/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.util;

import libcore.util.EmptyArray;

import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Map;
import java.util.Set;

ArrayMap is a generic key->value mapping data structure that is designed to be more memory efficient than a traditional HashMap. It keeps its mappings in an array data structure -- an integer array of hash codes for each item, and an Object array of the key/value pairs. This allows it to avoid having to create an extra object for every entry put in to the map, and it also tries to control the growth of the size of these arrays more aggressively (since growing them only requires copying the entries in the array, not rebuilding a hash map).

Note that this implementation is not intended to be appropriate for data structures that may contain large numbers of items. It is generally slower than a traditional HashMap, since lookups require a binary search and adds and removes require inserting and deleting entries in the array. For containers holding up to hundreds of items, the performance difference is not significant, less than 50%.

Because this container is intended to better balance memory use, unlike most other standard Java containers it will shrink its array as items are removed from it. Currently you have no control over this shrinking -- if you set a capacity and then remove an item, it may reduce the capacity to better match the current size. In the future an explicit call to set the capacity should turn off this aggressive shrinking behavior.

/** * ArrayMap is a generic key->value mapping data structure that is * designed to be more memory efficient than a traditional {@link java.util.HashMap}. * It keeps its mappings in an array data structure -- an integer array of hash * codes for each item, and an Object array of the key/value pairs. This allows it to * avoid having to create an extra object for every entry put in to the map, and it * also tries to control the growth of the size of these arrays more aggressively * (since growing them only requires copying the entries in the array, not rebuilding * a hash map). * * <p>Note that this implementation is not intended to be appropriate for data structures * that may contain large numbers of items. It is generally slower than a traditional * HashMap, since lookups require a binary search and adds and removes require inserting * and deleting entries in the array. For containers holding up to hundreds of items, * the performance difference is not significant, less than 50%.</p> * * <p>Because this container is intended to better balance memory use, unlike most other * standard Java containers it will shrink its array as items are removed from it. Currently * you have no control over this shrinking -- if you set a capacity and then remove an * item, it may reduce the capacity to better match the current size. In the future an * explicit call to set the capacity should turn off this aggressive shrinking behavior.</p> */
public final class ArrayMap<K, V> implements Map<K, V> { private static final boolean DEBUG = false; private static final String TAG = "ArrayMap";
Attempt to spot concurrent modifications to this data structure. It's best-effort, but any time we can throw something more diagnostic than an ArrayIndexOutOfBoundsException deep in the ArrayMap internals it's going to save a lot of development time. Good times to look for CME include after any allocArrays() call and at the end of functions that change mSize (put/remove/clear).
/** * Attempt to spot concurrent modifications to this data structure. * * It's best-effort, but any time we can throw something more diagnostic than an * ArrayIndexOutOfBoundsException deep in the ArrayMap internals it's going to * save a lot of development time. * * Good times to look for CME include after any allocArrays() call and at the end of * functions that change mSize (put/remove/clear). */
private static final boolean CONCURRENT_MODIFICATION_EXCEPTIONS = true;
The minimum amount by which the capacity of a ArrayMap will increase. This is tuned to be relatively space-efficient.
/** * The minimum amount by which the capacity of a ArrayMap will increase. * This is tuned to be relatively space-efficient. */
private static final int BASE_SIZE = 4;
Maximum number of entries to have in array caches.
/** * Maximum number of entries to have in array caches. */
private static final int CACHE_SIZE = 10;
Special hash array value that indicates the container is immutable.
/** * Special hash array value that indicates the container is immutable. */
static final int[] EMPTY_IMMUTABLE_INTS = new int[0];
@hideSpecial immutable empty ArrayMap.
/** * @hide Special immutable empty ArrayMap. */
public static final ArrayMap EMPTY = new ArrayMap<>(-1);
Caches of small array objects to avoid spamming garbage. The cache Object[] variable is a pointer to a linked list of array objects. The first entry in the array is a pointer to the next array in the list; the second entry is a pointer to the int[] hash code array for it.
