/*
 * Copyright (C) 2006 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.os;

import android.annotation.Nullable;
import android.text.TextUtils;
import android.util.ArrayMap;
import android.util.ArraySet;
import android.util.ExceptionUtils;
import android.util.Log;
import android.util.Size;
import android.util.SizeF;
import android.util.SparseArray;
import android.util.SparseBooleanArray;
import android.util.SparseIntArray;

import dalvik.annotation.optimization.CriticalNative;
import dalvik.annotation.optimization.FastNative;
import dalvik.system.VMRuntime;

import libcore.util.SneakyThrow;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileDescriptor;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamClass;
import java.io.Serializable;
import java.lang.reflect.Array;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;

Container for a message (data and object references) that can be sent through an IBinder. A Parcel can contain both flattened data that will be unflattened on the other side of the IPC (using the various methods here for writing specific types, or the general Parcelable interface), and references to live IBinder objects that will result in the other side receiving a proxy IBinder connected with the original IBinder in the Parcel.

Parcel is not a general-purpose serialization mechanism. This class (and the corresponding Parcelable API for placing arbitrary objects into a Parcel) is designed as a high-performance IPC transport. As such, it is not appropriate to place any Parcel data in to persistent storage: changes in the underlying implementation of any of the data in the Parcel can render older data unreadable.

The bulk of the Parcel API revolves around reading and writing data of various types. There are six major classes of such functions available.

Primitives

The most basic data functions are for writing and reading primitive data types: writeByte, readByte, writeDouble, readDouble, writeFloat, readFloat, writeInt, readInt, writeLong, readLong, writeString, readString. Most other data operations are built on top of these. The given data is written and read using the endianess of the host CPU.

Primitive Arrays

There are a variety of methods for reading and writing raw arrays of primitive objects, which generally result in writing a 4-byte length followed by the primitive data items. The methods for reading can either read the data into an existing array, or create and return a new array. These available types are:

Parcelables

The Parcelable protocol provides an extremely efficient (but low-level) protocol for objects to write and read themselves from Parcels. You can use the direct methods writeParcelable(Parcelable, int) and readParcelable(ClassLoader) or writeParcelableArray and readParcelableArray(ClassLoader) to write or read. These methods write both the class type and its data to the Parcel, allowing that class to be reconstructed from the appropriate class loader when later reading.

There are also some methods that provide a more efficient way to work with Parcelables: writeTypedObject, writeTypedArray, writeTypedList, readTypedObject, createTypedArray and createTypedArrayList. These methods do not write the class information of the original object: instead, the caller of the read function must know what type to expect and pass in the appropriate Parcelable.Creator instead to properly construct the new object and read its data. (To more efficient write and read a single Parcelable object that is not null, you can directly call Parcelable.writeToParcel and Parcelable.Creator.createFromParcel yourself.)

Bundles

A special type-safe container, called Bundle, is available for key/value maps of heterogeneous values. This has many optimizations for improved performance when reading and writing data, and its type-safe API avoids difficult to debug type errors when finally marshalling the data contents into a Parcel. The methods to use are writeBundle(Bundle), readBundle(), and readBundle(ClassLoader).

Active Objects

An unusual feature of Parcel is the ability to read and write active objects. For these objects the actual contents of the object is not written, rather a special token referencing the object is written. When reading the object back from the Parcel, you do not get a new instance of the object, but rather a handle that operates on the exact same object that was originally written. There are two forms of active objects available.

Binder objects are a core facility of Android's general cross-process communication system. The IBinder interface describes an abstract protocol with a Binder object. Any such interface can be written in to a Parcel, and upon reading you will receive either the original object implementing that interface or a special proxy implementation that communicates calls back to the original object. The methods to use are writeStrongBinder(IBinder), writeStrongInterface(IInterface), readStrongBinder(), writeBinderArray(IBinder[]), readBinderArray(IBinder[]), createBinderArray(), writeBinderList(List<IBinder>), readBinderList(List<IBinder>), createBinderArrayList().

FileDescriptor objects, representing raw Linux file descriptor identifiers, can be written and ParcelFileDescriptor objects returned to operate on the original file descriptor. The returned file descriptor is a dup of the original file descriptor: the object and fd is different, but operating on the same underlying file stream, with the same position, etc. The methods to use are writeFileDescriptor(FileDescriptor), readFileDescriptor().

Untyped Containers

A final class of methods are for writing and reading standard Java containers of arbitrary types. These all revolve around the writeValue(Object) and readValue(ClassLoader) methods which define the types of objects allowed. The container methods are writeArray(Object[]), readArray(ClassLoader), writeList(List), readList(List, ClassLoader), readArrayList(ClassLoader), writeMap(Map), readMap(Map, ClassLoader), writeSparseArray(SparseArray<Object>), readSparseArray(ClassLoader).

