/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.util;

import libcore.util.EmptyArray;

import java.lang.reflect.Array;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

ArraySet is a generic set data structure that is designed to be more memory efficient than a traditional HashSet. The design is very similar to ArrayMap, with all of the caveats described there. This implementation is separate from ArrayMap, however, so the Object array contains only one item for each entry in the set (instead of a pair for a mapping).

Note that this implementation is not intended to be appropriate for data structures that may contain large numbers of items. It is generally slower than a traditional HashSet, since lookups require a binary search and adds and removes require inserting and deleting entries in the array. For containers holding up to hundreds of items, the performance difference is not significant, less than 50%.

Because this container is intended to better balance memory use, unlike most other standard Java containers it will shrink its array as items are removed from it. Currently you have no control over this shrinking -- if you set a capacity and then remove an item, it may reduce the capacity to better match the current size. In the future an explicit call to set the capacity should turn off this aggressive shrinking behavior.

/** * ArraySet is a generic set data structure that is designed to be more memory efficient than a * traditional {@link java.util.HashSet}. The design is very similar to * {@link ArrayMap}, with all of the caveats described there. This implementation is * separate from ArrayMap, however, so the Object array contains only one item for each * entry in the set (instead of a pair for a mapping). * * <p>Note that this implementation is not intended to be appropriate for data structures * that may contain large numbers of items. It is generally slower than a traditional * HashSet, since lookups require a binary search and adds and removes require inserting * and deleting entries in the array. For containers holding up to hundreds of items, * the performance difference is not significant, less than 50%.</p> * * <p>Because this container is intended to better balance memory use, unlike most other * standard Java containers it will shrink its array as items are removed from it. Currently * you have no control over this shrinking -- if you set a capacity and then remove an * item, it may reduce the capacity to better match the current size. In the future an * explicit call to set the capacity should turn off this aggressive shrinking behavior.</p> */
public final class ArraySet<E> implements Collection<E>, Set<E> { private static final boolean DEBUG = false; private static final String TAG = "ArraySet";
The minimum amount by which the capacity of a ArraySet will increase. This is tuned to be relatively space-efficient.
/** * The minimum amount by which the capacity of a ArraySet will increase. * This is tuned to be relatively space-efficient. */
private static final int BASE_SIZE = 4;
Maximum number of entries to have in array caches.
/** * Maximum number of entries to have in array caches. */
private static final int CACHE_SIZE = 10;
Caches of small array objects to avoid spamming garbage. The cache Object[] variable is a pointer to a linked list of array objects. The first entry in the array is a pointer to the next array in the list; the second entry is a pointer to the int[] hash code array for it.
/** * Caches of small array objects to avoid spamming garbage. The cache * Object[] variable is a pointer to a linked list of array objects. * The first entry in the array is a pointer to the next array in the * list; the second entry is a pointer to the int[] hash code array for it. */
static Object[] sBaseCache; static int sBaseCacheSize; static Object[] sTwiceBaseCache; static int sTwiceBaseCacheSize; final boolean mIdentityHashCode; int[] mHashes; Object[] mArray; int mSize; MapCollections<E, E> mCollections; private int indexOf(Object key, int hash) { final int N = mSize; // Important fast case: if nothing is in here, nothing to look for. if (N == 0) { return ~0; } int index = ContainerHelpers.binarySearch(mHashes, N, hash); // If the hash code wasn't found, then we have no entry for this key. if (index < 0) { return index; } // If the key at the returned index matches, that's what we want. if (key.equals(mArray[index])) { return index; } // Search for a matching key after the index. int end; for (end = index + 1; end < N && mHashes[end] == hash; end++) { if (key.equals(mArray[end])) return end; } // Search for a matching key before the index. for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) { if (key.equals(mArray[i])) return i; } // Key not found -- return negative value indicating where a // new entry for this key should go. We use the end of the // hash chain to reduce the number of array entries that will // need to be copied when inserting. return ~end; } private int indexOfNull() { final int N = mSize; // Important fast case: if nothing is in here, nothing to look for. if (N == 0) { return ~0; } int index = ContainerHelpers.binarySearch(mHashes, N, 0); // If the hash code wasn't found, then we have no entry for this key. if (index < 0) { return index; } // If the key at the returned index matches, that's what we want. if (null == mArray[index]) { return index; } // Search for a matching key after the index. int end; for (end = index + 1; end < N && mHashes[end] == 0; end++) { if (null == mArray[end]) return end; } // Search for a matching key before the index. for (int i = index - 1; i >= 0 && mHashes[i] == 0; i--) { if (null == mArray[i]) return i; } // Key not found -- return negative value indicating where a // new entry for this key should go. We use the end of the // hash chain to reduce the number of array entries that will // need to be copied when inserting. return ~end; } private void allocArrays(final int size) { if (size == (BASE_SIZE * 2)) { synchronized (ArraySet.class) { if (sTwiceBaseCache != null) { final Object[] array = sTwiceBaseCache; try { mArray = array; sTwiceBaseCache = (Object[]) array[0]; mHashes = (int[]) array[1]; array[0] = array[1] = null; sTwiceBaseCacheSize--; if (DEBUG) { Log.d(TAG, "Retrieving 2x cache " + mHashes + " now have " + sTwiceBaseCacheSize + " entries"); } return; } catch (ClassCastException e) { } // Whoops! Someone trampled the array (probably due to not protecting // their access with a lock). Our cache is corrupt; report and give up. Slog.wtf(TAG, "Found corrupt ArraySet cache: [0]=" + array[0] + " [1]=" + array[1]); sTwiceBaseCache = null; sTwiceBaseCacheSize = 0; } } } else if (size == BASE_SIZE) { synchronized (ArraySet.class) { if (sBaseCache != null) { final Object[] array = sBaseCache; try { mArray = array; sBaseCache = (Object[]) array[0]; mHashes = (int[]) array[1]; array[0] = array[1] = null; sBaseCacheSize--; if (DEBUG) { Log.d(TAG, "Retrieving 1x cache " + mHashes + " now have " + sBaseCacheSize + " entries"); } return; } catch (ClassCastException e) { } // Whoops! Someone trampled the array (probably due to not protecting // their access with a lock). Our cache is corrupt; report and give up. Slog.wtf(TAG, "Found corrupt ArraySet cache: [0]=" + array[0] + " [1]=" + array[1]); sBaseCache = null; sBaseCacheSize = 0; } } } mHashes = new int[size]; mArray = new Object[size]; } private static void freeArrays(final int[] hashes, final Object[] array, final int size) { if (hashes.length == (BASE_SIZE * 2)) { synchronized (ArraySet.class) { if (sTwiceBaseCacheSize < CACHE_SIZE) { array[0] = sTwiceBaseCache; array[1] = hashes; for (int i = size - 1; i >= 2; i--) { array[i] = null; } sTwiceBaseCache = array; sTwiceBaseCacheSize++; if (DEBUG) { Log.d(TAG, "Storing 2x cache " + array + " now have " + sTwiceBaseCacheSize + " entries"); } } } } else if (hashes.length == BASE_SIZE) { synchronized (ArraySet.class) { if (sBaseCacheSize < CACHE_SIZE) { array[0] = sBaseCache; array[1] = hashes; for (int i = size - 1; i >= 2; i--) { array[i] = null; } sBaseCache = array; sBaseCacheSize++; if (DEBUG) { Log.d(TAG, "Storing 1x cache " + array + " now have " + sBaseCacheSize + " entries"); } } } } }
Create a new empty ArraySet. The default capacity of an array map is 0, and will grow once items are added to it.
/** * Create a new empty ArraySet. The default capacity of an array map is 0, and * will grow once items are added to it. */
public ArraySet() { this(0, false); }
Create a new ArraySet with a given initial capacity.
/** * Create a new ArraySet with a given initial capacity. */
public ArraySet(int capacity) { this(capacity, false); }
{@hide}
/** {@hide} */
public ArraySet(int capacity, boolean identityHashCode) { mIdentityHashCode = identityHashCode; if (capacity == 0) { mHashes = EmptyArray.INT; mArray = EmptyArray.OBJECT; } else { allocArrays(capacity); } mSize = 0; }
Create a new ArraySet with the mappings from the given ArraySet.
/** * Create a new ArraySet with the mappings from the given ArraySet. */
public ArraySet(ArraySet<E> set) { this(); if (set != null) { addAll(set); } }