/** * Caches of small array objects to avoid spamming garbage. The cache * Object[] variable is a pointer to a linked list of array objects. * The first entry in the array is a pointer to the next array in the * list; the second entry is a pointer to the int[] hash code array for it. */
static Object[] mBaseCache; static int mBaseCacheSize; static Object[] mTwiceBaseCache; static int mTwiceBaseCacheSize; final boolean mIdentityHashCode; int[] mHashes; Object[] mArray; int mSize; MapCollections<K, V> mCollections; private static int binarySearchHashes(int[] hashes, int N, int hash) { try { return ContainerHelpers.binarySearch(hashes, N, hash); } catch (ArrayIndexOutOfBoundsException e) { if (CONCURRENT_MODIFICATION_EXCEPTIONS) { throw new ConcurrentModificationException(); } else { throw e; // the cache is poisoned at this point, there's not much we can do } } } int indexOf(Object key, int hash) { final int N = mSize; // Important fast case: if nothing is in here, nothing to look for. if (N == 0) { return ~0; } int index = binarySearchHashes(mHashes, N, hash); // If the hash code wasn't found, then we have no entry for this key. if (index < 0) { return index; } // If the key at the returned index matches, that's what we want. if (key.equals(mArray[index<<1])) { return index; } // Search for a matching key after the index. int end; for (end = index + 1; end < N && mHashes[end] == hash; end++) { if (key.equals(mArray[end << 1])) return end; } // Search for a matching key before the index. for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) { if (key.equals(mArray[i << 1])) return i; } // Key not found -- return negative value indicating where a // new entry for this key should go. We use the end of the // hash chain to reduce the number of array entries that will // need to be copied when inserting. return ~end; } int indexOfNull() { final int N = mSize; // Important fast case: if nothing is in here, nothing to look for. if (N == 0) { return ~0; } int index = binarySearchHashes(mHashes, N, 0); // If the hash code wasn't found, then we have no entry for this key. if (index < 0) { return index; } // If the key at the returned index matches, that's what we want. if (null == mArray[index<<1]) { return index; } // Search for a matching key after the index. int end; for (end = index + 1; end < N && mHashes[end] == 0; end++) { if (null == mArray[end << 1]) return end; } // Search for a matching key before the index. for (int i = index - 1; i >= 0 && mHashes[i] == 0; i--) { if (null == mArray[i << 1]) return i; } // Key not found -- return negative value indicating where a // new entry for this key should go. We use the end of the // hash chain to reduce the number of array entries that will // need to be copied when inserting. return ~end; } private void allocArrays(final int size) { if (mHashes == EMPTY_IMMUTABLE_INTS) { throw new UnsupportedOperationException("ArrayMap is immutable"); } if (size == (BASE_SIZE*2)) { synchronized (ArrayMap.class) { if (mTwiceBaseCache != null) { final Object[] array = mTwiceBaseCache; mArray = array; mTwiceBaseCache = (Object[])array[0]; mHashes = (int[])array[1]; array[0] = array[1] = null; mTwiceBaseCacheSize--; if (DEBUG) Log.d(TAG, "Retrieving 2x cache " + mHashes + " now have " + mTwiceBaseCacheSize + " entries"); return; } } } else if (size == BASE_SIZE) { synchronized (ArrayMap.class) { if (mBaseCache != null) { final Object[] array = mBaseCache; mArray = array; mBaseCache = (Object[])array[0]; mHashes = (int[])array[1]; array[0] = array[1] = null; mBaseCacheSize--; if (DEBUG) Log.d(TAG, "Retrieving 1x cache " + mHashes + " now have " + mBaseCacheSize + " entries"); return; } } } mHashes = new int[size]; mArray = new Object[size<<1]; } private static void freeArrays(final int[] hashes, final Object[] array, final int size) { if (hashes.length == (BASE_SIZE*2)) { synchronized (ArrayMap.class) { if (mTwiceBaseCacheSize < CACHE_SIZE) { array[0] = mTwiceBaseCache; array[1] = hashes; for (int i=(size<<1)-1; i>=2; i--) { array[i] = null; } mTwiceBaseCache = array; mTwiceBaseCacheSize++; if (DEBUG) Log.d(TAG, "Storing 2x cache " + array + " now have " + mTwiceBaseCacheSize + " entries"); } } } else if (hashes.length == BASE_SIZE) { synchronized (ArrayMap.class) { if (mBaseCacheSize < CACHE_SIZE) { array[0] = mBaseCache; array[1] = hashes; for (int i=(size<<1)-1; i>=2; i--) { array[i] = null; } mBaseCache = array; mBaseCacheSize++; if (DEBUG) Log.d(TAG, "Storing 1x cache " + array + " now have " + mBaseCacheSize + " entries"); } } } }
Create a new empty ArrayMap. The default capacity of an array map is 0, and will grow once items are added to it.