/** * Container for a message (data and object references) that can * be sent through an IBinder. A Parcel can contain both flattened data * that will be unflattened on the other side of the IPC (using the various * methods here for writing specific types, or the general * {@link Parcelable} interface), and references to live {@link IBinder} * objects that will result in the other side receiving a proxy IBinder * connected with the original IBinder in the Parcel. * * <p class="note">Parcel is <strong>not</strong> a general-purpose * serialization mechanism. This class (and the corresponding * {@link Parcelable} API for placing arbitrary objects into a Parcel) is * designed as a high-performance IPC transport. As such, it is not * appropriate to place any Parcel data in to persistent storage: changes * in the underlying implementation of any of the data in the Parcel can * render older data unreadable.</p> * * <p>The bulk of the Parcel API revolves around reading and writing data * of various types. There are six major classes of such functions available.</p> * * <h3>Primitives</h3> * * <p>The most basic data functions are for writing and reading primitive * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble}, * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt}, * {@link #readInt}, {@link #writeLong}, {@link #readLong}, * {@link #writeString}, {@link #readString}. Most other * data operations are built on top of these. The given data is written and * read using the endianess of the host CPU.</p> * * <h3>Primitive Arrays</h3> * * <p>There are a variety of methods for reading and writing raw arrays * of primitive objects, which generally result in writing a 4-byte length * followed by the primitive data items. The methods for reading can either * read the data into an existing array, or create and return a new array. * These available types are:</p> * * <ul> * <li> {@link #writeBooleanArray(boolean[])}, * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()} * <li> {@link #writeByteArray(byte[])}, * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])}, * {@link #createByteArray()} * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])}, * {@link #createCharArray()} * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])}, * {@link #createDoubleArray()} * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])}, * {@link #createFloatArray()} * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])}, * {@link #createIntArray()} * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])}, * {@link #createLongArray()} * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])}, * {@link #createStringArray()}. * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)}, * {@link #readSparseBooleanArray()}. * </ul> * * <h3>Parcelables</h3> * * <p>The {@link Parcelable} protocol provides an extremely efficient (but * low-level) protocol for objects to write and read themselves from Parcels. * You can use the direct methods {@link #writeParcelable(Parcelable, int)} * and {@link #readParcelable(ClassLoader)} or * {@link #writeParcelableArray} and * {@link #readParcelableArray(ClassLoader)} to write or read. These * methods write both the class type and its data to the Parcel, allowing * that class to be reconstructed from the appropriate class loader when * later reading.</p> * * <p>There are also some methods that provide a more efficient way to work * with Parcelables: {@link #writeTypedObject}, {@link #writeTypedArray}, * {@link #writeTypedList}, {@link #readTypedObject}, * {@link #createTypedArray} and {@link #createTypedArrayList}. These methods * do not write the class information of the original object: instead, the * caller of the read function must know what type to expect and pass in the * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to * properly construct the new object and read its data. (To more efficient * write and read a single Parcelable object that is not null, you can directly * call {@link Parcelable#writeToParcel Parcelable.writeToParcel} and * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel} * yourself.)</p> * * <h3>Bundles</h3> * * <p>A special type-safe container, called {@link Bundle}, is available * for key/value maps of heterogeneous values. This has many optimizations * for improved performance when reading and writing data, and its type-safe * API avoids difficult to debug type errors when finally marshalling the * data contents into a Parcel. The methods to use are * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and * {@link #readBundle(ClassLoader)}. * * <h3>Active Objects</h3> * * <p>An unusual feature of Parcel is the ability to read and write active * objects. For these objects the actual contents of the object is not * written, rather a special token referencing the object is written. When * reading the object back from the Parcel, you do not get a new instance of * the object, but rather a handle that operates on the exact same object that * was originally written. There are two forms of active objects available.</p> * * <p>{@link Binder} objects are a core facility of Android's general cross-process * communication system. The {@link IBinder} interface describes an abstract * protocol with a Binder object. Any such interface can be written in to * a Parcel, and upon reading you will receive either the original object * implementing that interface or a special proxy implementation * that communicates calls back to the original object. The methods to use are * {@link #writeStrongBinder(IBinder)}, * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()}, * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])}, * {@link #createBinderArray()}, * {@link #writeBinderList(List)}, {@link #readBinderList(List)}, * {@link #createBinderArrayList()}.</p> * * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers, * can be written and {@link ParcelFileDescriptor} objects returned to operate * on the original file descriptor. The returned file descriptor is a dup * of the original file descriptor: the object and fd is different, but * operating on the same underlying file stream, with the same position, etc. * The methods to use are {@link #writeFileDescriptor(FileDescriptor)}, * {@link #readFileDescriptor()}. * * <h3>Untyped Containers</h3> * * <p>A final class of methods are for writing and reading standard Java * containers of arbitrary types. These all revolve around the * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods * which define the types of objects allowed. The container methods are * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)}, * {@link #writeList(List)}, {@link #readList(List, ClassLoader)}, * {@link #readArrayList(ClassLoader)}, * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)}, * {@link #writeSparseArray(SparseArray)}, * {@link #readSparseArray(ClassLoader)}. */
public final class Parcel { private static final boolean DEBUG_RECYCLE = false; private static final boolean DEBUG_ARRAY_MAP = false; private static final String TAG = "Parcel"; @SuppressWarnings({"UnusedDeclaration"}) private long mNativePtr; // used by native code
Flag indicating if mNativePtr was allocated by this object, indicating that we're responsible for its lifecycle.
/** * Flag indicating if {@link #mNativePtr} was allocated by this object, * indicating that we're responsible for its lifecycle. */
private boolean mOwnsNativeParcelObject; private long mNativeSize; private ArrayMap<Class, Object> mClassCookies; private RuntimeException mStack;
Whether or not to parcel the stack trace of an exception. This has a performance impact, so should only be included in specific processes and only on debug builds.
/** * Whether or not to parcel the stack trace of an exception. This has a performance * impact, so should only be included in specific processes and only on debug builds. */
private static boolean sParcelExceptionStackTrace; private static final int POOL_SIZE = 6; private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE]; private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE]; // Keep in sync with frameworks/native/include/private/binder/ParcelValTypes.h. private static final int VAL_NULL = -1; private static final int VAL_STRING = 0; private static final int VAL_INTEGER = 1; private static final int VAL_MAP = 2; private static final int VAL_BUNDLE = 3; private static final int VAL_PARCELABLE = 4; private static final int VAL_SHORT = 5; private static final int VAL_LONG = 6; private static final int VAL_FLOAT = 7; private static final int VAL_DOUBLE = 8; private static final int VAL_BOOLEAN = 9; private static final int VAL_CHARSEQUENCE = 10; private static final int VAL_LIST = 11; private static final int VAL_SPARSEARRAY = 12; private static final int VAL_BYTEARRAY = 13; private static final int VAL_STRINGARRAY = 14; private static final int VAL_IBINDER = 15; private static final int VAL_PARCELABLEARRAY = 16; private static final int VAL_OBJECTARRAY = 17; private static final int VAL_INTARRAY = 18; private static final int VAL_LONGARRAY = 19; private static final int VAL_BYTE = 20; private static final int VAL_SERIALIZABLE = 21; private static final int VAL_SPARSEBOOLEANARRAY = 22; private static final int VAL_BOOLEANARRAY = 23; private static final int VAL_CHARSEQUENCEARRAY = 24; private static final int VAL_PERSISTABLEBUNDLE = 25; private static final int VAL_SIZE = 26; private static final int VAL_SIZEF = 27; private static final int VAL_DOUBLEARRAY = 28; // The initial int32 in a Binder call's reply Parcel header: // Keep these in sync with libbinder's binder/Status.h. private static final int EX_SECURITY = -1; private static final int EX_BAD_PARCELABLE = -2; private static final int EX_ILLEGAL_ARGUMENT = -3; private static final int EX_NULL_POINTER = -4; private static final int EX_ILLEGAL_STATE = -5; private static final int EX_NETWORK_MAIN_THREAD = -6; private static final int EX_UNSUPPORTED_OPERATION = -7; private static final int EX_SERVICE_SPECIFIC = -8; private static final int EX_PARCELABLE = -9; private static final int EX_HAS_REPLY_HEADER = -128; // special; see below // EX_TRANSACTION_FAILED is used exclusively in native code. // see libbinder's binder/Status.h private static final int EX_TRANSACTION_FAILED = -129; @CriticalNative private static native int nativeDataSize(long nativePtr); @CriticalNative private static native int nativeDataAvail(long nativePtr); @CriticalNative private static native int nativeDataPosition(long nativePtr); @CriticalNative private static native int nativeDataCapacity(long nativePtr); @FastNative private static native long nativeSetDataSize(long nativePtr, int size); @CriticalNative private static native void nativeSetDataPosition(long nativePtr, int pos); @FastNative private static native void nativeSetDataCapacity(long nativePtr, int size); @CriticalNative private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds); @CriticalNative private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue); private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len); private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len); @FastNative private static native void nativeWriteInt(long nativePtr, int val); @FastNative private static native void nativeWriteLong(long nativePtr, long val); @FastNative private static native void nativeWriteFloat(long nativePtr, float val); @FastNative private static native void nativeWriteDouble(long nativePtr, double val); static native void nativeWriteString(long nativePtr, String val); private static native void nativeWriteStrongBinder(long nativePtr, IBinder val); private static native long nativeWriteFileDescriptor(long nativePtr, FileDescriptor val); private static native byte[] nativeCreateByteArray(long nativePtr); private static native boolean nativeReadByteArray(long nativePtr, byte[] dest, int destLen); private static native byte[] nativeReadBlob(long nativePtr); @CriticalNative private static native int nativeReadInt(long nativePtr); @CriticalNative private static native long nativeReadLong(long nativePtr); @CriticalNative private static native float nativeReadFloat(long nativePtr); @CriticalNative private static native double nativeReadDouble(long nativePtr); static native String nativeReadString(long nativePtr); private static native IBinder nativeReadStrongBinder(long nativePtr); private static native FileDescriptor nativeReadFileDescriptor(long nativePtr); private static native long nativeCreate(); private static native long nativeFreeBuffer(long nativePtr); private static native void nativeDestroy(long nativePtr); private static native byte[] nativeMarshall(long nativePtr); private static native long nativeUnmarshall( long nativePtr, byte[] data, int offset, int length); private static native int nativeCompareData(long thisNativePtr, long otherNativePtr); private static native long nativeAppendFrom( long thisNativePtr, long otherNativePtr, int offset, int length); @CriticalNative private static native boolean nativeHasFileDescriptors(long nativePtr); private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName); private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
Last time exception with a stack trace was written
/** Last time exception with a stack trace was written */
private static volatile long sLastWriteExceptionStackTrace;
Used for throttling of writing stack trace, which is costly
/** Used for throttling of writing stack trace, which is costly */
private static final int WRITE_EXCEPTION_STACK_TRACE_THRESHOLD_MS = 1000; @CriticalNative private static native long nativeGetBlobAshmemSize(long nativePtr); public final static Parcelable.Creator<String> STRING_CREATOR = new Parcelable.Creator<String>() { public String createFromParcel(Parcel source) { return source.readString(); } public String[] newArray(int size) { return new String[size]; } };
@hide
/** * @hide */
public static class ReadWriteHelper { public static final ReadWriteHelper DEFAULT = new ReadWriteHelper();
Called when writing a string to a parcel. Subclasses wanting to write a string must use Parcel.writeStringNoHelper(String) to avoid infinity recursive calls.
/** * Called when writing a string to a parcel. Subclasses wanting to write a string * must use {@link #writeStringNoHelper(String)} to avoid * infinity recursive calls. */
public void writeString(Parcel p, String s) { nativeWriteString(p.mNativePtr, s); }
Called when reading a string to a parcel. Subclasses wanting to read a string must use Parcel.readStringNoHelper() to avoid infinity recursive calls.
/** * Called when reading a string to a parcel. Subclasses wanting to read a string * must use {@link #readStringNoHelper()} to avoid * infinity recursive calls. */
public String readString(Parcel p) { return nativeReadString(p.mNativePtr); } } private ReadWriteHelper mReadWriteHelper = ReadWriteHelper.DEFAULT;
Retrieve a new Parcel object from the pool.
/** * Retrieve a new Parcel object from the pool. */
public static Parcel obtain() { final Parcel[] pool = sOwnedPool; synchronized (pool) { Parcel p; for (int i=0; i<POOL_SIZE; i++) { p = pool[i]; if (p != null) { pool[i] = null; if (DEBUG_RECYCLE) { p.mStack = new RuntimeException(); } p.mReadWriteHelper = ReadWriteHelper.DEFAULT; return p; } } } return new Parcel(0); }
Put a Parcel object back into the pool. You must not touch the object after this call.
/** * Put a Parcel object back into the pool. You must not touch * the object after this call. */
public final void recycle() { if (DEBUG_RECYCLE) mStack = null; freeBuffer(); final Parcel[] pool; if (mOwnsNativeParcelObject) { pool = sOwnedPool; } else { mNativePtr = 0; pool = sHolderPool; } synchronized (pool) { for (int i=0; i<POOL_SIZE; i++) { if (pool[i] == null) { pool[i] = this; return; } } } }
Set a ReadWriteHelper, which can be used to avoid having duplicate strings, for example.
@hide
/** * Set a {@link ReadWriteHelper}, which can be used to avoid having duplicate strings, for * example. * * @hide */
public void setReadWriteHelper(ReadWriteHelper helper) { mReadWriteHelper = helper != null ? helper : ReadWriteHelper.DEFAULT; }
Returns:whether this parcel has a ReadWriteHelper.
@hide
/** * @return whether this parcel has a {@link ReadWriteHelper}. * * @hide */
public boolean hasReadWriteHelper() { return (mReadWriteHelper != null) && (mReadWriteHelper != ReadWriteHelper.DEFAULT); }
@hide
/** @hide */
public static native long getGlobalAllocSize();
@hide
/** @hide */
public static native long getGlobalAllocCount();
Returns the total amount of data contained in the parcel.
/** * Returns the total amount of data contained in the parcel. */
public final int dataSize() { return nativeDataSize(mNativePtr); }
Returns the amount of data remaining to be read from the parcel. That is, dataSize-dataPosition.
/** * Returns the amount of data remaining to be read from the * parcel. That is, {@link #dataSize}-{@link #dataPosition}. */
public final int dataAvail() { return nativeDataAvail(mNativePtr); }
Returns the current position in the parcel data. Never more than dataSize.
/** * Returns the current position in the parcel data. Never * more than {@link #dataSize}. */
public final int dataPosition() { return nativeDataPosition(mNativePtr); }
Returns the total amount of space in the parcel. This is always >= dataSize. The difference between it and dataSize() is the amount of room left until the parcel needs to re-allocate its data buffer.
/** * Returns the total amount of space in the parcel. This is always * >= {@link #dataSize}. The difference between it and dataSize() is the * amount of room left until the parcel needs to re-allocate its * data buffer. */
public final int dataCapacity() { return nativeDataCapacity(mNativePtr); }
Change the amount of data in the parcel. Can be either smaller or larger than the current size. If larger than the current capacity, more memory will be allocated.
Params:
  • size – The new number of bytes in the Parcel.
/** * Change the amount of data in the parcel. Can be either smaller or * larger than the current size. If larger than the current capacity, * more memory will be allocated. * * @param size The new number of bytes in the Parcel. */
public final void setDataSize(int size) { updateNativeSize(nativeSetDataSize(mNativePtr, size)); }
Move the current read/write position in the parcel.
Params:
  • pos – New offset in the parcel; must be between 0 and dataSize.
/** * Move the current read/write position in the parcel. * @param pos New offset in the parcel; must be between 0 and * {@link #dataSize}. */
public final void setDataPosition(int pos) { nativeSetDataPosition(mNativePtr, pos); }
Change the capacity (current available space) of the parcel.
Params:
  • size – The new capacity of the parcel, in bytes. Can not be less than dataSize -- that is, you can not drop existing data with this method.
/** * Change the capacity (current available space) of the parcel. * * @param size The new capacity of the parcel, in bytes. Can not be * less than {@link #dataSize} -- that is, you can not drop existing data * with this method. */
public final void setDataCapacity(int size) { nativeSetDataCapacity(mNativePtr, size); }
@hide
/** @hide */
public final boolean pushAllowFds(boolean allowFds) { return nativePushAllowFds(mNativePtr, allowFds); }
@hide
/** @hide */
public final void restoreAllowFds(boolean lastValue) { nativeRestoreAllowFds(mNativePtr, lastValue); }
Returns the raw bytes of the parcel.

The data you retrieve here must not be placed in any kind of persistent storage (on local disk, across a network, etc). For that, you should use standard serialization or another kind of general serialization mechanism. The Parcel marshalled representation is highly optimized for local IPC, and as such does not attempt to maintain compatibility with data created in different versions of the platform.

