package jdk.incubator.vector;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.Objects;
import java.util.function.IntUnaryOperator;
import jdk.internal.vm.annotation.ForceInline;
import jdk.internal.vm.vector.VectorSupport;
import static jdk.internal.vm.vector.VectorSupport.*;
import static jdk.incubator.vector.VectorOperators.*;
@SuppressWarnings("cast")
final class Float256Vector extends FloatVector {
static final FloatSpecies VSPECIES =
(FloatSpecies) FloatVector.SPECIES_256;
static final VectorShape VSHAPE =
VSPECIES.vectorShape();
static final Class<Float256Vector> VCLASS = Float256Vector.class;
static final int VSIZE = VSPECIES.vectorBitSize();
static final int VLENGTH = VSPECIES.laneCount();
static final Class<Float> ETYPE = float.class;
Float256Vector(float[] v) {
super(v);
}
Float256Vector(Object v) {
this((float[]) v);
}
static final Float256Vector ZERO = new Float256Vector(new float[VLENGTH]);
static final Float256Vector IOTA = new Float256Vector(VSPECIES.iotaArray());
static {
VSPECIES.dummyVector();
VSPECIES.withLanes(LaneType.BYTE);
}
@ForceInline
final @Override
public FloatSpecies vspecies() {
return VSPECIES;
}
@ForceInline
@Override
public final Class<Float> elementType() { return float.class; }
@ForceInline
@Override
public final int elementSize() { return Float.SIZE; }
@ForceInline
@Override
public final VectorShape shape() { return VSHAPE; }
@ForceInline
@Override
public final int length() { return VLENGTH; }
@ForceInline
@Override
public final int bitSize() { return VSIZE; }
@ForceInline
@Override
public final int byteSize() { return VSIZE / Byte.SIZE; }
@ForceInline
final @Override
float[] vec() {
return (float[])getPayload();
}
@Override
@ForceInline
public final Float256Vector broadcast(float e) {
return (Float256Vector) super.broadcastTemplate(e);
}
@Override
@ForceInline
public final Float256Vector broadcast(long e) {
return (Float256Vector) super.broadcastTemplate(e);
}
@Override
@ForceInline
Float256Mask maskFromArray(boolean[] bits) {
return new Float256Mask(bits);
}
@Override
@ForceInline
Float256Shuffle iotaShuffle() { return Float256Shuffle.IOTA; }
@ForceInline
Float256Shuffle iotaShuffle(int start, int step, boolean wrap) {
if (wrap) {
return (Float256Shuffle)VectorSupport.shuffleIota(ETYPE, Float256Shuffle.class, VSPECIES, VLENGTH, start, step, 1,
(l, lstart, lstep, s) -> s.shuffleFromOp(i -> (VectorIntrinsics.wrapToRange(i*lstep + lstart, l))));
} else {
return (Float256Shuffle)VectorSupport.shuffleIota(ETYPE, Float256Shuffle.class, VSPECIES, VLENGTH, start, step, 0,
(l, lstart, lstep, s) -> s.shuffleFromOp(i -> (i*lstep + lstart)));
}
}
@Override
@ForceInline
Float256Shuffle shuffleFromBytes(byte[] reorder) { return new Float256Shuffle(reorder); }
@Override
@ForceInline
Float256Shuffle shuffleFromArray(int[] indexes, int i) { return new Float256Shuffle(indexes, i); }
@Override
@ForceInline
Float256Shuffle shuffleFromOp(IntUnaryOperator fn) { return new Float256Shuffle(fn); }
@ForceInline
final @Override
Float256Vector vectorFactory(float[] vec) {
return new Float256Vector(vec);
}
@ForceInline
final @Override
Byte256Vector asByteVectorRaw() {
return (Byte256Vector) super.asByteVectorRawTemplate();
}
@ForceInline
final @Override
AbstractVector<?> asVectorRaw(LaneType laneType) {
return super.asVectorRawTemplate(laneType);
}
@ForceInline
final @Override
Float256Vector uOp(FUnOp f) {
return (Float256Vector) super.uOpTemplate(f);
}
@ForceInline
final @Override
Float256Vector uOp(VectorMask<Float> m, FUnOp f) {
return (Float256Vector)
