package jdk.incubator.vector;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.Objects;
import java.util.function.IntUnaryOperator;
import jdk.internal.vm.annotation.ForceInline;
import jdk.internal.vm.vector.VectorSupport;
import static jdk.internal.vm.vector.VectorSupport.*;
import static jdk.incubator.vector.VectorOperators.*;
@SuppressWarnings("cast")
final class Byte256Vector extends ByteVector {
static final ByteSpecies VSPECIES =
(ByteSpecies) ByteVector.SPECIES_256;
static final VectorShape VSHAPE =
VSPECIES.vectorShape();
static final Class<Byte256Vector> VCLASS = Byte256Vector.class;
static final int VSIZE = VSPECIES.vectorBitSize();
static final int VLENGTH = VSPECIES.laneCount();
static final Class<Byte> ETYPE = byte.class;
Byte256Vector(byte[] v) {
super(v);
}
Byte256Vector(Object v) {
this((byte[]) v);
}
static final Byte256Vector ZERO = new Byte256Vector(new byte[VLENGTH]);
static final Byte256Vector IOTA = new Byte256Vector(VSPECIES.iotaArray());
static {
VSPECIES.dummyVector();
VSPECIES.withLanes(LaneType.BYTE);
}
@ForceInline
final @Override
public ByteSpecies vspecies() {
return VSPECIES;
}
@ForceInline
@Override
public final Class<Byte> elementType() { return byte.class; }
@ForceInline
@Override
public final int elementSize() { return Byte.SIZE; }
@ForceInline
@Override
public final VectorShape shape() { return VSHAPE; }
@ForceInline
@Override
public final int length() { return VLENGTH; }
@ForceInline
@Override
public final int bitSize() { return VSIZE; }
@ForceInline
@Override
public final int byteSize() { return VSIZE / Byte.SIZE; }
@ForceInline
final @Override
byte[] vec() {
return (byte[])getPayload();
}
@Override
@ForceInline
public final Byte256Vector broadcast(byte e) {
return (Byte256Vector) super.broadcastTemplate(e);
}
@Override
@ForceInline
public final Byte256Vector broadcast(long e) {
return (Byte256Vector) super.broadcastTemplate(e);
}
@Override
@ForceInline
Byte256Mask maskFromArray(boolean[] bits) {
return new Byte256Mask(bits);
}
@Override
@ForceInline
Byte256Shuffle iotaShuffle() { return Byte256Shuffle.IOTA; }
@ForceInline
Byte256Shuffle iotaShuffle(int start, int step, boolean wrap) {
if (wrap) {
return (Byte256Shuffle)VectorSupport.shuffleIota(ETYPE, Byte256Shuffle.class, VSPECIES, VLENGTH, start, step, 1,
(l, lstart, lstep, s) -> s.shuffleFromOp(i -> (VectorIntrinsics.wrapToRange(i*lstep + lstart, l))));
} else {
return (Byte256Shuffle)VectorSupport.shuffleIota(ETYPE, Byte256Shuffle.class, VSPECIES, VLENGTH, start, step, 0,
(l, lstart, lstep, s) -> s.shuffleFromOp(i -> (i*lstep + lstart)));
}
}
@Override
@ForceInline
Byte256Shuffle shuffleFromBytes(byte[] reorder) { return new Byte256Shuffle(reorder); }
@Override
@ForceInline
Byte256Shuffle shuffleFromArray(int[] indexes, int i) { return new Byte256Shuffle(indexes, i); }
@Override
@ForceInline
Byte256Shuffle shuffleFromOp(IntUnaryOperator fn) { return new Byte256Shuffle(fn); }
@ForceInline
final @Override
Byte256Vector vectorFactory(byte[] vec) {
return new Byte256Vector(vec);
}
@ForceInline
final @Override
Byte256Vector asByteVectorRaw() {
return (Byte256Vector) super.asByteVectorRawTemplate();
}
@ForceInline
final @Override
