != null) {
final OrientedPoint op = (OrientedPoint) node.getCut().getHyperplane();
sup = op.getLocation().getX();
node = op.isDirect() ? node.getPlus() : node.getMinus();
}
return ((Boolean) node.getAttribute()) ? Double.POSITIVE_INFINITY : sup;
}
{@inheritDoc}
Since: 3.3
/** {@inheritDoc}
* @since 3.3
*/
@Override
public BoundaryProjection<Euclidean1D> projectToBoundary(final Point<Euclidean1D> point) {
// get position of test point
final double x = ((Vector1D) point).getX();
double previous = Double.NEGATIVE_INFINITY;
for (final double[] a : this) {
if (x < a[0]) {
// the test point lies between the previous and the current intervals
// offset will be positive
final double previousOffset = x - previous;
final double currentOffset = a[0] - x;
if (previousOffset < currentOffset) {
return new BoundaryProjection<Euclidean1D>(point, finiteOrNullPoint(previous), previousOffset);
} else {
return new BoundaryProjection<Euclidean1D>(point, finiteOrNullPoint(a[0]), currentOffset);
}
} else if (x <= a[1]) {
// the test point lies within the current interval
// offset will be negative
final double offset0 = a[0] - x;
final double offset1 = x - a[1];
if (offset0 < offset1) {
return new BoundaryProjection<Euclidean1D>(point, finiteOrNullPoint(a[1]), offset1);
} else {
return new BoundaryProjection<Euclidean1D>(point, finiteOrNullPoint(a[0]), offset0);
}
}
previous = a[1];
}
// the test point if past the last sub-interval
return new BoundaryProjection<Euclidean1D>(point, finiteOrNullPoint(previous), x - previous);
}
Build a finite point.
Params: - x – abscissa of the point
Returns: a new point for finite abscissa, null otherwise
/** Build a finite point.
* @param x abscissa of the point
* @return a new point for finite abscissa, null otherwise
*/
private Vector1D finiteOrNullPoint(final double x) {
return Double.isInfinite(x) ? null : new Vector1D(x);
}
Build an ordered list of intervals representing the instance.
This method builds this intervals set as an ordered list of Interval
elements. If the intervals set has no lower limit, the first interval will have its low bound equal to Double.NEGATIVE_INFINITY
. If the intervals set has no upper limit, the last interval will have its upper bound equal to Double.POSITIVE_INFINITY
. An empty tree will build an empty list while a tree representing the whole real line will build a one element list with both bounds being infinite.
Returns: a new ordered list containing Interval
elements
/** Build an ordered list of intervals representing the instance.
* <p>This method builds this intervals set as an ordered list of
* {@link Interval Interval} elements. If the intervals set has no
* lower limit, the first interval will have its low bound equal to
* {@code Double.NEGATIVE_INFINITY}. If the intervals set has
* no upper limit, the last interval will have its upper bound equal
* to {@code Double.POSITIVE_INFINITY}. An empty tree will
* build an empty list while a tree representing the whole real line
* will build a one element list with both bounds being
* infinite.</p>
* @return a new ordered list containing {@link Interval Interval}
* elements
*/
public List<Interval> asList() {
final List<Interval> list = new ArrayList<Interval>();
for (final double[] a : this) {
list.add(new Interval(a[0], a[1]));
}
return list;
}
Get the first leaf node of a tree.
Params: - root – tree root
Returns: first leaf node
/** Get the first leaf node of a tree.
* @param root tree root
* @return first leaf node
*/
private BSPTree<Euclidean1D> getFirstLeaf(final BSPTree<Euclidean1D> root) {
if (root.getCut() == null) {
return root;
}
// find the smallest internal node
BSPTree<Euclidean1D> smallest = null;
for (BSPTree<Euclidean1D> n = root; n != null; n = previousInternalNode(n)) {
smallest = n;
}
return leafBefore(smallest);
}
Get the node corresponding to the first interval boundary.
Returns: smallest internal node,
or null if there are no internal nodes (i.e. the set is either empty or covers the real line)
/** Get the node corresponding to the first interval boundary.
* @return smallest internal node,
* or null if there are no internal nodes (i.e. the set is either empty or covers the real line)
*/
private BSPTree<Euclidean1D> getFirstIntervalBoundary() {
// start search at the tree root
BSPTree<Euclidean1D> node = getTree(false);
if (node.getCut() == null) {
return null;
}
// walk tree until we find the smallest internal node
node = getFirstLeaf(node).getParent();
// walk tree until we find an interval boundary
while (node != null && !(isIntervalStart(node) || isIntervalEnd(node))) {
node = nextInternalNode(node);
}
return node;
}
Check if an internal node corresponds to the start abscissa of an interval.