super.uOpTemplate((Float256Mask)m, f);
}
@ForceInline
final @Override
Float256Vector bOp(Vector<Float> v, FBinOp f) {
return (Float256Vector) super.bOpTemplate((Float256Vector)v, f);
}
@ForceInline
final @Override
Float256Vector bOp(Vector<Float> v,
VectorMask<Float> m, FBinOp f) {
return (Float256Vector)
super.bOpTemplate((Float256Vector)v, (Float256Mask)m,
f);
}
@ForceInline
final @Override
Float256Vector tOp(Vector<Float> v1, Vector<Float> v2, FTriOp f) {
return (Float256Vector)
super.tOpTemplate((Float256Vector)v1, (Float256Vector)v2,
f);
}
@ForceInline
final @Override
Float256Vector tOp(Vector<Float> v1, Vector<Float> v2,
VectorMask<Float> m, FTriOp f) {
return (Float256Vector)
super.tOpTemplate((Float256Vector)v1, (Float256Vector)v2,
(Float256Mask)m, f);
}
@ForceInline
final @Override
float rOp(float v, FBinOp f) {
return super.rOpTemplate(v, f);
}
@Override
@ForceInline
public final <F>
Vector<F> convertShape(VectorOperators.Conversion<Float,F> conv,
VectorSpecies<F> rsp, int part) {
return super.convertShapeTemplate(conv, rsp, part);
}
@Override
@ForceInline
public final <F>
Vector<F> reinterpretShape(VectorSpecies<F> toSpecies, int part) {
return super.reinterpretShapeTemplate(toSpecies, part);
}
@Override
@ForceInline
public Float256Vector lanewise(Unary op) {
return (Float256Vector) super.lanewiseTemplate(op);
}
@Override
@ForceInline
public Float256Vector lanewise(Binary op, Vector<Float> v) {
return (Float256Vector) super.lanewiseTemplate(op, v);
}
@Override
@ForceInline
public final
Float256Vector
lanewise(VectorOperators.Ternary op, Vector<Float> v1, Vector<Float> v2) {
return (Float256Vector) super.lanewiseTemplate(op, v1, v2);
}
@Override
@ForceInline
public final
Float256Vector addIndex(int scale) {
return (Float256Vector) super.addIndexTemplate(scale);
}
@Override
@ForceInline
public final float reduceLanes(VectorOperators.Associative op) {
return super.reduceLanesTemplate(op);
}
@Override
@ForceInline
public final float reduceLanes(VectorOperators.Associative op,
VectorMask<Float> m) {
return super.reduceLanesTemplate(op, m);
}
@Override
@ForceInline
public final long reduceLanesToLong(VectorOperators.Associative op) {
return (long) super.reduceLanesTemplate(op);
}
@Override
@ForceInline
public final long reduceLanesToLong(VectorOperators.Associative op,
VectorMask<Float> m) {
return (long) super.reduceLanesTemplate(op, m);
}
@Override
@ForceInline
public VectorShuffle<Float> toShuffle() {
float[] a = toArray();
int[] sa = new int[a.length];
for (int i = 0; i < a.length; i++) {
sa[i] = (int) a[i];
}
return VectorShuffle.fromArray(VSPECIES, sa, 0);
}
@Override
@ForceInline
public final Float256Mask test(Test op) {
return super.testTemplate(Float256Mask.class, op);
}
@Override
@ForceInline
public final Float256Mask compare(Comparison op, Vector<Float> v) {
return super.compareTemplate(Float256Mask.class, op, v);
}
@Override
@ForceInline
public final Float256Mask compare(Comparison op, float s) {
return super.compareTemplate(Float256Mask.class, op, s);
}
@Override
@ForceInline
public final Float256Mask compare(Comparison op, long s) {
return super.compareTemplate(Float256Mask.class, op, s);
}
@Override
@ForceInline
public Float256Vector blend(Vector<Float> v, VectorMask<Float> m) {
return (Float256Vector)
super.blendTemplate(Float256Mask.class,
(Float256Vector) v,
(Float256Mask) m);
}
@Override
@ForceInline
public Float256Vector slice(int origin, Vector<Float> v) {
return (Float256Vector) super.sliceTemplate(origin, v);
}
@Override