AbstractVector<?> asVectorRaw(LaneType laneType) {
return super.asVectorRawTemplate(laneType);
}
@ForceInline
final @Override
Byte256Vector uOp(FUnOp f) {
return (Byte256Vector) super.uOpTemplate(f);
}
@ForceInline
final @Override
Byte256Vector uOp(VectorMask<Byte> m, FUnOp f) {
return (Byte256Vector)
super.uOpTemplate((Byte256Mask)m, f);
}
@ForceInline
final @Override
Byte256Vector bOp(Vector<Byte> v, FBinOp f) {
return (Byte256Vector) super.bOpTemplate((Byte256Vector)v, f);
}
@ForceInline
final @Override
Byte256Vector bOp(Vector<Byte> v,
VectorMask<Byte> m, FBinOp f) {
return (Byte256Vector)
super.bOpTemplate((Byte256Vector)v, (Byte256Mask)m,
f);
}
@ForceInline
final @Override
Byte256Vector tOp(Vector<Byte> v1, Vector<Byte> v2, FTriOp f) {
return (Byte256Vector)
super.tOpTemplate((Byte256Vector)v1, (Byte256Vector)v2,
f);
}
@ForceInline
final @Override
Byte256Vector tOp(Vector<Byte> v1, Vector<Byte> v2,
VectorMask<Byte> m, FTriOp f) {
return (Byte256Vector)
super.tOpTemplate((Byte256Vector)v1, (Byte256Vector)v2,
(Byte256Mask)m, f);
}
@ForceInline
final @Override
byte rOp(byte v, FBinOp f) {
return super.rOpTemplate(v, f);
}
@Override
@ForceInline
public final <F>
Vector<F> convertShape(VectorOperators.Conversion<Byte,F> conv,
VectorSpecies<F> rsp, int part) {
return super.convertShapeTemplate(conv, rsp, part);
}
@Override
@ForceInline
public final <F>
Vector<F> reinterpretShape(VectorSpecies<F> toSpecies, int part) {
return super.reinterpretShapeTemplate(toSpecies, part);
}
@Override
@ForceInline
public Byte256Vector lanewise(Unary op) {
return (Byte256Vector) super.lanewiseTemplate(op);
}
@Override
@ForceInline
public Byte256Vector lanewise(Binary op, Vector<Byte> v) {
return (Byte256Vector) super.lanewiseTemplate(op, v);
}
@Override
@ForceInline Byte256Vector
lanewiseShift(VectorOperators.Binary op, int e) {
return (Byte256Vector) super.lanewiseShiftTemplate(op, e);
}
@Override
@ForceInline
public final
Byte256Vector
lanewise(VectorOperators.Ternary op, Vector<Byte> v1, Vector<Byte> v2) {
return (Byte256Vector) super.lanewiseTemplate(op, v1, v2);
}
@Override
@ForceInline
public final
Byte256Vector addIndex(int scale) {
return (Byte256Vector) super.addIndexTemplate(scale);
}
@Override
@ForceInline
public final byte reduceLanes(VectorOperators.Associative op) {
return super.reduceLanesTemplate(op);
}
@Override
@ForceInline
public final byte reduceLanes(VectorOperators.Associative op,
VectorMask<Byte> m) {
return super.reduceLanesTemplate(op, m);
}
@Override
@ForceInline
public final long reduceLanesToLong(VectorOperators.Associative op) {
return (long) super.reduceLanesTemplate(op);
}
@Override
@ForceInline
public final long reduceLanesToLong(VectorOperators.Associative op,
VectorMask<Byte> m) {
return (long) super.reduceLanesTemplate(op, m);
}
@Override
@ForceInline
public VectorShuffle<Byte> toShuffle() {
byte[] a = toArray();
int[] sa = new int[a.length];
for (int i = 0; i < a.length; i++) {
sa[i] = (int) a[i];
}
return VectorShuffle.fromArray(VSPECIES, sa, 0);
}
@Override
@ForceInline
public final Byte256Mask test(Test op) {
return super.testTemplate(Byte256Mask.class, op);
}
@Override
@ForceInline