/** * Returns the raw bytes of the parcel. * * <p class="note">The data you retrieve here <strong>must not</strong> * be placed in any kind of persistent storage (on local disk, across * a network, etc). For that, you should use standard serialization * or another kind of general serialization mechanism. The Parcel * marshalled representation is highly optimized for local IPC, and as * such does not attempt to maintain compatibility with data created * in different versions of the platform. */
public final byte[] marshall() { return nativeMarshall(mNativePtr); }
Set the bytes in data to be the raw bytes of this Parcel.
/** * Set the bytes in data to be the raw bytes of this Parcel. */
public final void unmarshall(byte[] data, int offset, int length) { updateNativeSize(nativeUnmarshall(mNativePtr, data, offset, length)); } public final void appendFrom(Parcel parcel, int offset, int length) { updateNativeSize(nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length)); }
@hide
/** @hide */
public final int compareData(Parcel other) { return nativeCompareData(mNativePtr, other.mNativePtr); }
@hide
/** @hide */
public final void setClassCookie(Class clz, Object cookie) { if (mClassCookies == null) { mClassCookies = new ArrayMap<>(); } mClassCookies.put(clz, cookie); }
@hide
/** @hide */
public final Object getClassCookie(Class clz) { return mClassCookies != null ? mClassCookies.get(clz) : null; }
@hide
/** @hide */
public final void adoptClassCookies(Parcel from) { mClassCookies = from.mClassCookies; }
@hide
/** @hide */
public Map<Class, Object> copyClassCookies() { return new ArrayMap<>(mClassCookies); }
@hide
/** @hide */
public void putClassCookies(Map<Class, Object> cookies) { if (cookies == null) { return; } if (mClassCookies == null) { mClassCookies = new ArrayMap<>(); } mClassCookies.putAll(cookies); }
Report whether the parcel contains any marshalled file descriptors.
/** * Report whether the parcel contains any marshalled file descriptors. */
public final boolean hasFileDescriptors() { return nativeHasFileDescriptors(mNativePtr); }
Store or read an IBinder interface token in the parcel at the current dataPosition. This is used to validate that the marshalled transaction is intended for the target interface.
/** * Store or read an IBinder interface token in the parcel at the current * {@link #dataPosition}. This is used to validate that the marshalled * transaction is intended for the target interface. */
public final void writeInterfaceToken(String interfaceName) { nativeWriteInterfaceToken(mNativePtr, interfaceName); } public final void enforceInterface(String interfaceName) { nativeEnforceInterface(mNativePtr, interfaceName); }
Write a byte array into the parcel at the current dataPosition, growing dataCapacity if needed.
Params:
  • b – Bytes to place into the parcel.
/** * Write a byte array into the parcel at the current {@link #dataPosition}, * growing {@link #dataCapacity} if needed. * @param b Bytes to place into the parcel. */
public final void writeByteArray(byte[] b) { writeByteArray(b, 0, (b != null) ? b.length : 0); }
Write a byte array into the parcel at the current dataPosition, growing dataCapacity if needed.
Params:
  • b – Bytes to place into the parcel.
  • offset – Index of first byte to be written.
  • len – Number of bytes to write.
/** * Write a byte array into the parcel at the current {@link #dataPosition}, * growing {@link #dataCapacity} if needed. * @param b Bytes to place into the parcel. * @param offset Index of first byte to be written. * @param len Number of bytes to write. */
public final void writeByteArray(byte[] b, int offset, int len) { if (b == null) { writeInt(-1); return; } Arrays.checkOffsetAndCount(b.length, offset, len); nativeWriteByteArray(mNativePtr, b, offset, len); }
Write a blob of data into the parcel at the current dataPosition, growing dataCapacity if needed.
Params:
  • b – Bytes to place into the parcel. {@hide} {@SystemApi}
/** * Write a blob of data into the parcel at the current {@link #dataPosition}, * growing {@link #dataCapacity} if needed. * @param b Bytes to place into the parcel. * {@hide} * {@SystemApi} */
public final void writeBlob(byte[] b) { writeBlob(b, 0, (b != null) ? b.length : 0); }
Write a blob of data into the parcel at the current dataPosition, growing dataCapacity if needed.
Params:
  • b – Bytes to place into the parcel.
  • offset – Index of first byte to be written.
  • len – Number of bytes to write. {@hide} {@SystemApi}
/** * Write a blob of data into the parcel at the current {@link #dataPosition}, * growing {@link #dataCapacity} if needed. * @param b Bytes to place into the parcel. * @param offset Index of first byte to be written. * @param len Number of bytes to write. * {@hide} * {@SystemApi} */
public final void writeBlob(byte[] b, int offset, int len) { if (b == null) { writeInt(-1); return; } Arrays.checkOffsetAndCount(b.length, offset, len); nativeWriteBlob(mNativePtr, b, offset, len); }
Write an integer value into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Write an integer value into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeInt(int val) { nativeWriteInt(mNativePtr, val); }
Write a long integer value into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Write a long integer value into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeLong(long val) { nativeWriteLong(mNativePtr, val); }
Write a floating point value into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Write a floating point value into the parcel at the current * dataPosition(), growing dataCapacity() if needed. */
public final void writeFloat(float val) { nativeWriteFloat(mNativePtr, val); }
Write a double precision floating point value into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Write a double precision floating point value into the parcel at the * current dataPosition(), growing dataCapacity() if needed. */
public final void writeDouble(double val) { nativeWriteDouble(mNativePtr, val); }
Write a string value into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Write a string value into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeString(String val) { mReadWriteHelper.writeString(this, val); }
Write a string without going though a ReadWriteHelper. Subclasses of ReadWriteHelper must use this method instead of writeString to avoid infinity recursive calls.
@hide
/** * Write a string without going though a {@link ReadWriteHelper}. Subclasses of * {@link ReadWriteHelper} must use this method instead of {@link #writeString} to avoid * infinity recursive calls. * * @hide */
public void writeStringNoHelper(String val) { nativeWriteString(mNativePtr, val); }
@hide
/** @hide */
public final void writeBoolean(boolean val) { writeInt(val ? 1 : 0); }
Write a CharSequence value into the parcel at the current dataPosition(), growing dataCapacity() if needed.
@hide
/** * Write a CharSequence value into the parcel at the current dataPosition(), * growing dataCapacity() if needed. * @hide */
public final void writeCharSequence(CharSequence val) { TextUtils.writeToParcel(val, this, 0); }
Write an object into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Write an object into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeStrongBinder(IBinder val) { nativeWriteStrongBinder(mNativePtr, val); }
Write an object into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Write an object into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeStrongInterface(IInterface val) { writeStrongBinder(val == null ? null : val.asBinder()); }
Write a FileDescriptor into the parcel at the current dataPosition(), growing dataCapacity() if needed.

The file descriptor will not be closed, which may result in file descriptor leaks when objects are returned from Binder calls. Use ParcelFileDescriptor.writeToParcel instead, which accepts contextual flags and will close the original file descriptor if Parcelable.PARCELABLE_WRITE_RETURN_VALUE is set.

/** * Write a FileDescriptor into the parcel at the current dataPosition(), * growing dataCapacity() if needed. * * <p class="caution">The file descriptor will not be closed, which may * result in file descriptor leaks when objects are returned from Binder * calls. Use {@link ParcelFileDescriptor#writeToParcel} instead, which * accepts contextual flags and will close the original file descriptor * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p> */
public final void writeFileDescriptor(FileDescriptor val) { updateNativeSize(nativeWriteFileDescriptor(mNativePtr, val)); } private void updateNativeSize(long newNativeSize) { if (mOwnsNativeParcelObject) { if (newNativeSize > Integer.MAX_VALUE) { newNativeSize = Integer.MAX_VALUE; } if (newNativeSize != mNativeSize) { int delta = (int) (newNativeSize - mNativeSize); if (delta > 0) { VMRuntime.getRuntime().registerNativeAllocation(delta); } else { VMRuntime.getRuntime().registerNativeFree(-delta); } mNativeSize = newNativeSize; } } }
{@hide} This will be the new name for writeFileDescriptor, for consistency.
/** * {@hide} * This will be the new name for writeFileDescriptor, for consistency. **/
public final void writeRawFileDescriptor(FileDescriptor val) { nativeWriteFileDescriptor(mNativePtr, val); }
{@hide} Write an array of FileDescriptor objects into the Parcel.
Params:
  • value – The array of objects to be written.
/** * {@hide} * Write an array of FileDescriptor objects into the Parcel. * * @param value The array of objects to be written. */
public final void writeRawFileDescriptorArray(FileDescriptor[] value) { if (value != null) { int N = value.length; writeInt(N); for (int i=0; i<N; i++) { writeRawFileDescriptor(value[i]); } } else { writeInt(-1); } }
Write a byte value into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Write a byte value into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeByte(byte val) { writeInt(val); }
Please use writeBundle instead. Flattens a Map into the parcel at the current dataPosition(), growing dataCapacity() if needed. The Map keys must be String objects. The Map values are written using writeValue and must follow the specification there.

It is strongly recommended to use writeBundle instead of this method, since the Bundle class provides a type-safe API that allows you to avoid mysterious type errors at the point of marshalling.