@ForceInline
public Float256Vector slice(int origin) {
if ((origin < 0) || (origin >= VLENGTH)) {
throw new ArrayIndexOutOfBoundsException("Index " + origin + " out of bounds for vector length " + VLENGTH);
} else {
Float256Shuffle Iota = iotaShuffle();
VectorMask<Float> BlendMask = Iota.toVector().compare(VectorOperators.LT, (broadcast((float)(VLENGTH-origin))));
Iota = iotaShuffle(origin, 1, true);
return ZERO.blend(this.rearrange(Iota), BlendMask);
}
}
@Override
@ForceInline
public Float256Vector unslice(int origin, Vector<Float> w, int part) {
return (Float256Vector) super.unsliceTemplate(origin, w, part);
}
@Override
@ForceInline
public Float256Vector unslice(int origin, Vector<Float> w, int part, VectorMask<Float> m) {
return (Float256Vector)
super.unsliceTemplate(Float256Mask.class,
origin, w, part,
(Float256Mask) m);
}
@Override
@ForceInline
public Float256Vector unslice(int origin) {
if ((origin < 0) || (origin >= VLENGTH)) {
throw new ArrayIndexOutOfBoundsException("Index " + origin + " out of bounds for vector length " + VLENGTH);
} else {
Float256Shuffle Iota = iotaShuffle();
VectorMask<Float> BlendMask = Iota.toVector().compare(VectorOperators.GE, (broadcast((float)(origin))));
Iota = iotaShuffle(-origin, 1, true);
return ZERO.blend(this.rearrange(Iota), BlendMask);
}
}
@Override
@ForceInline
public Float256Vector rearrange(VectorShuffle<Float> s) {
return (Float256Vector)
super.rearrangeTemplate(Float256Shuffle.class,
(Float256Shuffle) s);
}
@Override
@ForceInline
public Float256Vector rearrange(VectorShuffle<Float> shuffle,
VectorMask<Float> m) {
return (Float256Vector)
super.rearrangeTemplate(Float256Shuffle.class,
(Float256Shuffle) shuffle,
(Float256Mask) m);
}
@Override
@ForceInline
public Float256Vector rearrange(VectorShuffle<Float> s,
Vector<Float> v) {
return (Float256Vector)
super.rearrangeTemplate(Float256Shuffle.class,
(Float256Shuffle) s,
(Float256Vector) v);
}
@Override
@ForceInline
public Float256Vector selectFrom(Vector<Float> v) {
return (Float256Vector)
super.selectFromTemplate((Float256Vector) v);
}
@Override
@ForceInline
public Float256Vector selectFrom(Vector<Float> v,
VectorMask<Float> m) {
return (Float256Vector)
super.selectFromTemplate((Float256Vector) v,
(Float256Mask) m);
}
@ForceInline
@Override
public float lane(int i) {
int bits;
switch(i) {
case 0: bits = laneHelper(0); break;
case 1: bits = laneHelper(1); break;
case 2: bits = laneHelper(2); break;
case 3: bits = laneHelper(3); break;
case 4: bits = laneHelper(4); break;
case 5: bits = laneHelper(5); break;
case 6: bits = laneHelper(6); break;
case 7: bits = laneHelper(7); break;
default: throw new IllegalArgumentException("Index " + i + " must be zero or positive, and less than " + VLENGTH);
}
return Float.intBitsToFloat(bits);
}
public int laneHelper(int i) {
return (int) VectorSupport.extract(
VCLASS, ETYPE, VLENGTH,
this, i,
(vec, ix) -> {
float[] vecarr = vec.vec();
return (long)Float.floatToIntBits(vecarr[ix]);
});
}
@ForceInline
@Override
public Float256Vector withLane(int i, float e) {
switch(i) {
case 0: return withLaneHelper(0, e);
case 1: return withLaneHelper(1, e);
case 2: return withLaneHelper(2, e);
case 3: return withLaneHelper(3, e);
case 4: return withLaneHelper(4, e);
case 5: return withLaneHelper(5, e);
case 6: return withLaneHelper(6, e);
case 7: return withLaneHelper(7, e);
default: throw new IllegalArgumentException("Index " + i + " must be zero or positive, and less than " + VLENGTH);
}
}
public Float256Vector withLaneHelper(int i, float e) {