{@hide}
/** {@hide} */
public ArraySet(Collection<E> set) { this(); if (set != null) { addAll(set); } }
Make the array map empty. All storage is released.
/** * Make the array map empty. All storage is released. */
@Override public void clear() { if (mSize != 0) { freeArrays(mHashes, mArray, mSize); mHashes = EmptyArray.INT; mArray = EmptyArray.OBJECT; mSize = 0; } }
Ensure the array map can hold at least minimumCapacity items.
/** * Ensure the array map can hold at least <var>minimumCapacity</var> * items. */
public void ensureCapacity(int minimumCapacity) { if (mHashes.length < minimumCapacity) { final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(minimumCapacity); if (mSize > 0) { System.arraycopy(ohashes, 0, mHashes, 0, mSize); System.arraycopy(oarray, 0, mArray, 0, mSize); } freeArrays(ohashes, oarray, mSize); } }
Check whether a value exists in the set.
Params:
  • key – The value to search for.
Returns:Returns true if the value exists, else false.
/** * Check whether a value exists in the set. * * @param key The value to search for. * @return Returns true if the value exists, else false. */
@Override public boolean contains(Object key) { return indexOf(key) >= 0; }
Returns the index of a value in the set.
Params:
  • key – The value to search for.
Returns:Returns the index of the value if it exists, else a negative integer.
/** * Returns the index of a value in the set. * * @param key The value to search for. * @return Returns the index of the value if it exists, else a negative integer. */
public int indexOf(Object key) { return key == null ? indexOfNull() : indexOf(key, mIdentityHashCode ? System.identityHashCode(key) : key.hashCode()); }
Return the value at the given index in the array.
Params:
  • index – The desired index, must be between 0 and size()-1.
Returns:Returns the value stored at the given index.
/** * Return the value at the given index in the array. * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the value stored at the given index. */
public E valueAt(int index) { return (E) mArray[index]; }
Return true if the array map contains no items.
/** * Return true if the array map contains no items. */
@Override public boolean isEmpty() { return mSize <= 0; }
Adds the specified object to this set. The set is not modified if it already contains the object.
Params:
  • value – the object to add.
Throws:
Returns:true if this set is modified, false otherwise.
/** * Adds the specified object to this set. The set is not modified if it * already contains the object. * * @param value the object to add. * @return {@code true} if this set is modified, {@code false} otherwise. * @throws ClassCastException * when the class of the object is inappropriate for this set. */
@Override public boolean add(E value) { final int hash; int index; if (value == null) { hash = 0; index = indexOfNull(); } else { hash = mIdentityHashCode ? System.identityHashCode(value) : value.hashCode(); index = indexOf(value, hash); } if (index >= 0) { return false; } index = ~index; if (mSize >= mHashes.length) { final int n = mSize >= (BASE_SIZE * 2) ? (mSize + (mSize >> 1)) : (mSize >= BASE_SIZE ? (BASE_SIZE * 2) : BASE_SIZE); if (DEBUG) Log.d(TAG, "add: grow from " + mHashes.length + " to " + n); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); if (mHashes.length > 0) { if (DEBUG) Log.d(TAG, "add: copy 0-" + mSize + " to 0"); System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length); System.arraycopy(oarray, 0, mArray, 0, oarray.length); } freeArrays(ohashes, oarray, mSize); } if (index < mSize) { if (DEBUG) { Log.d(TAG, "add: move " + index + "-" + (mSize - index) + " to " + (index + 1)); } System.arraycopy(mHashes, index, mHashes, index + 1, mSize - index); System.arraycopy(mArray, index, mArray, index + 1, mSize - index); } mHashes[index] = hash; mArray[index] = value; mSize++; return true; }
Special fast path for appending items to the end of the array without validation. The array must already be large enough to contain the item.
@hide
/** * Special fast path for appending items to the end of the array without validation. * The array must already be large enough to contain the item. * @hide */
public void append(E value) { final int index = mSize; final int hash = value == null ? 0 : (mIdentityHashCode ? System.identityHashCode(value) : value.hashCode()); if (index >= mHashes.length) { throw new IllegalStateException("Array is full"); } if (index > 0 && mHashes[index - 1] > hash) { // Cannot optimize since it would break the sorted order - fallback to add() if (DEBUG) { RuntimeException e = new RuntimeException("here"); e.fillInStackTrace(); Log.w(TAG, "New hash " + hash + " is before end of array hash " + mHashes[index - 1] + " at index " + index, e); } add(value); return; } mSize = index + 1; mHashes[index] = hash; mArray[index] = value; }