/** * Please use {@link #writeBundle} instead. Flattens a Map into the parcel * at the current dataPosition(), * growing dataCapacity() if needed. The Map keys must be String objects. * The Map values are written using {@link #writeValue} and must follow * the specification there. * * <p>It is strongly recommended to use {@link #writeBundle} instead of * this method, since the Bundle class provides a type-safe API that * allows you to avoid mysterious type errors at the point of marshalling. */
public final void writeMap(Map val) { writeMapInternal((Map<String, Object>) val); }
Flatten a Map into the parcel at the current dataPosition(), growing dataCapacity() if needed. The Map keys must be String objects.
/** * Flatten a Map into the parcel at the current dataPosition(), * growing dataCapacity() if needed. The Map keys must be String objects. */
/* package */ void writeMapInternal(Map<String,Object> val) { if (val == null) { writeInt(-1); return; } Set<Map.Entry<String,Object>> entries = val.entrySet(); int size = entries.size(); writeInt(size); for (Map.Entry<String,Object> e : entries) { writeValue(e.getKey()); writeValue(e.getValue()); size--; } if (size != 0) { throw new BadParcelableException("Map size does not match number of entries!"); } }
Flatten an ArrayMap into the parcel at the current dataPosition(), growing dataCapacity() if needed. The Map keys must be String objects.
/** * Flatten an ArrayMap into the parcel at the current dataPosition(), * growing dataCapacity() if needed. The Map keys must be String objects. */
/* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) { if (val == null) { writeInt(-1); return; } // Keep the format of this Parcel in sync with writeToParcelInner() in // frameworks/native/libs/binder/PersistableBundle.cpp. final int N = val.size(); writeInt(N); if (DEBUG_ARRAY_MAP) { RuntimeException here = new RuntimeException("here"); here.fillInStackTrace(); Log.d(TAG, "Writing " + N + " ArrayMap entries", here); } int startPos; for (int i=0; i<N; i++) { if (DEBUG_ARRAY_MAP) startPos = dataPosition(); writeString(val.keyAt(i)); writeValue(val.valueAt(i)); if (DEBUG_ARRAY_MAP) Log.d(TAG, " Write #" + i + " " + (dataPosition()-startPos) + " bytes: key=0x" + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0) + " " + val.keyAt(i)); } }
@hideFor testing only.
/** * @hide For testing only. */
public void writeArrayMap(ArrayMap<String, Object> val) { writeArrayMapInternal(val); }
Write an array set to the parcel.
Params:
  • val – The array set to write.
@hide
/** * Write an array set to the parcel. * * @param val The array set to write. * * @hide */
public void writeArraySet(@Nullable ArraySet<? extends Object> val) { final int size = (val != null) ? val.size() : -1; writeInt(size); for (int i = 0; i < size; i++) { writeValue(val.valueAt(i)); } }
Flatten a Bundle into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Flatten a Bundle into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeBundle(Bundle val) { if (val == null) { writeInt(-1); return; } val.writeToParcel(this, 0); }
Flatten a PersistableBundle into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Flatten a PersistableBundle into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writePersistableBundle(PersistableBundle val) { if (val == null) { writeInt(-1); return; } val.writeToParcel(this, 0); }
Flatten a Size into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Flatten a Size into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeSize(Size val) { writeInt(val.getWidth()); writeInt(val.getHeight()); }
Flatten a SizeF into the parcel at the current dataPosition(), growing dataCapacity() if needed.
/** * Flatten a SizeF into the parcel at the current dataPosition(), * growing dataCapacity() if needed. */
public final void writeSizeF(SizeF val) { writeFloat(val.getWidth()); writeFloat(val.getHeight()); }
Flatten a List into the parcel at the current dataPosition(), growing dataCapacity() if needed. The List values are written using writeValue and must follow the specification there.
/** * Flatten a List into the parcel at the current dataPosition(), growing * dataCapacity() if needed. The List values are written using * {@link #writeValue} and must follow the specification there. */
public final void writeList(List val) { if (val == null) { writeInt(-1); return; } int N = val.size(); int i=0; writeInt(N); while (i < N) { writeValue(val.get(i)); i++; } }
Flatten an Object array into the parcel at the current dataPosition(), growing dataCapacity() if needed. The array values are written using writeValue and must follow the specification there.
/** * Flatten an Object array into the parcel at the current dataPosition(), * growing dataCapacity() if needed. The array values are written using * {@link #writeValue} and must follow the specification there. */
public final void writeArray(Object[] val) { if (val == null) { writeInt(-1); return; } int N = val.length; int i=0; writeInt(N); while (i < N) { writeValue(val[i]); i++; } }
Flatten a generic SparseArray into the parcel at the current dataPosition(), growing dataCapacity() if needed. The SparseArray values are written using writeValue and must follow the specification there.
/** * Flatten a generic SparseArray into the parcel at the current * dataPosition(), growing dataCapacity() if needed. The SparseArray * values are written using {@link #writeValue} and must follow the * specification there. */
public final void writeSparseArray(SparseArray<Object> val) { if (val == null) { writeInt(-1); return; } int N = val.size(); writeInt(N); int i=0; while (i < N) { writeInt(val.keyAt(i)); writeValue(val.valueAt(i)); i++; } } public final void writeSparseBooleanArray(SparseBooleanArray val) { if (val == null) { writeInt(-1); return; } int N = val.size(); writeInt(N); int i=0; while (i < N) { writeInt(val.keyAt(i)); writeByte((byte)(val.valueAt(i) ? 1 : 0)); i++; } }
@hide
/** * @hide */
public final void writeSparseIntArray(SparseIntArray val) { if (val == null) { writeInt(-1); return; } int N = val.size(); writeInt(N); int i=0; while (i < N) { writeInt(val.keyAt(i)); writeInt(val.valueAt(i)); i++; } } public final void writeBooleanArray(boolean[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeInt(val[i] ? 1 : 0); } } else { writeInt(-1); } } public final boolean[] createBooleanArray() { int N = readInt(); // >>2 as a fast divide-by-4 works in the create*Array() functions // because dataAvail() will never return a negative number. 4 is // the size of a stored boolean in the stream. if (N >= 0 && N <= (dataAvail() >> 2)) { boolean[] val = new boolean[N]; for (int i=0; i<N; i++) { val[i] = readInt() != 0; } return val; } else { return null; } } public final void readBooleanArray(boolean[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readInt() != 0; } } else { throw new RuntimeException("bad array lengths"); } } public final void writeCharArray(char[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeInt((int)val[i]); } } else { writeInt(-1); } } public final char[] createCharArray() { int N = readInt(); if (N >= 0 && N <= (dataAvail() >> 2)) { char[] val = new char[N]; for (int i=0; i<N; i++) { val[i] = (char)readInt(); } return val; } else { return null; } } public final void readCharArray(char[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = (char)readInt(); } } else { throw new RuntimeException("bad array lengths"); } } public final void writeIntArray(int[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeInt(val[i]); } } else { writeInt(-1); } } public final int[] createIntArray() { int N = readInt(); if (N >= 0 && N <= (dataAvail() >> 2)) { int[] val = new int[N]; for (int i=0; i<N; i++) { val[i] = readInt(); } return val; } else { return null; } } public final void readIntArray(int[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readInt(); } } else { throw new RuntimeException("bad array lengths"); } } public final void writeLongArray(long[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeLong(val[i]); } } else { writeInt(-1); } } public final long[] createLongArray() { int N = readInt(); // >>3 because stored longs are 64 bits if (N >= 0 && N <= (dataAvail() >> 3)) { long[] val = new long[N]; for (int i=0; i<N; i++) { val[i] = readLong(); } return val; } else { return null; } } public final void readLongArray(long[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readLong(); } } else { throw new RuntimeException("bad array lengths"); } } public final void writeFloatArray(float[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeFloat(val[i]); } } else { writeInt(-1); } } public final float[] createFloatArray() { int N = readInt(); // >>2 because stored floats are 4 bytes if (N >= 0 && N <= (dataAvail() >> 2)) { float[] val = new float[N]; for (int i=0; i<N; i++) { val[i] = readFloat(); } return val; } else { return null; } } public final void readFloatArray(float[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readFloat(); } } else { throw new RuntimeException("bad array lengths"); } } public final void writeDoubleArray(double[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeDouble(val[i]); } } else { writeInt(-1); } } public final double[] createDoubleArray() { int N = readInt(); // >>3 because stored doubles are 8 bytes if (N >= 0 && N <= (dataAvail() >> 3)) { double[] val = new double[N]; for (int i=0; i<N; i++) { val[i] = readDouble(); } return val; } else { return null; } } public final void readDoubleArray(double[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readDouble(); } } else { throw new RuntimeException("bad array lengths"); } } public final void writeStringArray(String[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeString(val[i]); } } else { writeInt(-1); } } public final String[] createStringArray() { int N = readInt(); if (N >= 0) { String[] val = new String[N]; for (int i=0; i<N; i++) { val[i] = readString(); } return val; } else { return null; } } public final void readStringArray(String[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readString(); } } else { throw new RuntimeException("bad array lengths"); } } public final void writeBinderArray(IBinder[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeStrongBinder(val[i]); } } else { writeInt(-1); } }
@hide
/** * @hide */
public final void writeCharSequenceArray(CharSequence[] val) { if (val != null) { int N = val.length; writeInt(N); for (int i=0; i<N; i++) { writeCharSequence(val[i]); } } else { writeInt(-1); } }
@hide
/** * @hide */
public final void writeCharSequenceList(ArrayList<CharSequence> val) { if (val != null) { int N = val.size(); writeInt(N); for (int i=0; i<N; i++) { writeCharSequence(val.get(i)); } } else { writeInt(-1); } } public final IBinder[] createBinderArray() { int N = readInt(); if (N >= 0) { IBinder[] val = new IBinder[N]; for (int i=0; i<N; i++) { val[i] = readStrongBinder(); } return val; } else { return null; } } public final void readBinderArray(IBinder[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readStrongBinder(); } } else { throw new RuntimeException("bad array lengths"); } }
Flatten a List containing a particular object type into the parcel, at the current dataPosition() and growing dataCapacity() if needed. The type of the objects in the list must be one that implements Parcelable. Unlike the generic writeList() method, however, only the raw data of the objects is written and not their type, so you must use the corresponding readTypedList() to unmarshall them.
Params:
  • val – The list of objects to be written.
See Also:
/** * Flatten a List containing a particular object type into the parcel, at * the current dataPosition() and growing dataCapacity() if needed. The * type of the objects in the list must be one that implements Parcelable. * Unlike the generic writeList() method, however, only the raw data of the * objects is written and not their type, so you must use the corresponding * readTypedList() to unmarshall them. * * @param val The list of objects to be written. * * @see #createTypedArrayList * @see #readTypedList * @see Parcelable */
public final <T extends Parcelable> void writeTypedList(List<T> val) { writeTypedList(val, 0); }
@hide
/** * @hide */
public <T extends Parcelable> void writeTypedList(List<T> val, int parcelableFlags) { if (val == null) { writeInt(-1); return; } int N = val.size(); int i=0; writeInt(N); while (i < N) { writeTypedObject(val.get(i), parcelableFlags); i++; } }
Flatten a List containing String objects into the parcel, at the current dataPosition() and growing dataCapacity() if needed. They can later be retrieved with createStringArrayList or readStringList.
Params:
  • val – The list of strings to be written.
See Also:
/** * Flatten a List containing String objects into the parcel, at * the current dataPosition() and growing dataCapacity() if needed. They * can later be retrieved with {@link #createStringArrayList} or * {@link #readStringList}. * * @param val The list of strings to be written. * * @see #createStringArrayList * @see #readStringList */
public final void writeStringList(List<String> val) { if (val == null) { writeInt(-1); return; } int N = val.size(); int i=0; writeInt(N); while (i < N) { writeString(val.get(i)); i++; } }
Flatten a List containing IBinder objects into the parcel, at the current dataPosition() and growing dataCapacity() if needed. They can later be retrieved with createBinderArrayList or readBinderList.
Params:
  • val – The list of strings to be written.
See Also:
/** * Flatten a List containing IBinder objects into the parcel, at * the current dataPosition() and growing dataCapacity() if needed. They * can later be retrieved with {@link #createBinderArrayList} or * {@link #readBinderList}. * * @param val The list of strings to be written. * * @see #createBinderArrayList * @see #readBinderList */
public final void writeBinderList(List<IBinder> val) { if (val == null) { writeInt(-1); return; } int N = val.size(); int i=0; writeInt(N); while (i < N) { writeStrongBinder(val.get(i)); i++; } }
Flatten a List containing arbitrary Parcelable objects into this parcel at the current position. They can later be retrieved using readParcelableList(List<Parcelable>, ClassLoader) if required.
See Also:
@hide
/** * Flatten a {@code List} containing arbitrary {@code Parcelable} objects into this parcel * at the current position. They can later be retrieved using * {@link #readParcelableList(List, ClassLoader)} if required. * * @see #readParcelableList(List, ClassLoader) * @hide */
public final <T extends Parcelable> void writeParcelableList(List<T> val, int flags) { if (val == null) { writeInt(-1); return; } int N = val.size(); int i=0; writeInt(N); while (i < N) { writeParcelable(val.get(i), flags); i++; } }
Flatten a homogeneous array containing a particular object type into the parcel, at the current dataPosition() and growing dataCapacity() if needed. The type of the objects in the array must be one that implements Parcelable. Unlike the writeParcelableArray method, however, only the raw data of the objects is written and not their type, so you must use readTypedArray with the correct corresponding Creator implementation to unmarshall them.
Params:
See Also:
/** * Flatten a homogeneous array containing a particular object type into * the parcel, at * the current dataPosition() and growing dataCapacity() if needed. The * type of the objects in the array must be one that implements Parcelable. * Unlike the {@link #writeParcelableArray} method, however, only the * raw data of the objects is written and not their type, so you must use * {@link #readTypedArray} with the correct corresponding * {@link Parcelable.Creator} implementation to unmarshall them. * * @param val The array of objects to be written. * @param parcelableFlags Contextual flags as per * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}. * * @see #readTypedArray * @see #writeParcelableArray * @see Parcelable.Creator */
public final <T extends Parcelable> void writeTypedArray(T[] val, int parcelableFlags) { if (val != null) { int N = val.length; writeInt(N); for (int i = 0; i < N; i++) { writeTypedObject(val[i], parcelableFlags); } } else { writeInt(-1); } }
Flatten the Parcelable object into the parcel.
Params:
See Also:
/** * Flatten the Parcelable object into the parcel. * * @param val The Parcelable object to be written. * @param parcelableFlags Contextual flags as per * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}. * * @see #readTypedObject */
public final <T extends Parcelable> void writeTypedObject(T val, int parcelableFlags) { if (val != null) { writeInt(1); val.writeToParcel(this, parcelableFlags); } else { writeInt(0); } }
Flatten a generic object in to a parcel. The given Object value may currently be one of the following types:
  • null
  • String
  • Byte
  • Short
  • Integer
  • Long
  • Float
  • Double
  • Boolean
  • String[]
  • boolean[]
  • byte[]
  • int[]
  • long[]
  • Object[] (supporting objects of the same type defined here).
  • Bundle
  • Map (as supported by writeMap).
  • Any object that implements the Parcelable protocol.
  • Parcelable[]
  • CharSequence (as supported by TextUtils.writeToParcel).
  • List (as supported by writeList).
  • SparseArray (as supported by writeSparseArray(SparseArray<Object>)).
  • IBinder
  • Any object that implements Serializable (but see writeSerializable for caveats). Note that all of the previous types have relatively efficient implementations for writing to a Parcel; having to rely on the generic serialization approach is much less efficient and should be avoided whenever possible.

Parcelable objects are written with Parcelable.writeToParcel using contextual flags of 0. When serializing objects containing ParcelFileDescriptors, this may result in file descriptor leaks when they are returned from Binder calls (where Parcelable.PARCELABLE_WRITE_RETURN_VALUE should be used).