public final Byte256Mask compare(Comparison op, Vector<Byte> v) {
return super.compareTemplate(Byte256Mask.class, op, v);
}
@Override
@ForceInline
public final Byte256Mask compare(Comparison op, byte s) {
return super.compareTemplate(Byte256Mask.class, op, s);
}
@Override
@ForceInline
public final Byte256Mask compare(Comparison op, long s) {
return super.compareTemplate(Byte256Mask.class, op, s);
}
@Override
@ForceInline
public Byte256Vector blend(Vector<Byte> v, VectorMask<Byte> m) {
return (Byte256Vector)
super.blendTemplate(Byte256Mask.class,
(Byte256Vector) v,
(Byte256Mask) m);
}
@Override
@ForceInline
public Byte256Vector slice(int origin, Vector<Byte> v) {
return (Byte256Vector) super.sliceTemplate(origin, v);
}
@Override
@ForceInline
public Byte256Vector slice(int origin) {
if ((origin < 0) || (origin >= VLENGTH)) {
throw new ArrayIndexOutOfBoundsException("Index " + origin + " out of bounds for vector length " + VLENGTH);
} else {
Byte256Shuffle Iota = iotaShuffle();
VectorMask<Byte> BlendMask = Iota.toVector().compare(VectorOperators.LT, (broadcast((byte)(VLENGTH-origin))));
Iota = iotaShuffle(origin, 1, true);
return ZERO.blend(this.rearrange(Iota), BlendMask);
}
}
@Override
@ForceInline
public Byte256Vector unslice(int origin, Vector<Byte> w, int part) {
return (Byte256Vector) super.unsliceTemplate(origin, w, part);
}
@Override
@ForceInline
public Byte256Vector unslice(int origin, Vector<Byte> w, int part, VectorMask<Byte> m) {
return (Byte256Vector)
super.unsliceTemplate(Byte256Mask.class,
origin, w, part,
(Byte256Mask) m);
}
@Override
@ForceInline
public Byte256Vector unslice(int origin) {
if ((origin < 0) || (origin >= VLENGTH)) {
throw new ArrayIndexOutOfBoundsException("Index " + origin + " out of bounds for vector length " + VLENGTH);
} else {
Byte256Shuffle Iota = iotaShuffle();
VectorMask<Byte> BlendMask = Iota.toVector().compare(VectorOperators.GE, (broadcast((byte)(origin))));
Iota = iotaShuffle(-origin, 1, true);
return ZERO.blend(this.rearrange(Iota), BlendMask);
}
}
@Override
@ForceInline
public Byte256Vector rearrange(VectorShuffle<Byte> s) {
return (Byte256Vector)
super.rearrangeTemplate(Byte256Shuffle.class,
(Byte256Shuffle) s);
}
@Override
@ForceInline
public Byte256Vector rearrange(VectorShuffle<Byte> shuffle,
VectorMask<Byte> m) {
return (Byte256Vector)
super.rearrangeTemplate(Byte256Shuffle.class,
(Byte256Shuffle) shuffle,
(Byte256Mask) m);
}
@Override
@ForceInline
public Byte256Vector rearrange(VectorShuffle<Byte> s,
Vector<Byte> v) {
return (Byte256Vector)
super.rearrangeTemplate(Byte256Shuffle.class,
(Byte256Shuffle) s,
(Byte256Vector) v);
}
@Override
@ForceInline
public Byte256Vector selectFrom(Vector<Byte> v) {
return (Byte256Vector)
super.selectFromTemplate((Byte256Vector) v);
}
@Override
@ForceInline
public Byte256Vector selectFrom(Vector<Byte> v,
VectorMask<Byte> m) {
return (Byte256Vector)
super.selectFromTemplate((Byte256Vector) v,
(Byte256Mask) m);
}
@ForceInline
@Override
public byte lane(int i) {
switch(i) {
case 0: return laneHelper(0);
case 1: return laneHelper(1);
case 2: return laneHelper(2);
case 3: return laneHelper(3);
case 4: return laneHelper(4);
case 5: return laneHelper(5);