/** * Create a new empty ArrayMap. The default capacity of an array map is 0, and * will grow once items are added to it. */
public ArrayMap() { this(0, false); }
Create a new ArrayMap with a given initial capacity.
/** * Create a new ArrayMap with a given initial capacity. */
public ArrayMap(int capacity) { this(capacity, false); }
{@hide}
/** {@hide} */
public ArrayMap(int capacity, boolean identityHashCode) { mIdentityHashCode = identityHashCode; // If this is immutable, use the sentinal EMPTY_IMMUTABLE_INTS // instance instead of the usual EmptyArray.INT. The reference // is checked later to see if the array is allowed to grow. if (capacity < 0) { mHashes = EMPTY_IMMUTABLE_INTS; mArray = EmptyArray.OBJECT; } else if (capacity == 0) { mHashes = EmptyArray.INT; mArray = EmptyArray.OBJECT; } else { allocArrays(capacity); } mSize = 0; }
Create a new ArrayMap with the mappings from the given ArrayMap.
/** * Create a new ArrayMap with the mappings from the given ArrayMap. */
public ArrayMap(ArrayMap<K, V> map) { this(); if (map != null) { putAll(map); } }
Make the array map empty. All storage is released.
/** * Make the array map empty. All storage is released. */
@Override public void clear() { if (mSize > 0) { final int[] ohashes = mHashes; final Object[] oarray = mArray; final int osize = mSize; mHashes = EmptyArray.INT; mArray = EmptyArray.OBJECT; mSize = 0; freeArrays(ohashes, oarray, osize); } if (CONCURRENT_MODIFICATION_EXCEPTIONS && mSize > 0) { throw new ConcurrentModificationException(); } }
@hide Like clear, but doesn't reduce the capacity of the ArrayMap.
/** * @hide * Like {@link #clear}, but doesn't reduce the capacity of the ArrayMap. */
public void erase() { if (mSize > 0) { final int N = mSize<<1; final Object[] array = mArray; for (int i=0; i<N; i++) { array[i] = null; } mSize = 0; } }
Ensure the array map can hold at least minimumCapacity items.
/** * Ensure the array map can hold at least <var>minimumCapacity</var> * items. */
public void ensureCapacity(int minimumCapacity) { final int osize = mSize; if (mHashes.length < minimumCapacity) { final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(minimumCapacity); if (mSize > 0) { System.arraycopy(ohashes, 0, mHashes, 0, osize); System.arraycopy(oarray, 0, mArray, 0, osize<<1); } freeArrays(ohashes, oarray, osize); } if (CONCURRENT_MODIFICATION_EXCEPTIONS && mSize != osize) { throw new ConcurrentModificationException(); } }
Check whether a key exists in the array.
Params:
  • key – The key to search for.
Returns:Returns true if the key exists, else false.
/** * Check whether a key exists in the array. * * @param key The key to search for. * @return Returns true if the key exists, else false. */
@Override public boolean containsKey(Object key) { return indexOfKey(key) >= 0; }
Returns the index of a key in the set.
Params:
  • key – The key to search for.
Returns:Returns the index of the key if it exists, else a negative integer.