/** * Flatten a generic object in to a parcel. The given Object value may * currently be one of the following types: * * <ul> * <li> null * <li> String * <li> Byte * <li> Short * <li> Integer * <li> Long * <li> Float * <li> Double * <li> Boolean * <li> String[] * <li> boolean[] * <li> byte[] * <li> int[] * <li> long[] * <li> Object[] (supporting objects of the same type defined here). * <li> {@link Bundle} * <li> Map (as supported by {@link #writeMap}). * <li> Any object that implements the {@link Parcelable} protocol. * <li> Parcelable[] * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}). * <li> List (as supported by {@link #writeList}). * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}). * <li> {@link IBinder} * <li> Any object that implements Serializable (but see * {@link #writeSerializable} for caveats). Note that all of the * previous types have relatively efficient implementations for * writing to a Parcel; having to rely on the generic serialization * approach is much less efficient and should be avoided whenever * possible. * </ul> * * <p class="caution">{@link Parcelable} objects are written with * {@link Parcelable#writeToParcel} using contextual flags of 0. When * serializing objects containing {@link ParcelFileDescriptor}s, * this may result in file descriptor leaks when they are returned from * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} * should be used).</p> */
public final void writeValue(Object v) { if (v == null) { writeInt(VAL_NULL); } else if (v instanceof String) { writeInt(VAL_STRING); writeString((String) v); } else if (v instanceof Integer) { writeInt(VAL_INTEGER); writeInt((Integer) v); } else if (v instanceof Map) { writeInt(VAL_MAP); writeMap((Map) v); } else if (v instanceof Bundle) { // Must be before Parcelable writeInt(VAL_BUNDLE); writeBundle((Bundle) v); } else if (v instanceof PersistableBundle) { writeInt(VAL_PERSISTABLEBUNDLE); writePersistableBundle((PersistableBundle) v); } else if (v instanceof Parcelable) { // IMPOTANT: cases for classes that implement Parcelable must // come before the Parcelable case, so that their specific VAL_* // types will be written. writeInt(VAL_PARCELABLE); writeParcelable((Parcelable) v, 0); } else if (v instanceof Short) { writeInt(VAL_SHORT); writeInt(((Short) v).intValue()); } else if (v instanceof Long) { writeInt(VAL_LONG); writeLong((Long) v); } else if (v instanceof Float) { writeInt(VAL_FLOAT); writeFloat((Float) v); } else if (v instanceof Double) { writeInt(VAL_DOUBLE); writeDouble((Double) v); } else if (v instanceof Boolean) { writeInt(VAL_BOOLEAN); writeInt((Boolean) v ? 1 : 0); } else if (v instanceof CharSequence) { // Must be after String writeInt(VAL_CHARSEQUENCE); writeCharSequence((CharSequence) v); } else if (v instanceof List) { writeInt(VAL_LIST); writeList((List) v); } else if (v instanceof SparseArray) { writeInt(VAL_SPARSEARRAY); writeSparseArray((SparseArray) v); } else if (v instanceof boolean[]) { writeInt(VAL_BOOLEANARRAY); writeBooleanArray((boolean[]) v); } else if (v instanceof byte[]) { writeInt(VAL_BYTEARRAY); writeByteArray((byte[]) v); } else if (v instanceof String[]) { writeInt(VAL_STRINGARRAY); writeStringArray((String[]) v); } else if (v instanceof CharSequence[]) { // Must be after String[] and before Object[] writeInt(VAL_CHARSEQUENCEARRAY); writeCharSequenceArray((CharSequence[]) v); } else if (v instanceof IBinder) { writeInt(VAL_IBINDER); writeStrongBinder((IBinder) v); } else if (v instanceof Parcelable[]) { writeInt(VAL_PARCELABLEARRAY); writeParcelableArray((Parcelable[]) v, 0); } else if (v instanceof int[]) { writeInt(VAL_INTARRAY); writeIntArray((int[]) v); } else if (v instanceof long[]) { writeInt(VAL_LONGARRAY); writeLongArray((long[]) v); } else if (v instanceof Byte) { writeInt(VAL_BYTE); writeInt((Byte) v); } else if (v instanceof Size) { writeInt(VAL_SIZE); writeSize((Size) v); } else if (v instanceof SizeF) { writeInt(VAL_SIZEF); writeSizeF((SizeF) v); } else if (v instanceof double[]) { writeInt(VAL_DOUBLEARRAY); writeDoubleArray((double[]) v); } else { Class<?> clazz = v.getClass(); if (clazz.isArray() && clazz.getComponentType() == Object.class) { // Only pure Object[] are written here, Other arrays of non-primitive types are // handled by serialization as this does not record the component type. writeInt(VAL_OBJECTARRAY); writeArray((Object[]) v); } else if (v instanceof Serializable) { // Must be last writeInt(VAL_SERIALIZABLE); writeSerializable((Serializable) v); } else { throw new RuntimeException("Parcel: unable to marshal value " + v); } } }
Flatten the name of the class of the Parcelable and its contents into the parcel.
Params:
/** * Flatten the name of the class of the Parcelable and its contents * into the parcel. * * @param p The Parcelable object to be written. * @param parcelableFlags Contextual flags as per * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}. */
public final void writeParcelable(Parcelable p, int parcelableFlags) { if (p == null) { writeString(null); return; } writeParcelableCreator(p); p.writeToParcel(this, parcelableFlags); }
@hide
/** @hide */
public final void writeParcelableCreator(Parcelable p) { String name = p.getClass().getName(); writeString(name); }
Write a generic serializable object in to a Parcel. It is strongly recommended that this method be avoided, since the serialization overhead is extremely large, and this approach will be much slower than using the other approaches to writing data in to a Parcel.
/** * Write a generic serializable object in to a Parcel. It is strongly * recommended that this method be avoided, since the serialization * overhead is extremely large, and this approach will be much slower than * using the other approaches to writing data in to a Parcel. */
public final void writeSerializable(Serializable s) { if (s == null) { writeString(null); return; } String name = s.getClass().getName(); writeString(name); ByteArrayOutputStream baos = new ByteArrayOutputStream(); try { ObjectOutputStream oos = new ObjectOutputStream(baos); oos.writeObject(s); oos.close(); writeByteArray(baos.toByteArray()); } catch (IOException ioe) { throw new RuntimeException("Parcelable encountered " + "IOException writing serializable object (name = " + name + ")", ioe); } }
@hideFor debugging purposes
/** @hide For debugging purposes */
public static void setStackTraceParceling(boolean enabled) { sParcelExceptionStackTrace = enabled; }
Special function for writing an exception result at the header of a parcel, to be used when returning an exception from a transaction. Note that this currently only supports a few exception types; any other exception will be re-thrown by this function as a RuntimeException (to be caught by the system's last-resort exception handling when dispatching a transaction).

The supported exception types are:

Params:
  • e – The Exception to be written.
See Also:
/** * Special function for writing an exception result at the header of * a parcel, to be used when returning an exception from a transaction. * Note that this currently only supports a few exception types; any other * exception will be re-thrown by this function as a RuntimeException * (to be caught by the system's last-resort exception handling when * dispatching a transaction). * * <p>The supported exception types are: * <ul> * <li>{@link BadParcelableException} * <li>{@link IllegalArgumentException} * <li>{@link IllegalStateException} * <li>{@link NullPointerException} * <li>{@link SecurityException} * <li>{@link UnsupportedOperationException} * <li>{@link NetworkOnMainThreadException} * </ul> * * @param e The Exception to be written. * * @see #writeNoException * @see #readException */
public final void writeException(Exception e) { int code = 0; if (e instanceof Parcelable && (e.getClass().getClassLoader() == Parcelable.class.getClassLoader())) { // We only send Parcelable exceptions that are in the // BootClassLoader to ensure that the receiver can unpack them code = EX_PARCELABLE; } else if (e instanceof SecurityException) { code = EX_SECURITY; } else if (e instanceof BadParcelableException) { code = EX_BAD_PARCELABLE; } else if (e instanceof IllegalArgumentException) { code = EX_ILLEGAL_ARGUMENT; } else if (e instanceof NullPointerException) { code = EX_NULL_POINTER; } else if (e instanceof IllegalStateException) { code = EX_ILLEGAL_STATE; } else if (e instanceof NetworkOnMainThreadException) { code = EX_NETWORK_MAIN_THREAD; } else if (e instanceof UnsupportedOperationException) { code = EX_UNSUPPORTED_OPERATION; } else if (e instanceof ServiceSpecificException) { code = EX_SERVICE_SPECIFIC; } writeInt(code); StrictMode.clearGatheredViolations(); if (code == 0) { if (e instanceof RuntimeException) { throw (RuntimeException) e; } throw new RuntimeException(e); } writeString(e.getMessage()); final long timeNow = sParcelExceptionStackTrace ? SystemClock.elapsedRealtime() : 0; if (sParcelExceptionStackTrace && (timeNow - sLastWriteExceptionStackTrace > WRITE_EXCEPTION_STACK_TRACE_THRESHOLD_MS)) { sLastWriteExceptionStackTrace = timeNow; final int sizePosition = dataPosition(); writeInt(0); // Header size will be filled in later StackTraceElement[] stackTrace = e.getStackTrace(); final int truncatedSize = Math.min(stackTrace.length, 5); StringBuilder sb = new StringBuilder(); for (int i = 0; i < truncatedSize; i++) { sb.append("\tat ").append(stackTrace[i]).append('\n'); } writeString(sb.toString()); final int payloadPosition = dataPosition(); setDataPosition(sizePosition); // Write stack trace header size. Used in native side to skip the header writeInt(payloadPosition - sizePosition); setDataPosition(payloadPosition); } else { writeInt(0); } switch (code) { case EX_SERVICE_SPECIFIC: writeInt(((ServiceSpecificException) e).errorCode); break; case EX_PARCELABLE: // Write parceled exception prefixed by length final int sizePosition = dataPosition(); writeInt(0); writeParcelable((Parcelable) e, Parcelable.PARCELABLE_WRITE_RETURN_VALUE); final int payloadPosition = dataPosition(); setDataPosition(sizePosition); writeInt(payloadPosition - sizePosition); setDataPosition(payloadPosition); break; } }
Special function for writing information at the front of the Parcel indicating that no exception occurred.
See Also:
/** * Special function for writing information at the front of the Parcel * indicating that no exception occurred. * * @see #writeException * @see #readException */
public final void writeNoException() { // Despite the name of this function ("write no exception"), // it should instead be thought of as "write the RPC response // header", but because this function name is written out by // the AIDL compiler, we're not going to rename it. // // The response header, in the non-exception case (see also // writeException above, also called by the AIDL compiler), is // either a 0 (the default case), or EX_HAS_REPLY_HEADER if // StrictMode has gathered up violations that have occurred // during a Binder call, in which case we write out the number // of violations and their details, serialized, before the // actual RPC respons data. The receiving end of this is // readException(), below. if (StrictMode.hasGatheredViolations()) { writeInt(EX_HAS_REPLY_HEADER); final int sizePosition = dataPosition(); writeInt(0); // total size of fat header, to be filled in later StrictMode.writeGatheredViolationsToParcel(this); final int payloadPosition = dataPosition(); setDataPosition(sizePosition); writeInt(payloadPosition - sizePosition); // header size setDataPosition(payloadPosition); } else { writeInt(0); } }
Special function for reading an exception result from the header of a parcel, to be used after receiving the result of a transaction. This will throw the exception for you if it had been written to the Parcel, otherwise return and let you read the normal result data from the Parcel.
See Also:
/** * Special function for reading an exception result from the header of * a parcel, to be used after receiving the result of a transaction. This * will throw the exception for you if it had been written to the Parcel, * otherwise return and let you read the normal result data from the Parcel. * * @see #writeException * @see #writeNoException */
public final void readException() { int code = readExceptionCode(); if (code != 0) { String msg = readString(); readException(code, msg); } }
Parses the header of a Binder call's response Parcel and returns the exception code. Deals with lite or fat headers. In the common successful case, this header is generally zero. In less common cases, it's a small negative number and will be followed by an error string. This exists purely for android.database.DatabaseUtils and insulating it from having to handle fat headers as returned by e.g. StrictMode-induced RPC responses.
@hide
/** * Parses the header of a Binder call's response Parcel and * returns the exception code. Deals with lite or fat headers. * In the common successful case, this header is generally zero. * In less common cases, it's a small negative number and will be * followed by an error string. * * This exists purely for android.database.DatabaseUtils and * insulating it from having to handle fat headers as returned by * e.g. StrictMode-induced RPC responses. * * @hide */
public final int readExceptionCode() { int code = readInt(); if (code == EX_HAS_REPLY_HEADER) { int headerSize = readInt(); if (headerSize == 0) { Log.e(TAG, "Unexpected zero-sized Parcel reply header."); } else { // Currently the only thing in the header is StrictMode stacks, // but discussions around event/RPC tracing suggest we might // put that here too. If so, switch on sub-header tags here. // But for now, just parse out the StrictMode stuff. StrictMode.readAndHandleBinderCallViolations(this); } // And fat response headers are currently only used when // there are no exceptions, so return no error: return 0; } return code; }
Throw an exception with the given message. Not intended for use outside the Parcel class.
Params:
  • code – Used to determine which exception class to throw.
  • msg – The exception message.
/** * Throw an exception with the given message. Not intended for use * outside the Parcel class. * * @param code Used to determine which exception class to throw. * @param msg The exception message. */
public final void readException(int code, String msg) { String remoteStackTrace = null; final int remoteStackPayloadSize = readInt(); if (remoteStackPayloadSize > 0) { remoteStackTrace = readString(); } Exception e = createException(code, msg); // Attach remote stack trace if availalble if (remoteStackTrace != null) { RemoteException cause = new RemoteException( "Remote stack trace:\n" + remoteStackTrace, null, false, false); try { Throwable rootCause = ExceptionUtils.getRootCause(e); if (rootCause != null) { rootCause.initCause(cause); } } catch (RuntimeException ex) { Log.e(TAG, "Cannot set cause " + cause + " for " + e, ex); } } SneakyThrow.sneakyThrow(e); }
Creates an exception with the given message.
Params:
  • code – Used to determine which exception class to throw.
  • msg – The exception message.
/** * Creates an exception with the given message. * * @param code Used to determine which exception class to throw. * @param msg The exception message. */
private Exception createException(int code, String msg) { switch (code) { case EX_PARCELABLE: if (readInt() > 0) { return (Exception) readParcelable(Parcelable.class.getClassLoader()); } else { return new RuntimeException(msg + " [missing Parcelable]"); } case EX_SECURITY: return new SecurityException(msg); case EX_BAD_PARCELABLE: return new BadParcelableException(msg); case EX_ILLEGAL_ARGUMENT: return new IllegalArgumentException(msg); case EX_NULL_POINTER: return new NullPointerException(msg); case EX_ILLEGAL_STATE: return new IllegalStateException(msg); case EX_NETWORK_MAIN_THREAD: return new NetworkOnMainThreadException(); case EX_UNSUPPORTED_OPERATION: return new UnsupportedOperationException(msg); case EX_SERVICE_SPECIFIC: return new ServiceSpecificException(readInt(), msg); } return new RuntimeException("Unknown exception code: " + code + " msg " + msg); }
Read an integer value from the parcel at the current dataPosition().
/** * Read an integer value from the parcel at the current dataPosition(). */
public final int readInt() { return nativeReadInt(mNativePtr); }
Read a long integer value from the parcel at the current dataPosition().
/** * Read a long integer value from the parcel at the current dataPosition(). */
public final long readLong() { return nativeReadLong(mNativePtr); }
Read a floating point value from the parcel at the current dataPosition().
/** * Read a floating point value from the parcel at the current * dataPosition(). */
public final float readFloat() { return nativeReadFloat(mNativePtr); }
Read a double precision floating point value from the parcel at the current dataPosition().
/** * Read a double precision floating point value from the parcel at the * current dataPosition(). */
public final double readDouble() { return nativeReadDouble(mNativePtr); }
Read a string value from the parcel at the current dataPosition().
/** * Read a string value from the parcel at the current dataPosition(). */
public final String readString() { return mReadWriteHelper.readString(this); }
Read a string without going though a ReadWriteHelper. Subclasses of ReadWriteHelper must use this method instead of readString to avoid infinity recursive calls.
@hide
/** * Read a string without going though a {@link ReadWriteHelper}. Subclasses of * {@link ReadWriteHelper} must use this method instead of {@link #readString} to avoid * infinity recursive calls. * * @hide */
public String readStringNoHelper() { return nativeReadString(mNativePtr); }
@hide
/** @hide */
public final boolean readBoolean() { return readInt() != 0; }
Read a CharSequence value from the parcel at the current dataPosition().
@hide
/** * Read a CharSequence value from the parcel at the current dataPosition(). * @hide */
public final CharSequence readCharSequence() { return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this); }
Read an object from the parcel at the current dataPosition().
/** * Read an object from the parcel at the current dataPosition(). */
public final IBinder readStrongBinder() { return nativeReadStrongBinder(mNativePtr); }
Read a FileDescriptor from the parcel at the current dataPosition().
/** * Read a FileDescriptor from the parcel at the current dataPosition(). */
public final ParcelFileDescriptor readFileDescriptor() { FileDescriptor fd = nativeReadFileDescriptor(mNativePtr); return fd != null ? new ParcelFileDescriptor(fd) : null; }
{@hide}
/** {@hide} */
public final FileDescriptor readRawFileDescriptor() { return nativeReadFileDescriptor(mNativePtr); }
{@hide} Read and return a new array of FileDescriptors from the parcel.
Returns:the FileDescriptor array, or null if the array is null.
/** * {@hide} * Read and return a new array of FileDescriptors from the parcel. * @return the FileDescriptor array, or null if the array is null. **/
public final FileDescriptor[] createRawFileDescriptorArray() { int N = readInt(); if (N < 0) { return null; } FileDescriptor[] f = new FileDescriptor[N]; for (int i = 0; i < N; i++) { f[i] = readRawFileDescriptor(); } return f; }
{@hide} Read an array of FileDescriptors from a parcel. The passed array must be exactly the length of the array in the parcel.
Returns:the FileDescriptor array, or null if the array is null.
/** * {@hide} * Read an array of FileDescriptors from a parcel. * The passed array must be exactly the length of the array in the parcel. * @return the FileDescriptor array, or null if the array is null. **/
public final void readRawFileDescriptorArray(FileDescriptor[] val) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readRawFileDescriptor(); } } else { throw new RuntimeException("bad array lengths"); } }
Deprecated:use open.open(String, int, int)
/** @deprecated use {@link android.system.Os#open(String, int, int)} */
@Deprecated static native FileDescriptor openFileDescriptor(String file, int mode) throws FileNotFoundException;
Deprecated:use dup.dup(FileDescriptor)
/** @deprecated use {@link android.system.Os#dup(FileDescriptor)} */
@Deprecated static native FileDescriptor dupFileDescriptor(FileDescriptor orig) throws IOException;
Deprecated:use close.close(FileDescriptor)
/** @deprecated use {@link android.system.Os#close(FileDescriptor)} */
@Deprecated static native void closeFileDescriptor(FileDescriptor desc) throws IOException;
Read a byte value from the parcel at the current dataPosition().
/** * Read a byte value from the parcel at the current dataPosition(). */
public final byte readByte() { return (byte)(readInt() & 0xff); }
Please use readBundle(ClassLoader) instead (whose data must have been written with writeBundle. Read into an existing Map object from the parcel at the current dataPosition().
/** * Please use {@link #readBundle(ClassLoader)} instead (whose data must have * been written with {@link #writeBundle}. Read into an existing Map object * from the parcel at the current dataPosition(). */
public final void readMap(Map outVal, ClassLoader loader) { int N = readInt(); readMapInternal(outVal, N, loader); }
Read into an existing List object from the parcel at the current dataPosition(), using the given class loader to load any enclosed Parcelables. If it is null, the default class loader is used.
/** * Read into an existing List object from the parcel at the current * dataPosition(), using the given class loader to load any enclosed * Parcelables. If it is null, the default class loader is used. */
public final void readList(List outVal, ClassLoader loader) { int N = readInt(); readListInternal(outVal, N, loader); }
Please use readBundle(ClassLoader) instead (whose data must have been written with writeBundle. Read and return a new HashMap object from the parcel at the current dataPosition(), using the given class loader to load any enclosed Parcelables. Returns null if the previously written map object was null.
/** * Please use {@link #readBundle(ClassLoader)} instead (whose data must have * been written with {@link #writeBundle}. Read and return a new HashMap * object from the parcel at the current dataPosition(), using the given * class loader to load any enclosed Parcelables. Returns null if * the previously written map object was null. */