Perform a add(Object) of all values in array
Params:
  • array – The array whose contents are to be retrieved.
/** * Perform a {@link #add(Object)} of all values in <var>array</var> * @param array The array whose contents are to be retrieved. */
public void addAll(ArraySet<? extends E> array) { final int N = array.mSize; ensureCapacity(mSize + N); if (mSize == 0) { if (N > 0) { System.arraycopy(array.mHashes, 0, mHashes, 0, N); System.arraycopy(array.mArray, 0, mArray, 0, N); mSize = N; } } else { for (int i = 0; i < N; i++) { add(array.valueAt(i)); } } }
Removes the specified object from this set.
Params:
  • object – the object to remove.
Returns:true if this set was modified, false otherwise.
/** * Removes the specified object from this set. * * @param object the object to remove. * @return {@code true} if this set was modified, {@code false} otherwise. */
@Override public boolean remove(Object object) { final int index = indexOf(object); if (index >= 0) { removeAt(index); return true; } return false; }
Remove the key/value mapping at the given index.
Params:
  • index – The desired index, must be between 0 and size()-1.
Returns:Returns the value that was stored at this index.
/** * Remove the key/value mapping at the given index. * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the value that was stored at this index. */
public E removeAt(int index) { final Object old = mArray[index]; if (mSize <= 1) { // Now empty. if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0"); freeArrays(mHashes, mArray, mSize); mHashes = EmptyArray.INT; mArray = EmptyArray.OBJECT; mSize = 0; } else { if (mHashes.length > (BASE_SIZE * 2) && mSize < mHashes.length / 3) { // Shrunk enough to reduce size of arrays. We don't allow it to // shrink smaller than (BASE_SIZE*2) to avoid flapping between // that and BASE_SIZE. final int n = mSize > (BASE_SIZE * 2) ? (mSize + (mSize >> 1)) : (BASE_SIZE * 2); if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); mSize--; if (index > 0) { if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0"); System.arraycopy(ohashes, 0, mHashes, 0, index); System.arraycopy(oarray, 0, mArray, 0, index); } if (index < mSize) { if (DEBUG) { Log.d(TAG, "remove: copy from " + (index + 1) + "-" + mSize + " to " + index); } System.arraycopy(ohashes, index + 1, mHashes, index, mSize - index); System.arraycopy(oarray, index + 1, mArray, index, mSize - index); } } else { mSize--; if (index < mSize) { if (DEBUG) { Log.d(TAG, "remove: move " + (index + 1) + "-" + mSize + " to " + index); } System.arraycopy(mHashes, index + 1, mHashes, index, mSize - index); System.arraycopy(mArray, index + 1, mArray, index, mSize - index); } mArray[mSize] = null; } } return (E) old; }
Perform a remove(Object) of all values in array
Params:
  • array – The array whose contents are to be removed.
/** * Perform a {@link #remove(Object)} of all values in <var>array</var> * @param array The array whose contents are to be removed. */
public boolean removeAll(ArraySet<? extends E> array) { // TODO: If array is sufficiently large, a marking approach might be beneficial. In a first // pass, use the property that the sets are sorted by hash to make this linear passes // (except for hash collisions, which means worst case still n*m), then do one // collection pass into a new array. This avoids binary searches and excessive memcpy. final int N = array.mSize; // Note: ArraySet does not make thread-safety guarantees. So instead of OR-ing together all // the single results, compare size before and after. final int originalSize = mSize; for (int i = 0; i < N; i++) { remove(array.valueAt(i)); } return originalSize != mSize; }
Return the number of items in this array map.
/** * Return the number of items in this array map. */
@Override public int size() { return mSize; } @Override public Object[] toArray() { Object[] result = new Object[mSize]; System.arraycopy(mArray, 0, result, 0, mSize); return result; } @Override public <T> T[] toArray(T[] array) { if (array.length < mSize) { @SuppressWarnings("unchecked") T[] newArray = (T[]) Array.newInstance(array.getClass().getComponentType(), mSize); array = newArray; } System.arraycopy(mArray, 0, array, 0, mSize); if (array.length > mSize) { array[mSize] = null; } return array; }
{@inheritDoc}