/** * Returns the index of a key in the set. * * @param key The key to search for. * @return Returns the index of the key if it exists, else a negative integer. */
public int indexOfKey(Object key) { return key == null ? indexOfNull() : indexOf(key, mIdentityHashCode ? System.identityHashCode(key) : key.hashCode()); } int indexOfValue(Object value) { final int N = mSize*2; final Object[] array = mArray; if (value == null) { for (int i=1; i<N; i+=2) { if (array[i] == null) { return i>>1; } } } else { for (int i=1; i<N; i+=2) { if (value.equals(array[i])) { return i>>1; } } } return -1; }
Check whether a value exists in the array. This requires a linear search through the entire array.
Params:
  • value – The value to search for.
Returns:Returns true if the value exists, else false.
/** * Check whether a value exists in the array. This requires a linear search * through the entire array. * * @param value The value to search for. * @return Returns true if the value exists, else false. */
@Override public boolean containsValue(Object value) { return indexOfValue(value) >= 0; }
Retrieve a value from the array.
Params:
  • key – The key of the value to retrieve.
Returns:Returns the value associated with the given key, or null if there is no such key.
/** * Retrieve a value from the array. * @param key The key of the value to retrieve. * @return Returns the value associated with the given key, * or null if there is no such key. */
@Override public V get(Object key) { final int index = indexOfKey(key); return index >= 0 ? (V)mArray[(index<<1)+1] : null; }
Return the key at the given index in the array.
Params:
  • index – The desired index, must be between 0 and size()-1.
Returns:Returns the key stored at the given index.
/** * Return the key at the given index in the array. * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the key stored at the given index. */
public K keyAt(int index) { return (K)mArray[index << 1]; }
Return the value at the given index in the array.
Params:
  • index – The desired index, must be between 0 and size()-1.
Returns:Returns the value stored at the given index.
/** * Return the value at the given index in the array. * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the value stored at the given index. */
public V valueAt(int index) { return (V)mArray[(index << 1) + 1]; }
Set the value at a given index in the array.
Params:
  • index – The desired index, must be between 0 and size()-1.
  • value – The new value to store at this index.
Returns:Returns the previous value at the given index.
/** * Set the value at a given index in the array. * @param index The desired index, must be between 0 and {@link #size()}-1. * @param value The new value to store at this index. * @return Returns the previous value at the given index. */
public V setValueAt(int index, V value) { index = (index << 1) + 1; V old = (V)mArray[index]; mArray[index] = value; return old; }
Return true if the array map contains no items.
/** * Return true if the array map contains no items. */
@Override public boolean isEmpty() { return mSize <= 0; }
Add a new value to the array map.
Params:
  • key – The key under which to store the value. If this key already exists in the array, its value will be replaced.
  • value – The value to store for the given key.
Returns:Returns the old value that was stored for the given key, or null if there was no such key.
/** * Add a new value to the array map. * @param key The key under which to store the value. If * this key already exists in the array, its value will be replaced. * @param value The value to store for the given key. * @return Returns the old value that was stored for the given key, or null if there * was no such key. */
@Override public V put(K key, V value) { final int osize = mSize; final int hash; int index; if (key == null) { hash = 0; index = indexOfNull(); } else { hash = mIdentityHashCode ? System.identityHashCode(key) : key.hashCode(); index = indexOf(key, hash); } if (index >= 0) { index = (index<<1) + 1; final V old = (V)mArray[index]; mArray[index] = value; return old; } index = ~index; if (osize >= mHashes.length) { final int n = osize >= (BASE_SIZE*2) ? (osize+(osize>>1)) : (osize >= BASE_SIZE ? (BASE_SIZE*2) : BASE_SIZE); if (DEBUG) Log.d(TAG, "put: grow from " + mHashes.length + " to " + n); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) { throw new ConcurrentModificationException(); } if (mHashes.length > 0) { if (DEBUG) Log.d(TAG, "put: copy 0-" + osize + " to 0"); System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length); System.arraycopy(oarray, 0, mArray, 0, oarray.length); } freeArrays(ohashes, oarray, osize); } if (index < osize) { if (DEBUG) Log.d(TAG, "put: move " + index + "-" + (osize-index) + " to " + (index+1)); System.arraycopy(mHashes, index, mHashes, index + 1, osize - index); System.arraycopy(mArray, index << 1, mArray, (index + 1) << 1, (mSize - index) << 1); } if (CONCURRENT_MODIFICATION_EXCEPTIONS) { if (osize != mSize || index >= mHashes.length) { throw new ConcurrentModificationException(); } } mHashes[index] = hash; mArray[index<<1] = key; mArray[(index<<1)+1] = value; mSize++; return null; }
Special fast path for appending items to the end of the array without validation. The array must already be large enough to contain the item.