public final HashMap readHashMap(ClassLoader loader) { int N = readInt(); if (N < 0) { return null; } HashMap m = new HashMap(N); readMapInternal(m, N, loader); return m; }
Read and return a new Bundle object from the parcel at the current dataPosition(). Returns null if the previously written Bundle object was null.
/** * Read and return a new Bundle object from the parcel at the current * dataPosition(). Returns null if the previously written Bundle object was * null. */
public final Bundle readBundle() { return readBundle(null); }
Read and return a new Bundle object from the parcel at the current dataPosition(), using the given class loader to initialize the class loader of the Bundle for later retrieval of Parcelable objects. Returns null if the previously written Bundle object was null.
/** * Read and return a new Bundle object from the parcel at the current * dataPosition(), using the given class loader to initialize the class * loader of the Bundle for later retrieval of Parcelable objects. * Returns null if the previously written Bundle object was null. */
public final Bundle readBundle(ClassLoader loader) { int length = readInt(); if (length < 0) { if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length); return null; } final Bundle bundle = new Bundle(this, length); if (loader != null) { bundle.setClassLoader(loader); } return bundle; }
Read and return a new Bundle object from the parcel at the current dataPosition(). Returns null if the previously written Bundle object was null.
/** * Read and return a new Bundle object from the parcel at the current * dataPosition(). Returns null if the previously written Bundle object was * null. */
public final PersistableBundle readPersistableBundle() { return readPersistableBundle(null); }
Read and return a new Bundle object from the parcel at the current dataPosition(), using the given class loader to initialize the class loader of the Bundle for later retrieval of Parcelable objects. Returns null if the previously written Bundle object was null.
/** * Read and return a new Bundle object from the parcel at the current * dataPosition(), using the given class loader to initialize the class * loader of the Bundle for later retrieval of Parcelable objects. * Returns null if the previously written Bundle object was null. */
public final PersistableBundle readPersistableBundle(ClassLoader loader) { int length = readInt(); if (length < 0) { if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length); return null; } final PersistableBundle bundle = new PersistableBundle(this, length); if (loader != null) { bundle.setClassLoader(loader); } return bundle; }
Read a Size from the parcel at the current dataPosition().
/** * Read a Size from the parcel at the current dataPosition(). */
public final Size readSize() { final int width = readInt(); final int height = readInt(); return new Size(width, height); }
Read a SizeF from the parcel at the current dataPosition().
/** * Read a SizeF from the parcel at the current dataPosition(). */
public final SizeF readSizeF() { final float width = readFloat(); final float height = readFloat(); return new SizeF(width, height); }
Read and return a byte[] object from the parcel.
/** * Read and return a byte[] object from the parcel. */
public final byte[] createByteArray() { return nativeCreateByteArray(mNativePtr); }
Read a byte[] object from the parcel and copy it into the given byte array.
/** * Read a byte[] object from the parcel and copy it into the * given byte array. */
public final void readByteArray(byte[] val) { boolean valid = nativeReadByteArray(mNativePtr, val, (val != null) ? val.length : 0); if (!valid) { throw new RuntimeException("bad array lengths"); } }
Read a blob of data from the parcel and return it as a byte array. {@hide} {@SystemApi}
/** * Read a blob of data from the parcel and return it as a byte array. * {@hide} * {@SystemApi} */
public final byte[] readBlob() { return nativeReadBlob(mNativePtr); }
Read and return a String[] object from the parcel. {@hide}
/** * Read and return a String[] object from the parcel. * {@hide} */
public final String[] readStringArray() { String[] array = null; int length = readInt(); if (length >= 0) { array = new String[length]; for (int i = 0 ; i < length ; i++) { array[i] = readString(); } } return array; }
Read and return a CharSequence[] object from the parcel. {@hide}
/** * Read and return a CharSequence[] object from the parcel. * {@hide} */
public final CharSequence[] readCharSequenceArray() { CharSequence[] array = null; int length = readInt(); if (length >= 0) { array = new CharSequence[length]; for (int i = 0 ; i < length ; i++) { array[i] = readCharSequence(); } } return array; }
Read and return an ArrayList<CharSequence> object from the parcel. {@hide}
/** * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel. * {@hide} */
public final ArrayList<CharSequence> readCharSequenceList() { ArrayList<CharSequence> array = null; int length = readInt(); if (length >= 0) { array = new ArrayList<CharSequence>(length); for (int i = 0 ; i < length ; i++) { array.add(readCharSequence()); } } return array; }
Read and return a new ArrayList object from the parcel at the current dataPosition(). Returns null if the previously written list object was null. The given class loader will be used to load any enclosed Parcelables.
/** * Read and return a new ArrayList object from the parcel at the current * dataPosition(). Returns null if the previously written list object was * null. The given class loader will be used to load any enclosed * Parcelables. */
public final ArrayList readArrayList(ClassLoader loader) { int N = readInt(); if (N < 0) { return null; } ArrayList l = new ArrayList(N); readListInternal(l, N, loader); return l; }
Read and return a new Object array from the parcel at the current dataPosition(). Returns null if the previously written array was null. The given class loader will be used to load any enclosed Parcelables.
/** * Read and return a new Object array from the parcel at the current * dataPosition(). Returns null if the previously written array was * null. The given class loader will be used to load any enclosed * Parcelables. */
public final Object[] readArray(ClassLoader loader) { int N = readInt(); if (N < 0) { return null; } Object[] l = new Object[N]; readArrayInternal(l, N, loader); return l; }
Read and return a new SparseArray object from the parcel at the current dataPosition(). Returns null if the previously written list object was null. The given class loader will be used to load any enclosed Parcelables.
/** * Read and return a new SparseArray object from the parcel at the current * dataPosition(). Returns null if the previously written list object was * null. The given class loader will be used to load any enclosed * Parcelables. */
public final SparseArray readSparseArray(ClassLoader loader) { int N = readInt(); if (N < 0) { return null; } SparseArray sa = new SparseArray(N); readSparseArrayInternal(sa, N, loader); return sa; }
Read and return a new SparseBooleanArray object from the parcel at the current dataPosition(). Returns null if the previously written list object was null.
/** * Read and return a new SparseBooleanArray object from the parcel at the current * dataPosition(). Returns null if the previously written list object was * null. */
public final SparseBooleanArray readSparseBooleanArray() { int N = readInt(); if (N < 0) { return null; } SparseBooleanArray sa = new SparseBooleanArray(N); readSparseBooleanArrayInternal(sa, N); return sa; }
Read and return a new SparseIntArray object from the parcel at the current dataPosition(). Returns null if the previously written array object was null.
@hide
/** * Read and return a new SparseIntArray object from the parcel at the current * dataPosition(). Returns null if the previously written array object was null. * @hide */
public final SparseIntArray readSparseIntArray() { int N = readInt(); if (N < 0) { return null; } SparseIntArray sa = new SparseIntArray(N); readSparseIntArrayInternal(sa, N); return sa; }
Read and return a new ArrayList containing a particular object type from the parcel that was written with writeTypedList at the current dataPosition(). Returns null if the previously written list object was null. The list must have previously been written via writeTypedList with the same object type.
See Also:
Returns:A newly created ArrayList containing objects with the same data as those that were previously written.
/** * Read and return a new ArrayList containing a particular object type from * the parcel that was written with {@link #writeTypedList} at the * current dataPosition(). Returns null if the * previously written list object was null. The list <em>must</em> have * previously been written via {@link #writeTypedList} with the same object * type. * * @return A newly created ArrayList containing objects with the same data * as those that were previously written. * * @see #writeTypedList */
public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) { int N = readInt(); if (N < 0) { return null; } ArrayList<T> l = new ArrayList<T>(N); while (N > 0) { l.add(readTypedObject(c)); N--; } return l; }
Read into the given List items containing a particular object type that were written with writeTypedList at the current dataPosition(). The list must have previously been written via writeTypedList with the same object type.
See Also:
Returns:A newly created ArrayList containing objects with the same data as those that were previously written.
/** * Read into the given List items containing a particular object type * that were written with {@link #writeTypedList} at the * current dataPosition(). The list <em>must</em> have * previously been written via {@link #writeTypedList} with the same object * type. * * @return A newly created ArrayList containing objects with the same data * as those that were previously written. * * @see #writeTypedList */
public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) { int M = list.size(); int N = readInt(); int i = 0; for (; i < M && i < N; i++) { list.set(i, readTypedObject(c)); } for (; i<N; i++) { list.add(readTypedObject(c)); } for (; i<M; i++) { list.remove(N); } }
Read and return a new ArrayList containing String objects from the parcel that was written with writeStringList at the current dataPosition(). Returns null if the previously written list object was null.
See Also:
Returns:A newly created ArrayList containing strings with the same data as those that were previously written.
/** * Read and return a new ArrayList containing String objects from * the parcel that was written with {@link #writeStringList} at the * current dataPosition(). Returns null if the * previously written list object was null. * * @return A newly created ArrayList containing strings with the same data * as those that were previously written. * * @see #writeStringList */
public final ArrayList<String> createStringArrayList() { int N = readInt(); if (N < 0) { return null; } ArrayList<String> l = new ArrayList<String>(N); while (N > 0) { l.add(readString()); N--; } return l; }
Read and return a new ArrayList containing IBinder objects from the parcel that was written with writeBinderList at the current dataPosition(). Returns null if the previously written list object was null.
See Also:
Returns:A newly created ArrayList containing strings with the same data as those that were previously written.
/** * Read and return a new ArrayList containing IBinder objects from * the parcel that was written with {@link #writeBinderList} at the * current dataPosition(). Returns null if the * previously written list object was null. * * @return A newly created ArrayList containing strings with the same data * as those that were previously written. * * @see #writeBinderList */
public final ArrayList<IBinder> createBinderArrayList() { int N = readInt(); if (N < 0) { return null; } ArrayList<IBinder> l = new ArrayList<IBinder>(N); while (N > 0) { l.add(readStrongBinder()); N--; } return l; }
Read into the given List items String objects that were written with writeStringList at the current dataPosition().
See Also:
/** * Read into the given List items String objects that were written with * {@link #writeStringList} at the current dataPosition(). * * @see #writeStringList */
public final void readStringList(List<String> list) { int M = list.size(); int N = readInt(); int i = 0; for (; i < M && i < N; i++) { list.set(i, readString()); } for (; i<N; i++) { list.add(readString()); } for (; i<M; i++) { list.remove(N); } }
Read into the given List items IBinder objects that were written with writeBinderList at the current dataPosition().
See Also:
/** * Read into the given List items IBinder objects that were written with * {@link #writeBinderList} at the current dataPosition(). * * @see #writeBinderList */
public final void readBinderList(List<IBinder> list) { int M = list.size(); int N = readInt(); int i = 0; for (; i < M && i < N; i++) { list.set(i, readStrongBinder()); } for (; i<N; i++) { list.add(readStrongBinder()); } for (; i<M; i++) { list.remove(N); } }
Read the list of Parcelable objects at the current data position into the given list. The contents of the list are replaced. If the serialized list was null, list is cleared.
See Also:
@hide
/** * Read the list of {@code Parcelable} objects at the current data position into the * given {@code list}. The contents of the {@code list} are replaced. If the serialized * list was {@code null}, {@code list} is cleared. * * @see #writeParcelableList(List, int) * @hide */
public final <T extends Parcelable> List<T> readParcelableList(List<T> list, ClassLoader cl) { final int N = readInt(); if (N == -1) { list.clear(); return list; } final int M = list.size(); int i = 0; for (; i < M && i < N; i++) { list.set(i, (T) readParcelable(cl)); } for (; i<N; i++) { list.add((T) readParcelable(cl)); } for (; i<M; i++) { list.remove(N); } return list; }
Read and return a new array containing a particular object type from the parcel at the current dataPosition(). Returns null if the previously written array was null. The array must have previously been written via writeTypedArray with the same object type.
See Also:
Returns:A newly created array containing objects with the same data as those that were previously written.
/** * Read and return a new array containing a particular object type from * the parcel at the current dataPosition(). Returns null if the * previously written array was null. The array <em>must</em> have * previously been written via {@link #writeTypedArray} with the same * object type. * * @return A newly created array containing objects with the same data * as those that were previously written. * * @see #writeTypedArray */
public final <T> T[] createTypedArray(Parcelable.Creator<T> c) { int N = readInt(); if (N < 0) { return null; } T[] l = c.newArray(N); for (int i=0; i<N; i++) { l[i] = readTypedObject(c); } return l; } public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) { int N = readInt(); if (N == val.length) { for (int i=0; i<N; i++) { val[i] = readTypedObject(c); } } else { throw new RuntimeException("bad array lengths"); } }
Deprecated:
@hide
/** * @deprecated * @hide */