case 6: return laneHelper(6);
case 7: return laneHelper(7);
case 8: return laneHelper(8);
case 9: return laneHelper(9);
case 10: return laneHelper(10);
case 11: return laneHelper(11);
case 12: return laneHelper(12);
case 13: return laneHelper(13);
case 14: return laneHelper(14);
case 15: return laneHelper(15);
case 16: return laneHelper(16);
case 17: return laneHelper(17);
case 18: return laneHelper(18);
case 19: return laneHelper(19);
case 20: return laneHelper(20);
case 21: return laneHelper(21);
case 22: return laneHelper(22);
case 23: return laneHelper(23);
case 24: return laneHelper(24);
case 25: return laneHelper(25);
case 26: return laneHelper(26);
case 27: return laneHelper(27);
case 28: return laneHelper(28);
case 29: return laneHelper(29);
case 30: return laneHelper(30);
case 31: return laneHelper(31);
default: throw new IllegalArgumentException("Index " + i + " must be zero or positive, and less than " + VLENGTH);
}
}
public byte laneHelper(int i) {
return (byte) VectorSupport.extract(
VCLASS, ETYPE, VLENGTH,
this, i,
(vec, ix) -> {
byte[] vecarr = vec.vec();
return (long)vecarr[ix];
});
}
@ForceInline
@Override
public Byte256Vector withLane(int i, byte e) {
switch (i) {
case 0: return withLaneHelper(0, e);
case 1: return withLaneHelper(1, e);
case 2: return withLaneHelper(2, e);
case 3: return withLaneHelper(3, e);
case 4: return withLaneHelper(4, e);
case 5: return withLaneHelper(5, e);
case 6: return withLaneHelper(6, e);
case 7: return withLaneHelper(7, e);
case 8: return withLaneHelper(8, e);
case 9: return withLaneHelper(9, e);
case 10: return withLaneHelper(10, e);
case 11: return withLaneHelper(11, e);
case 12: return withLaneHelper(12, e);
case 13: return withLaneHelper(13, e);
case 14: return withLaneHelper(14, e);
case 15: return withLaneHelper(15, e);
case 16: return withLaneHelper(16, e);
case 17: return withLaneHelper(17, e);
case 18: return withLaneHelper(18, e);
case 19: return withLaneHelper(19, e);
case 20: return withLaneHelper(20, e);
case 21: return withLaneHelper(21, e);
case 22: return withLaneHelper(22, e);
case 23: return withLaneHelper(23, e);
case 24: return withLaneHelper(24, e);
case 25: return withLaneHelper(25, e);
case 26: return withLaneHelper(26, e);
case 27: return withLaneHelper(27, e);
case 28: return withLaneHelper(28, e);
case 29: return withLaneHelper(29, e);
case 30: return withLaneHelper(30, e);
case 31: return withLaneHelper(31, e);
default: throw new IllegalArgumentException("Index " + i + " must be zero or positive, and less than " + VLENGTH);
}
}
public Byte256Vector withLaneHelper(int i, byte e) {
return VectorSupport.insert(
VCLASS, ETYPE, VLENGTH,
this, i, (long)e,
(v, ix, bits) -> {
byte[] res = v.vec().clone();
res[ix] = (byte)bits;
return v.vectorFactory(res);
});
}
static final class Byte256Mask extends AbstractMask<Byte> {
static final int VLENGTH = VSPECIES.laneCount();
static final Class<Byte> ETYPE = byte.class;
Byte256Mask(boolean[] bits) {
this(bits, 0);
}
Byte256Mask(boolean[] bits, int offset) {
super(prepare(bits, offset));
}
Byte256Mask(boolean val) {
super(prepare(val));
}
private static boolean[] prepare(boolean[] bits, int offset) {