@hide
/** * Special fast path for appending items to the end of the array without validation. * The array must already be large enough to contain the item. * @hide */
public void append(K key, V value) { int index = mSize; final int hash = key == null ? 0 : (mIdentityHashCode ? System.identityHashCode(key) : key.hashCode()); if (index >= mHashes.length) { throw new IllegalStateException("Array is full"); } if (index > 0 && mHashes[index-1] > hash) { RuntimeException e = new RuntimeException("here"); e.fillInStackTrace(); Log.w(TAG, "New hash " + hash + " is before end of array hash " + mHashes[index-1] + " at index " + index + " key " + key, e); put(key, value); return; } mSize = index+1; mHashes[index] = hash; index <<= 1; mArray[index] = key; mArray[index+1] = value; }
The use of the append function can result in invalid array maps, in particular an array map where the same key appears multiple times. This function verifies that the array map is valid, throwing IllegalArgumentException if a problem is found. The main use for this method is validating an array map after unpacking from an IPC, to protect against malicious callers.
@hide
/** * The use of the {@link #append} function can result in invalid array maps, in particular * an array map where the same key appears multiple times. This function verifies that * the array map is valid, throwing IllegalArgumentException if a problem is found. The * main use for this method is validating an array map after unpacking from an IPC, to * protect against malicious callers. * @hide */
public void validate() { final int N = mSize; if (N <= 1) { // There can't be dups. return; } int basehash = mHashes[0]; int basei = 0; for (int i=1; i<N; i++) { int hash = mHashes[i]; if (hash != basehash) { basehash = hash; basei = i; continue; } // We are in a run of entries with the same hash code. Go backwards through // the array to see if any keys are the same. final Object cur = mArray[i<<1]; for (int j=i-1; j>=basei; j--) { final Object prev = mArray[j<<1]; if (cur == prev) { throw new IllegalArgumentException("Duplicate key in ArrayMap: " + cur); } if (cur != null && prev != null && cur.equals(prev)) { throw new IllegalArgumentException("Duplicate key in ArrayMap: " + cur); } } } }
Perform a put(Object, Object) of all key/value pairs in array
Params:
  • array – The array whose contents are to be retrieved.
/** * Perform a {@link #put(Object, Object)} of all key/value pairs in <var>array</var> * @param array The array whose contents are to be retrieved. */
public void putAll(ArrayMap<? extends K, ? extends V> array) { final int N = array.mSize; ensureCapacity(mSize + N); if (mSize == 0) { if (N > 0) { System.arraycopy(array.mHashes, 0, mHashes, 0, N); System.arraycopy(array.mArray, 0, mArray, 0, N<<1); mSize = N; } } else { for (int i=0; i<N; i++) { put(array.keyAt(i), array.valueAt(i)); } } }
Remove an existing key from the array map.
Params:
  • key – The key of the mapping to remove.
Returns:Returns the value that was stored under the key, or null if there was no such key.
/** * Remove an existing key from the array map. * @param key The key of the mapping to remove. * @return Returns the value that was stored under the key, or null if there * was no such key. */
@Override public V remove(Object key) { final int index = indexOfKey(key); if (index >= 0) { return removeAt(index); } return null; }
Remove the key/value mapping at the given index.
Params:
  • index – The desired index, must be between 0 and size()-1.
Returns:Returns the value that was stored at this index.