Params: - node – internal node to check
Returns: true if the node corresponds to the start abscissa of an interval
/** Check if an internal node corresponds to the start abscissa of an interval.
* @param node internal node to check
* @return true if the node corresponds to the start abscissa of an interval
*/
private boolean isIntervalStart(final BSPTree<Euclidean1D> node) {
if ((Boolean) leafBefore(node).getAttribute()) {
// it has an inside cell before it, it may end an interval but not start it
return false;
}
if (!(Boolean) leafAfter(node).getAttribute()) {
// it has an outside cell after it, it is a dummy cut away from real intervals
return false;
}
// the cell has an outside before and an inside after it
// it is the start of an interval
return true;
}
Check if an internal node corresponds to the end abscissa of an interval.
Params: - node – internal node to check
Returns: true if the node corresponds to the end abscissa of an interval
/** Check if an internal node corresponds to the end abscissa of an interval.
* @param node internal node to check
* @return true if the node corresponds to the end abscissa of an interval
*/
private boolean isIntervalEnd(final BSPTree<Euclidean1D> node) {
if (!(Boolean) leafBefore(node).getAttribute()) {
// it has an outside cell before it, it may start an interval but not end it
return false;
}
if ((Boolean) leafAfter(node).getAttribute()) {
// it has an inside cell after it, it is a dummy cut in the middle of an interval
return false;
}
// the cell has an inside before and an outside after it
// it is the end of an interval
return true;
}
Get the next internal node.
Params: - node – current internal node
Returns: next internal node in ascending order, or null
if this is the last internal node
/** Get the next internal node.
* @param node current internal node
* @return next internal node in ascending order, or null
* if this is the last internal node
*/
private BSPTree<Euclidean1D> nextInternalNode(BSPTree<Euclidean1D> node) {
if (childAfter(node).getCut() != null) {
// the next node is in the sub-tree
return leafAfter(node).getParent();
}
// there is nothing left deeper in the tree, we backtrack
while (isAfterParent(node)) {
node = node.getParent();
}
return node.getParent();
}
Get the previous internal node.
Params: - node – current internal node
Returns: previous internal node in ascending order, or null
if this is the first internal node
/** Get the previous internal node.
* @param node current internal node
* @return previous internal node in ascending order, or null
* if this is the first internal node
*/
private BSPTree<Euclidean1D> previousInternalNode(BSPTree<Euclidean1D> node) {
if (childBefore(node).getCut() != null) {
// the next node is in the sub-tree
return leafBefore(node).getParent();
}
// there is nothing left deeper in the tree, we backtrack
while (isBeforeParent(node)) {
node = node.getParent();
}
return node.getParent();
}
Find the leaf node just before an internal node.
Params: - node – internal node at which the sub-tree starts
Returns: leaf node just before the internal node
/** Find the leaf node just before an internal node.
* @param node internal node at which the sub-tree starts
* @return leaf node just before the internal node
*/
private BSPTree<Euclidean1D> leafBefore(BSPTree<Euclidean1D> node) {
node = childBefore(node);
while (node.getCut() != null) {
node = childAfter(node);
}
return node;
}
Find the leaf node just after an internal node.
Params: - node – internal node at which the sub-tree starts
Returns: leaf node just after the internal node
/** Find the leaf node just after an internal node.
* @param node internal node at which the sub-tree starts
* @return leaf node just after the internal node
*/
private BSPTree<Euclidean1D> leafAfter(BSPTree<Euclidean1D> node) {
node = childAfter(node);
while (node.getCut() != null) {
node = childBefore(node);
}
return node;
}
Check if a node is the child before its parent in ascending order.
Params: - node – child node considered
Returns: true is the node has a parent end is before it in ascending order
/** Check if a node is the child before its parent in ascending order.
* @param node child node considered
* @return true is the node has a parent end is before it in ascending order
*/
private boolean isBeforeParent(final BSPTree<Euclidean1D> node) {
final BSPTree<Euclidean1D> parent = node.getParent();
if (parent == null) {
return false;
} else {
return node == childBefore(parent);
}
}
Check if a node is the child after its parent in ascending order.
Params: - node – child node considered
Returns: true is the node has a parent end is after it in ascending order
/** Check if a node is the child after its parent in ascending order.
* @param node child node considered
* @return true is the node has a parent end is after it in ascending order
*/
private boolean isAfterParent(final BSPTree<Euclidean1D> node) {
final BSPTree<Euclidean1D> parent = node.getParent();
if (parent == null) {
return false;
} else {
return node == childAfter(parent);
}
}
Find the child node just before an internal node.