return VectorSupport.insert(
VCLASS, ETYPE, VLENGTH,
this, i, (long)Float.floatToIntBits(e),
(v, ix, bits) -> {
float[] res = v.vec().clone();
res[ix] = Float.intBitsToFloat((int)bits);
return v.vectorFactory(res);
});
}
static final class Float256Mask extends AbstractMask<Float> {
static final int VLENGTH = VSPECIES.laneCount();
static final Class<Float> ETYPE = float.class;
Float256Mask(boolean[] bits) {
this(bits, 0);
}
Float256Mask(boolean[] bits, int offset) {
super(prepare(bits, offset));
}
Float256Mask(boolean val) {
super(prepare(val));
}
private static boolean[] prepare(boolean[] bits, int offset) {
boolean[] newBits = new boolean[VSPECIES.laneCount()];
for (int i = 0; i < newBits.length; i++) {
newBits[i] = bits[offset + i];
}
return newBits;
}
private static boolean[] prepare(boolean val) {
boolean[] bits = new boolean[VSPECIES.laneCount()];
Arrays.fill(bits, val);
return bits;
}
@ForceInline
final @Override
public FloatSpecies vspecies() {
return VSPECIES;
}
@ForceInline
boolean[] getBits() {
return (boolean[])getPayload();
}
@Override
Float256Mask uOp(MUnOp f) {
boolean[] res = new boolean[vspecies().laneCount()];
boolean[] bits = getBits();
for (int i = 0; i < res.length; i++) {
res[i] = f.apply(i, bits[i]);
}
return new Float256Mask(res);
}
@Override
Float256Mask bOp(VectorMask<Float> m, MBinOp f) {
boolean[] res = new boolean[vspecies().laneCount()];
boolean[] bits = getBits();
boolean[] mbits = ((Float256Mask)m).getBits();
for (int i = 0; i < res.length; i++) {
res[i] = f.apply(i, bits[i], mbits[i]);
}
return new Float256Mask(res);
}
@ForceInline
@Override
public final
Float256Vector toVector() {
return (Float256Vector) super.toVectorTemplate();
}
@Override
@ForceInline
public <E> VectorMask<E> cast(VectorSpecies<E> s) {
AbstractSpecies<E> species = (AbstractSpecies<E>) s;
if (length() != species.laneCount())
throw new IllegalArgumentException("VectorMask length and species length differ");
boolean[] maskArray = toArray();
switch (species.laneType.switchKey) {
case LaneType.SK_BYTE:
return new Byte256Vector.Byte256Mask(maskArray).check(species);
case LaneType.SK_SHORT:
return new Short256Vector.Short256Mask(maskArray).check(species);
case LaneType.SK_INT:
return new Int256Vector.Int256Mask(maskArray).check(species);
case LaneType.SK_LONG:
return new Long256Vector.Long256Mask(maskArray).check(species);
case LaneType.SK_FLOAT:
return new Float256Vector.Float256Mask(maskArray).check(species);
case LaneType.SK_DOUBLE:
return new Double256Vector.Double256Mask(maskArray).check(species);
}
throw new AssertionError(species);
}
@Override
@ForceInline
public Float256Mask not() {
return xor(maskAll(true));
}
@Override
@ForceInline
public Float256Mask and(VectorMask<Float> mask) {
Objects.requireNonNull(mask);
Float256Mask m = (Float256Mask)mask;
return VectorSupport.binaryOp(VECTOR_OP_AND, Float256Mask.class, int.class, VLENGTH,
this, m,
(m1, m2) -> m1.bOp(m2, (i, a, b) -> a & b));
}
@Override
@ForceInline
public Float256Mask or(VectorMask<Float> mask) {
Objects.requireNonNull(mask);
Float256Mask m = (Float256Mask)mask;
return VectorSupport.binaryOp(VECTOR_OP_OR, Float256Mask.class, int.class, VLENGTH,
this, m,
(m1, m2) -> m1.bOp(m2, (i, a, b) -> a | b));
}
@ForceInline
Float256Mask xor(VectorMask<Float> mask) {
Objects.requireNonNull(mask);
Float256Mask m = (Float256Mask)mask;
return VectorSupport.binaryOp(VECTOR_OP_XOR, Float256Mask.class, int.class, VLENGTH,
this, m,
(m1, m2) -> m1.bOp(m2, (i, a, b) -> a ^ b));
}
@Override
@ForceInline
public boolean anyTrue() {