This implementation returns false if the object is not a set, or if the sets have different sizes. Otherwise, for each value in this set, it checks to make sure the value also exists in the other set. If any value doesn't exist, the method returns false; otherwise, it returns true.

/** * {@inheritDoc} * * <p>This implementation returns false if the object is not a set, or * if the sets have different sizes. Otherwise, for each value in this * set, it checks to make sure the value also exists in the other set. * If any value doesn't exist, the method returns false; otherwise, it * returns true. */
@Override public boolean equals(Object object) { if (this == object) { return true; } if (object instanceof Set) { Set<?> set = (Set<?>) object; if (size() != set.size()) { return false; } try { for (int i = 0; i < mSize; i++) { E mine = valueAt(i); if (!set.contains(mine)) { return false; } } } catch (NullPointerException ignored) { return false; } catch (ClassCastException ignored) { return false; } return true; } return false; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int hashCode() { final int[] hashes = mHashes; int result = 0; for (int i = 0, s = mSize; i < s; i++) { result += hashes[i]; } return result; }
{@inheritDoc}

This implementation composes a string by iterating over its values. If this set contains itself as a value, the string "(this Set)" will appear in its place.

/** * {@inheritDoc} * * <p>This implementation composes a string by iterating over its values. If * this set contains itself as a value, the string "(this Set)" * will appear in its place. */
@Override public String toString() { if (isEmpty()) { return "{}"; } StringBuilder buffer = new StringBuilder(mSize * 14); buffer.append('{'); for (int i = 0; i < mSize; i++) { if (i > 0) { buffer.append(", "); } Object value = valueAt(i); if (value != this) { buffer.append(value); } else { buffer.append("(this Set)"); } } buffer.append('}'); return buffer.toString(); } // ------------------------------------------------------------------------ // Interop with traditional Java containers. Not as efficient as using // specialized collection APIs. // ------------------------------------------------------------------------ private MapCollections<E, E> getCollection() { if (mCollections == null) { mCollections = new MapCollections<E, E>() { @Override protected int colGetSize() { return mSize; } @Override protected Object colGetEntry(int index, int offset) { return mArray[index]; } @Override protected int colIndexOfKey(Object key) { return indexOf(key); } @Override protected int colIndexOfValue(Object value) { return indexOf(value); } @Override protected Map<E, E> colGetMap() { throw new UnsupportedOperationException("not a map"); } @Override protected void colPut(E key, E value) { add(key); } @Override protected E colSetValue(int index, E value) { throw new UnsupportedOperationException("not a map"); } @Override protected void colRemoveAt(int index) { removeAt(index); } @Override protected void colClear() { clear(); } }; } return mCollections; }
Return an Iterator over all values in the set.

Note: this is a fairly inefficient way to access the array contents, it requires generating a number of temporary objects and allocates additional state information associated with the container that will remain for the life of the container.

/** * Return an {@link java.util.Iterator} over all values in the set. * * <p><b>Note:</b> this is a fairly inefficient way to access the array contents, it * requires generating a number of temporary objects and allocates additional state * information associated with the container that will remain for the life of the container.</p> */
@Override public Iterator<E> iterator() { return getCollection().getKeySet().iterator(); }
Determine if the array set contains all of the values in the given collection.
Params:
  • collection – The collection whose contents are to be checked against.
Returns:Returns true if this array set contains a value for every entry in collection, else returns false.
/** * Determine if the array set contains all of the values in the given collection. * @param collection The collection whose contents are to be checked against. * @return Returns true if this array set contains a value for every entry * in <var>collection</var>, else returns false. */
@Override public boolean containsAll(Collection<?> collection) { Iterator<?> it = collection.iterator(); while (it.hasNext()) { if (!contains(it.next())) { return false; } } return true; }
Perform an add(Object) of all values in collection
Params:
  • collection – The collection whose contents are to be retrieved.
/** * Perform an {@link #add(Object)} of all values in <var>collection</var> * @param collection The collection whose contents are to be retrieved. */
@Override public boolean addAll(Collection<? extends E> collection) { ensureCapacity(mSize + collection.size()); boolean added = false; for (E value : collection) { added |= add(value); } return added; }
Remove all values in the array set that exist in the given collection.
Params:
  • collection – The collection whose contents are to be used to remove values.
Returns:Returns true if any values were removed from the array set, else false.
/** * Remove all values in the array set that exist in the given collection. * @param collection The collection whose contents are to be used to remove values. * @return Returns true if any values were removed from the array set, else false. */
@Override public boolean removeAll(Collection<?> collection) { boolean removed = false; for (Object value : collection) { removed |= remove(value); } return removed; }
Remove all values in the array set that do not exist in the given collection.
Params:
  • collection – The collection whose contents are to be used to determine which values to keep.
Returns:Returns true if any values were removed from the array set, else false.
/** * Remove all values in the array set that do <b>not</b> exist in the given collection. * @param collection The collection whose contents are to be used to determine which * values to keep. * @return Returns true if any values were removed from the array set, else false. */
@Override public boolean retainAll(Collection<?> collection) { boolean removed = false; for (int i = mSize - 1; i >= 0; i--) { if (!collection.contains(mArray[i])) { removeAt(i); removed = true; } } return removed; } }