boolean[] newBits = new boolean[VSPECIES.laneCount()];
for (int i = 0; i < newBits.length; i++) {
newBits[i] = bits[offset + i];
}
return newBits;
}
private static boolean[] prepare(boolean val) {
boolean[] bits = new boolean[VSPECIES.laneCount()];
Arrays.fill(bits, val);
return bits;
}
@ForceInline
final @Override
public ByteSpecies vspecies() {
return VSPECIES;
}
@ForceInline
boolean[] getBits() {
return (boolean[])getPayload();
}
@Override
Byte256Mask uOp(MUnOp f) {
boolean[] res = new boolean[vspecies().laneCount()];
boolean[] bits = getBits();
for (int i = 0; i < res.length; i++) {
res[i] = f.apply(i, bits[i]);
}
return new Byte256Mask(res);
}
@Override
Byte256Mask bOp(VectorMask<Byte> m, MBinOp f) {
boolean[] res = new boolean[vspecies().laneCount()];
boolean[] bits = getBits();
boolean[] mbits = ((Byte256Mask)m).getBits();
for (int i = 0; i < res.length; i++) {
res[i] = f.apply(i, bits[i], mbits[i]);
}
return new Byte256Mask(res);
}
@ForceInline
@Override
public final
Byte256Vector toVector() {
return (Byte256Vector) super.toVectorTemplate();
}
@Override
@ForceInline
public <E> VectorMask<E> cast(VectorSpecies<E> s) {
AbstractSpecies<E> species = (AbstractSpecies<E>) s;
if (length() != species.laneCount())
throw new IllegalArgumentException("VectorMask length and species length differ");
boolean[] maskArray = toArray();
switch (species.laneType.switchKey) {
case LaneType.SK_BYTE:
return new Byte256Vector.Byte256Mask(maskArray).check(species);
case LaneType.SK_SHORT:
return new Short256Vector.Short256Mask(maskArray).check(species);
case LaneType.SK_INT:
return new Int256Vector.Int256Mask(maskArray).check(species);
case LaneType.SK_LONG:
return new Long256Vector.Long256Mask(maskArray).check(species);
case LaneType.SK_FLOAT:
return new Float256Vector.Float256Mask(maskArray).check(species);
case LaneType.SK_DOUBLE:
return new Double256Vector.Double256Mask(maskArray).check(species);
}
throw new AssertionError(species);
}
@Override
@ForceInline
public Byte256Mask not() {
return xor(maskAll(true));
}
@Override
@ForceInline
public Byte256Mask and(VectorMask<Byte> mask) {
Objects.requireNonNull(mask);
Byte256Mask m = (Byte256Mask)mask;
return VectorSupport.binaryOp(VECTOR_OP_AND, Byte256Mask.class, byte.class, VLENGTH,
this, m,
(m1, m2) -> m1.bOp(m2, (i, a, b) -> a & b));
}
@Override
@ForceInline
public Byte256Mask or(VectorMask<Byte> mask) {
Objects.requireNonNull(mask);
Byte256Mask m = (Byte256Mask)mask;
return VectorSupport.binaryOp(VECTOR_OP_OR, Byte256Mask.class, byte.class, VLENGTH,
this, m,
(m1, m2) -> m1.bOp(m2, (i, a, b) -> a | b));
}
@ForceInline
Byte256Mask xor(VectorMask<Byte> mask) {
Objects.requireNonNull(mask);
Byte256Mask m = (Byte256Mask)mask;
return VectorSupport.binaryOp(VECTOR_OP_XOR, Byte256Mask.class, byte.class, VLENGTH,
this, m,
(m1, m2) -> m1.bOp(m2, (i, a, b) -> a ^ b));
}
@Override
@ForceInline
public boolean anyTrue() {
return VectorSupport.test(BT_ne, Byte256Mask.class, byte.class, VLENGTH,
this, vspecies().maskAll(true),
(m, __) -> anyTrueHelper(((Byte256Mask)m).getBits()));
}
@Override
@ForceInline
public boolean allTrue() {
return VectorSupport.test(BT_overflow, Byte256Mask.class, byte.class, VLENGTH,