return VectorSupport.test(BT_ne, Float256Mask.class, int.class, VLENGTH,
this, vspecies().maskAll(true),
(m, __) -> anyTrueHelper(((Float256Mask)m).getBits()));
}
@Override
@ForceInline
public boolean allTrue() {
return VectorSupport.test(BT_overflow, Float256Mask.class, int.class, VLENGTH,
this, vspecies().maskAll(true),
(m, __) -> allTrueHelper(((Float256Mask)m).getBits()));
}
@ForceInline
static Float256Mask maskAll(boolean bit) {
return VectorSupport.broadcastCoerced(Float256Mask.class, int.class, VLENGTH,
(bit ? -1 : 0), null,
(v, __) -> (v != 0 ? TRUE_MASK : FALSE_MASK));
}
private static final Float256Mask TRUE_MASK = new Float256Mask(true);
private static final Float256Mask FALSE_MASK = new Float256Mask(false);
}
static final class Float256Shuffle extends AbstractShuffle<Float> {
static final int VLENGTH = VSPECIES.laneCount();
static final Class<Float> ETYPE = float.class;
Float256Shuffle(byte[] reorder) {
super(VLENGTH, reorder);
}
public Float256Shuffle(int[] reorder) {
super(VLENGTH, reorder);
}
public Float256Shuffle(int[] reorder, int i) {
super(VLENGTH, reorder, i);
}
public Float256Shuffle(IntUnaryOperator fn) {
super(VLENGTH, fn);
}
@Override
public FloatSpecies vspecies() {
return VSPECIES;
}
static {
assert(VLENGTH < Byte.MAX_VALUE);
assert(Byte.MIN_VALUE <= -VLENGTH);
}
static final Float256Shuffle IOTA = new Float256Shuffle(IDENTITY);
@Override
@ForceInline
public Float256Vector toVector() {
return VectorSupport.shuffleToVector(VCLASS, ETYPE, Float256Shuffle.class, this, VLENGTH,
(s) -> ((Float256Vector)(((AbstractShuffle<Float>)(s)).toVectorTemplate())));
}
@Override
@ForceInline
public <F> VectorShuffle<F> cast(VectorSpecies<F> s) {
AbstractSpecies<F> species = (AbstractSpecies<F>) s;
if (length() != species.laneCount())
throw new IllegalArgumentException("VectorShuffle length and species length differ");
int[] shuffleArray = toArray();
switch (species.laneType.switchKey) {
case LaneType.SK_BYTE:
return new Byte256Vector.Byte256Shuffle(shuffleArray).check(species);
case LaneType.SK_SHORT:
return new Short256Vector.Short256Shuffle(shuffleArray).check(species);
case LaneType.SK_INT:
return new Int256Vector.Int256Shuffle(shuffleArray).check(species);
case LaneType.SK_LONG:
return new Long256Vector.Long256Shuffle(shuffleArray).check(species);
case LaneType.SK_FLOAT:
return new Float256Vector.Float256Shuffle(shuffleArray).check(species);
case LaneType.SK_DOUBLE:
return new Double256Vector.Double256Shuffle(shuffleArray).check(species);
}
throw new AssertionError(species);
}
@ForceInline
@Override
public Float256Shuffle rearrange(VectorShuffle<Float> shuffle) {
Float256Shuffle s = (Float256Shuffle) shuffle;
byte[] reorder1 = reorder();
byte[] reorder2 = s.reorder();
byte[] r = new byte[reorder1.length];
for (int i = 0; i < reorder1.length; i++) {
int ssi = reorder2[i];
r[i] = reorder1[ssi];
}
return new Float256Shuffle(r);
}
}
@ForceInline
@Override
final
FloatVector fromArray0(float[] a, int offset) {
return super.fromArray0Template(a, offset);
}
@ForceInline
@Override
final
FloatVector fromByteArray0(byte[] a, int offset) {
return super.fromByteArray0Template(a, offset);
}
@ForceInline
@Override
final
FloatVector fromByteBuffer0(ByteBuffer bb, int offset) {
return super.fromByteBuffer0Template(bb, offset);
}
@ForceInline
@Override
final
void intoArray0(float[] a, int offset) {
super.intoArray0Template(a, offset);
}
@ForceInline
@Override
final
void intoByteArray0(byte[] a, int offset) {
super.intoByteArray0Template(a, offset);
}
}