Params: - node – internal node at which the sub-tree starts
Returns: child node just before the internal node
/** Find the child node just before an internal node.
* @param node internal node at which the sub-tree starts
* @return child node just before the internal node
*/
private BSPTree<Euclidean1D> childBefore(BSPTree<Euclidean1D> node) {
if (isDirect(node)) {
// smaller abscissas are on minus side, larger abscissas are on plus side
return node.getMinus();
} else {
// smaller abscissas are on plus side, larger abscissas are on minus side
return node.getPlus();
}
}
Find the child node just after an internal node.
Params: - node – internal node at which the sub-tree starts
Returns: child node just after the internal node
/** Find the child node just after an internal node.
* @param node internal node at which the sub-tree starts
* @return child node just after the internal node
*/
private BSPTree<Euclidean1D> childAfter(BSPTree<Euclidean1D> node) {
if (isDirect(node)) {
// smaller abscissas are on minus side, larger abscissas are on plus side
return node.getPlus();
} else {
// smaller abscissas are on plus side, larger abscissas are on minus side
return node.getMinus();
}
}
Check if an internal node has a direct oriented point.
Params: - node – internal node to check
Returns: true if the oriented point is direct
/** Check if an internal node has a direct oriented point.
* @param node internal node to check
* @return true if the oriented point is direct
*/
private boolean isDirect(final BSPTree<Euclidean1D> node) {
return ((OrientedPoint) node.getCut().getHyperplane()).isDirect();
}
Get the abscissa of an internal node.
Params: - node – internal node to check
Returns: abscissa
/** Get the abscissa of an internal node.
* @param node internal node to check
* @return abscissa
*/
private double getAngle(final BSPTree<Euclidean1D> node) {
return ((OrientedPoint) node.getCut().getHyperplane()).getLocation().getX();
}
{@inheritDoc}
The iterator returns the limit values of sub-intervals in ascending order.
The iterator does not support the optional remove
operation.
Since: 3.3
/** {@inheritDoc}
* <p>
* The iterator returns the limit values of sub-intervals in ascending order.
* </p>
* <p>
* The iterator does <em>not</em> support the optional {@code remove} operation.
* </p>
* @since 3.3
*/
public Iterator<double[]> iterator() {
return new SubIntervalsIterator();
}
Local iterator for sub-intervals. /** Local iterator for sub-intervals. */
private class SubIntervalsIterator implements Iterator<double[]> {
Current node. /** Current node. */
private BSPTree<Euclidean1D> current;
Sub-interval no yet returned. /** Sub-interval no yet returned. */
private double[] pending;
Simple constructor.
/** Simple constructor.
*/
SubIntervalsIterator() {
current = getFirstIntervalBoundary();
if (current == null) {
// all the leaf tree nodes share the same inside/outside status
if ((Boolean) getFirstLeaf(getTree(false)).getAttribute()) {
// it is an inside node, it represents the full real line
pending = new double[] {
Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY
};
} else {
pending = null;
}
} else if (isIntervalEnd(current)) {
// the first boundary is an interval end,
// so the first interval starts at infinity
pending = new double[] {
Double.NEGATIVE_INFINITY, getAngle(current)
};
} else {
selectPending();
}
}
Walk the tree to select the pending sub-interval.
/** Walk the tree to select the pending sub-interval.
*/
private void selectPending() {
// look for the start of the interval
BSPTree<Euclidean1D> start = current;
while (start != null && !isIntervalStart(start)) {
start = nextInternalNode(start);
}
if (start == null) {
// we have exhausted the iterator
current = null;
pending = null;
return;
}
// look for the end of the interval
BSPTree<Euclidean1D> end = start;
while (end != null && !isIntervalEnd(end)) {
end = nextInternalNode(end);
}
if (end != null) {
// we have identified the interval
pending = new double[] {
getAngle(start), getAngle(end)
};
// prepare search for next interval
current = end;
} else {
// the final interval is open toward infinity
pending = new double[] {
getAngle(start), Double.POSITIVE_INFINITY
};
// there won't be any other intervals
current = null;
}
}
{@inheritDoc} /** {@inheritDoc} */
public boolean hasNext() {
return pending != null;
}
{@inheritDoc} /** {@inheritDoc} */
public double[] next() {
if (pending == null) {
throw new NoSuchElementException();
}
final double[] next = pending;
selectPending();
return next;
}
{@inheritDoc} /** {@inheritDoc} */
public void remove() {
throw new UnsupportedOperationException();
}
}
}