this, vspecies().maskAll(true),
(m, __) -> allTrueHelper(((Byte256Mask)m).getBits()));
}
@ForceInline
static Byte256Mask maskAll(boolean bit) {
return VectorSupport.broadcastCoerced(Byte256Mask.class, byte.class, VLENGTH,
(bit ? -1 : 0), null,
(v, __) -> (v != 0 ? TRUE_MASK : FALSE_MASK));
}
private static final Byte256Mask TRUE_MASK = new Byte256Mask(true);
private static final Byte256Mask FALSE_MASK = new Byte256Mask(false);
}
static final class Byte256Shuffle extends AbstractShuffle<Byte> {
static final int VLENGTH = VSPECIES.laneCount();
static final Class<Byte> ETYPE = byte.class;
Byte256Shuffle(byte[] reorder) {
super(VLENGTH, reorder);
}
public Byte256Shuffle(int[] reorder) {
super(VLENGTH, reorder);
}
public Byte256Shuffle(int[] reorder, int i) {
super(VLENGTH, reorder, i);
}
public Byte256Shuffle(IntUnaryOperator fn) {
super(VLENGTH, fn);
}
@Override
public ByteSpecies vspecies() {
return VSPECIES;
}
static {
assert(VLENGTH < Byte.MAX_VALUE);
assert(Byte.MIN_VALUE <= -VLENGTH);
}
static final Byte256Shuffle IOTA = new Byte256Shuffle(IDENTITY);
@Override
@ForceInline
public Byte256Vector toVector() {
return VectorSupport.shuffleToVector(VCLASS, ETYPE, Byte256Shuffle.class, this, VLENGTH,
(s) -> ((Byte256Vector)(((AbstractShuffle<Byte>)(s)).toVectorTemplate())));
}
@Override
@ForceInline
public <F> VectorShuffle<F> cast(VectorSpecies<F> s) {
AbstractSpecies<F> species = (AbstractSpecies<F>) s;
if (length() != species.laneCount())
throw new IllegalArgumentException("VectorShuffle length and species length differ");
int[] shuffleArray = toArray();
switch (species.laneType.switchKey) {
case LaneType.SK_BYTE:
return new Byte256Vector.Byte256Shuffle(shuffleArray).check(species);
case LaneType.SK_SHORT:
return new Short256Vector.Short256Shuffle(shuffleArray).check(species);
case LaneType.SK_INT:
return new Int256Vector.Int256Shuffle(shuffleArray).check(species);
case LaneType.SK_LONG:
return new Long256Vector.Long256Shuffle(shuffleArray).check(species);
case LaneType.SK_FLOAT:
return new Float256Vector.Float256Shuffle(shuffleArray).check(species);
case LaneType.SK_DOUBLE:
return new Double256Vector.Double256Shuffle(shuffleArray).check(species);
}
throw new AssertionError(species);
}
@ForceInline
@Override
public Byte256Shuffle rearrange(VectorShuffle<Byte> shuffle) {
Byte256Shuffle s = (Byte256Shuffle) shuffle;
byte[] reorder1 = reorder();
byte[] reorder2 = s.reorder();
byte[] r = new byte[reorder1.length];
for (int i = 0; i < reorder1.length; i++) {
int ssi = reorder2[i];
r[i] = reorder1[ssi];
}
return new Byte256Shuffle(r);
}
}
@ForceInline
@Override
final
ByteVector fromArray0(byte[] a, int offset) {
return super.fromArray0Template(a, offset);
}
@ForceInline
@Override
final
ByteVector fromByteArray0(byte[] a, int offset) {
return super.fromByteArray0Template(a, offset);
}
@ForceInline
@Override
final
ByteVector fromByteBuffer0(ByteBuffer bb, int offset) {
return super.fromByteBuffer0Template(bb, offset);
}
@ForceInline
@Override
final
void intoArray0(byte[] a, int offset) {
super.intoArray0Template(a, offset);
}
@ForceInline
@Override
final
void intoByteArray0(byte[] a, int offset) {
super.intoByteArray0Template(a, offset);
}
}