@Deprecated public final <T> T[] readTypedArray(Parcelable.Creator<T> c) { return createTypedArray(c); }
Read and return a typed Parcelable object from a parcel. Returns null if the previous written object was null. The object must have previous been written via writeTypedObject with the same object type.
See Also:
Returns:A newly created object of the type that was previously written.
/** * Read and return a typed Parcelable object from a parcel. * Returns null if the previous written object was null. * The object <em>must</em> have previous been written via * {@link #writeTypedObject} with the same object type. * * @return A newly created object of the type that was previously * written. * * @see #writeTypedObject */
public final <T> T readTypedObject(Parcelable.Creator<T> c) { if (readInt() != 0) { return c.createFromParcel(this); } else { return null; } }
Write a heterogeneous array of Parcelable objects into the Parcel. Each object in the array is written along with its class name, so that the correct class can later be instantiated. As a result, this has significantly more overhead than writeTypedArray, but will correctly handle an array containing more than one type of object.
Params:
See Also:
/** * Write a heterogeneous array of Parcelable objects into the Parcel. * Each object in the array is written along with its class name, so * that the correct class can later be instantiated. As a result, this * has significantly more overhead than {@link #writeTypedArray}, but will * correctly handle an array containing more than one type of object. * * @param value The array of objects to be written. * @param parcelableFlags Contextual flags as per * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}. * * @see #writeTypedArray */
public final <T extends Parcelable> void writeParcelableArray(T[] value, int parcelableFlags) { if (value != null) { int N = value.length; writeInt(N); for (int i=0; i<N; i++) { writeParcelable(value[i], parcelableFlags); } } else { writeInt(-1); } }
Read a typed object from a parcel. The given class loader will be used to load any enclosed Parcelables. If it is null, the default class loader will be used.
/** * Read a typed object from a parcel. The given class loader will be * used to load any enclosed Parcelables. If it is null, the default class * loader will be used. */
public final Object readValue(ClassLoader loader) { int type = readInt(); switch (type) { case VAL_NULL: return null; case VAL_STRING: return readString(); case VAL_INTEGER: return readInt(); case VAL_MAP: return readHashMap(loader); case VAL_PARCELABLE: return readParcelable(loader); case VAL_SHORT: return (short) readInt(); case VAL_LONG: return readLong(); case VAL_FLOAT: return readFloat(); case VAL_DOUBLE: return readDouble(); case VAL_BOOLEAN: return readInt() == 1; case VAL_CHARSEQUENCE: return readCharSequence(); case VAL_LIST: return readArrayList(loader); case VAL_BOOLEANARRAY: return createBooleanArray(); case VAL_BYTEARRAY: return createByteArray(); case VAL_STRINGARRAY: return readStringArray(); case VAL_CHARSEQUENCEARRAY: return readCharSequenceArray(); case VAL_IBINDER: return readStrongBinder(); case VAL_OBJECTARRAY: return readArray(loader); case VAL_INTARRAY: return createIntArray(); case VAL_LONGARRAY: return createLongArray(); case VAL_BYTE: return readByte(); case VAL_SERIALIZABLE: return readSerializable(loader); case VAL_PARCELABLEARRAY: return readParcelableArray(loader); case VAL_SPARSEARRAY: return readSparseArray(loader); case VAL_SPARSEBOOLEANARRAY: return readSparseBooleanArray(); case VAL_BUNDLE: return readBundle(loader); // loading will be deferred case VAL_PERSISTABLEBUNDLE: return readPersistableBundle(loader); case VAL_SIZE: return readSize(); case VAL_SIZEF: return readSizeF(); case VAL_DOUBLEARRAY: return createDoubleArray(); default: int off = dataPosition() - 4; throw new RuntimeException( "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off); } }
Read and return a new Parcelable from the parcel. The given class loader will be used to load any enclosed Parcelables. If it is null, the default class loader will be used.
Params:
  • loader – A ClassLoader from which to instantiate the Parcelable object, or null for the default class loader.
Throws:
  • BadParcelableException – Throws BadParcelableException if there was an error trying to instantiate the Parcelable.
Returns:Returns the newly created Parcelable, or null if a null object has been written.
/** * Read and return a new Parcelable from the parcel. The given class loader * will be used to load any enclosed Parcelables. If it is null, the default * class loader will be used. * @param loader A ClassLoader from which to instantiate the Parcelable * object, or null for the default class loader. * @return Returns the newly created Parcelable, or null if a null * object has been written. * @throws BadParcelableException Throws BadParcelableException if there * was an error trying to instantiate the Parcelable. */
@SuppressWarnings("unchecked") public final <T extends Parcelable> T readParcelable(ClassLoader loader) { Parcelable.Creator<?> creator = readParcelableCreator(loader); if (creator == null) { return null; } if (creator instanceof Parcelable.ClassLoaderCreator<?>) { Parcelable.ClassLoaderCreator<?> classLoaderCreator = (Parcelable.ClassLoaderCreator<?>) creator; return (T) classLoaderCreator.createFromParcel(this, loader); } return (T) creator.createFromParcel(this); }
@hide
/** @hide */
@SuppressWarnings("unchecked") public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator, ClassLoader loader) { if (creator instanceof Parcelable.ClassLoaderCreator<?>) { Parcelable.ClassLoaderCreator<?> classLoaderCreator = (Parcelable.ClassLoaderCreator<?>) creator; return (T) classLoaderCreator.createFromParcel(this, loader); } return (T) creator.createFromParcel(this); }
@hide
/** @hide */
public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) { String name = readString(); if (name == null) { return null; } Parcelable.Creator<?> creator; synchronized (mCreators) { HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader); if (map == null) { map = new HashMap<>(); mCreators.put(loader, map); } creator = map.get(name); if (creator == null) { try { // If loader == null, explicitly emulate Class.forName(String) "caller // classloader" behavior. ClassLoader parcelableClassLoader = (loader == null ? getClass().getClassLoader() : loader); // Avoid initializing the Parcelable class until we know it implements // Parcelable and has the necessary CREATOR field. http://b/1171613. Class<?> parcelableClass = Class.forName(name, false /* initialize */, parcelableClassLoader); if (!Parcelable.class.isAssignableFrom(parcelableClass)) { throw new BadParcelableException("Parcelable protocol requires subclassing " + "from Parcelable on class " + name); } Field f = parcelableClass.getField("CREATOR"); if ((f.getModifiers() & Modifier.STATIC) == 0) { throw new BadParcelableException("Parcelable protocol requires " + "the CREATOR object to be static on class " + name); } Class<?> creatorType = f.getType(); if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) { // Fail before calling Field.get(), not after, to avoid initializing // parcelableClass unnecessarily. throw new BadParcelableException("Parcelable protocol requires a " + "Parcelable.Creator object called " + "CREATOR on class " + name); } creator = (Parcelable.Creator<?>) f.get(null); } catch (IllegalAccessException e) { Log.e(TAG, "Illegal access when unmarshalling: " + name, e); throw new BadParcelableException( "IllegalAccessException when unmarshalling: " + name); } catch (ClassNotFoundException e) { Log.e(TAG, "Class not found when unmarshalling: " + name, e); throw new BadParcelableException( "ClassNotFoundException when unmarshalling: " + name); } catch (NoSuchFieldException e) { throw new BadParcelableException("Parcelable protocol requires a " + "Parcelable.Creator object called " + "CREATOR on class " + name); } if (creator == null) { throw new BadParcelableException("Parcelable protocol requires a " + "non-null Parcelable.Creator object called " + "CREATOR on class " + name); } map.put(name, creator); } } return creator; }
Read and return a new Parcelable array from the parcel. The given class loader will be used to load any enclosed Parcelables.
Returns:the Parcelable array, or null if the array is null
/** * Read and return a new Parcelable array from the parcel. * The given class loader will be used to load any enclosed * Parcelables. * @return the Parcelable array, or null if the array is null */
public final Parcelable[] readParcelableArray(ClassLoader loader) { int N = readInt(); if (N < 0) { return null; } Parcelable[] p = new Parcelable[N]; for (int i = 0; i < N; i++) { p[i] = readParcelable(loader); } return p; }
@hide
/** @hide */
public final <T extends Parcelable> T[] readParcelableArray(ClassLoader loader, Class<T> clazz) { int N = readInt(); if (N < 0) { return null; } T[] p = (T[]) Array.newInstance(clazz, N); for (int i = 0; i < N; i++) { p[i] = readParcelable(loader); } return p; }
Read and return a new Serializable object from the parcel.
Returns:the Serializable object, or null if the Serializable name wasn't found in the parcel.
/** * Read and return a new Serializable object from the parcel. * @return the Serializable object, or null if the Serializable name * wasn't found in the parcel. */
public final Serializable readSerializable() { return readSerializable(null); } private final Serializable readSerializable(final ClassLoader loader) { String name = readString(); if (name == null) { // For some reason we were unable to read the name of the Serializable (either there // is nothing left in the Parcel to read, or the next value wasn't a String), so // return null, which indicates that the name wasn't found in the parcel. return null; } byte[] serializedData = createByteArray(); ByteArrayInputStream bais = new ByteArrayInputStream(serializedData); try { ObjectInputStream ois = new ObjectInputStream(bais) { @Override protected Class<?> resolveClass(ObjectStreamClass osClass) throws IOException, ClassNotFoundException { // try the custom classloader if provided if (loader != null) { Class<?> c = Class.forName(osClass.getName(), false, loader); if (c != null) { return c; } } return super.resolveClass(osClass); } }; return (Serializable) ois.readObject(); } catch (IOException ioe) { throw new RuntimeException("Parcelable encountered " + "IOException reading a Serializable object (name = " + name + ")", ioe); } catch (ClassNotFoundException cnfe) { throw new RuntimeException("Parcelable encountered " + "ClassNotFoundException reading a Serializable object (name = " + name + ")", cnfe); } } // Cache of previously looked up CREATOR.createFromParcel() methods for // particular classes. Keys are the names of the classes, values are // Method objects. private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>> mCreators = new HashMap<>();
@hidefor internal use only.
/** @hide for internal use only. */
static protected final Parcel obtain(int obj) { throw new UnsupportedOperationException(); }
@hide
/** @hide */
static protected final Parcel obtain(long obj) { final Parcel[] pool = sHolderPool; synchronized (pool) { Parcel p; for (int i=0; i<POOL_SIZE; i++) { p = pool[i]; if (p != null) { pool[i] = null; if (DEBUG_RECYCLE) { p.mStack = new RuntimeException(); } p.init(obj); return p; } } } return new Parcel(obj); } private Parcel(long nativePtr) { if (DEBUG_RECYCLE) { mStack = new RuntimeException(); } //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack); init(nativePtr); } private void init(long nativePtr) { if (nativePtr != 0) { mNativePtr = nativePtr; mOwnsNativeParcelObject = false; } else { mNativePtr = nativeCreate(); mOwnsNativeParcelObject = true; } } private void freeBuffer() { if (mOwnsNativeParcelObject) { updateNativeSize(nativeFreeBuffer(mNativePtr)); } mReadWriteHelper = ReadWriteHelper.DEFAULT; } private void destroy() { if (mNativePtr != 0) { if (mOwnsNativeParcelObject) { nativeDestroy(mNativePtr); updateNativeSize(0); } mNativePtr = 0; } mReadWriteHelper = null; } @Override protected void finalize() throws Throwable { if (DEBUG_RECYCLE) { if (mStack != null) { Log.w(TAG, "Client did not call Parcel.recycle()", mStack); } } destroy(); } /* package */ void readMapInternal(Map outVal, int N, ClassLoader loader) { while (N > 0) { Object key = readValue(loader); Object value = readValue(loader); outVal.put(key, value); N--; } } /* package */ void readArrayMapInternal(ArrayMap outVal, int N, ClassLoader loader) { if (DEBUG_ARRAY_MAP) { RuntimeException here = new RuntimeException("here"); here.fillInStackTrace(); Log.d(TAG, "Reading " + N + " ArrayMap entries", here); } int startPos; while (N > 0) { if (DEBUG_ARRAY_MAP) startPos = dataPosition(); String key = readString(); Object value = readValue(loader); if (DEBUG_ARRAY_MAP) Log.d(TAG, " Read #" + (N-1) + " " + (dataPosition()-startPos) + " bytes: key=0x" + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key); outVal.append(key, value); N--; } outVal.validate(); } /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N, ClassLoader loader) { if (DEBUG_ARRAY_MAP) { RuntimeException here = new RuntimeException("here"); here.fillInStackTrace(); Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here); } while (N > 0) { String key = readString(); if (DEBUG_ARRAY_MAP) Log.d(TAG, " Read safe #" + (N-1) + ": key=0x" + (key != null ? key.hashCode() : 0) + " " + key); Object value = readValue(loader); outVal.put(key, value); N--; } }
@hideFor testing only.
/** * @hide For testing only. */
public void readArrayMap(ArrayMap outVal, ClassLoader loader) { final int N = readInt(); if (N < 0) { return; } readArrayMapInternal(outVal, N, loader); }
Reads an array set.
Params:
  • loader – The class loader to use.
@hide
/** * Reads an array set. * * @param loader The class loader to use. * * @hide */
public @Nullable ArraySet<? extends Object> readArraySet(ClassLoader loader) { final int size = readInt(); if (size < 0) { return null; } ArraySet<Object> result = new ArraySet<>(size); for (int i = 0; i < size; i++) { Object value = readValue(loader); result.append(value); } return result; } private void readListInternal(List outVal, int N, ClassLoader loader) { while (N > 0) { Object value = readValue(loader); //Log.d(TAG, "Unmarshalling value=" + value); outVal.add(value); N--; } } private void readArrayInternal(Object[] outVal, int N, ClassLoader loader) { for (int i = 0; i < N; i++) { Object value = readValue(loader); //Log.d(TAG, "Unmarshalling value=" + value); outVal[i] = value; } } private void readSparseArrayInternal(SparseArray outVal, int N, ClassLoader loader) { while (N > 0) { int key = readInt(); Object value = readValue(loader); //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value); outVal.append(key, value); N--; } } private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) { while (N > 0) { int key = readInt(); boolean value = this.readByte() == 1; //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value); outVal.append(key, value); N--; } } private void readSparseIntArrayInternal(SparseIntArray outVal, int N) { while (N > 0) { int key = readInt(); int value = readInt(); outVal.append(key, value); N--; } }
@hideFor testing
/** * @hide For testing */
public long getBlobAshmemSize() { return nativeGetBlobAshmemSize(mNativePtr); } }