/** * Remove the key/value mapping at the given index. * @param index The desired index, must be between 0 and {@link #size()}-1. * @return Returns the value that was stored at this index. */
public V removeAt(int index) { final Object old = mArray[(index << 1) + 1]; final int osize = mSize; final int nsize; if (osize <= 1) { // Now empty. if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0"); final int[] ohashes = mHashes; final Object[] oarray = mArray; mHashes = EmptyArray.INT; mArray = EmptyArray.OBJECT; freeArrays(ohashes, oarray, osize); nsize = 0; } else { nsize = osize - 1; if (mHashes.length > (BASE_SIZE*2) && mSize < mHashes.length/3) { // Shrunk enough to reduce size of arrays. We don't allow it to // shrink smaller than (BASE_SIZE*2) to avoid flapping between // that and BASE_SIZE. final int n = osize > (BASE_SIZE*2) ? (osize + (osize>>1)) : (BASE_SIZE*2); if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n); final int[] ohashes = mHashes; final Object[] oarray = mArray; allocArrays(n); if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) { throw new ConcurrentModificationException(); } if (index > 0) { if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0"); System.arraycopy(ohashes, 0, mHashes, 0, index); System.arraycopy(oarray, 0, mArray, 0, index << 1); } if (index < nsize) { if (DEBUG) Log.d(TAG, "remove: copy from " + (index+1) + "-" + nsize + " to " + index); System.arraycopy(ohashes, index + 1, mHashes, index, nsize - index); System.arraycopy(oarray, (index + 1) << 1, mArray, index << 1, (nsize - index) << 1); } } else { if (index < nsize) { if (DEBUG) Log.d(TAG, "remove: move " + (index+1) + "-" + nsize + " to " + index); System.arraycopy(mHashes, index + 1, mHashes, index, nsize - index); System.arraycopy(mArray, (index + 1) << 1, mArray, index << 1, (nsize - index) << 1); } mArray[nsize << 1] = null; mArray[(nsize << 1) + 1] = null; } } if (CONCURRENT_MODIFICATION_EXCEPTIONS && osize != mSize) { throw new ConcurrentModificationException(); } mSize = nsize; return (V)old; }
Return the number of items in this array map.
/** * Return the number of items in this array map. */
@Override public int size() { return mSize; }
{@inheritDoc}

This implementation returns false if the object is not a map, or if the maps have different sizes. Otherwise, for each key in this map, values of both maps are compared. If the values for any key are not equal, the method returns false, otherwise it returns true.

/** * {@inheritDoc} * * <p>This implementation returns false if the object is not a map, or * if the maps have different sizes. Otherwise, for each key in this map, * values of both maps are compared. If the values for any key are not * equal, the method returns false, otherwise it returns true. */
@Override public boolean equals(Object object) { if (this == object) { return true; } if (object instanceof Map) { Map<?, ?> map = (Map<?, ?>) object; if (size() != map.size()) { return false; } try { for (int i=0; i<mSize; i++) { K key = keyAt(i); V mine = valueAt(i); Object theirs = map.get(key); if (mine == null) { if (theirs != null || !map.containsKey(key)) { return false; } } else if (!mine.equals(theirs)) { return false; } } } catch (NullPointerException ignored) { return false; } catch (ClassCastException ignored) { return false; } return true; } return false; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int hashCode() { final int[] hashes = mHashes; final Object[] array = mArray; int result = 0; for (int i = 0, v = 1, s = mSize; i < s; i++, v+=2) { Object value = array[v]; result += hashes[i] ^ (value == null ? 0 : value.hashCode()); } return result; }
{@inheritDoc}

This implementation composes a string by iterating over its mappings. If this map contains itself as a key or a value, the string "(this Map)" will appear in its place.

/** * {@inheritDoc} * * <p>This implementation composes a string by iterating over its mappings. If * this map contains itself as a key or a value, the string "(this Map)" * will appear in its place. */
@Override public String toString() { if (isEmpty()) { return "{}"; } StringBuilder buffer = new StringBuilder(mSize * 28); buffer.append('{'); for (int i=0; i<mSize; i++) { if (i > 0) { buffer.append(", "); } Object key = keyAt(i); if (key != this) { buffer.append(key); } else { buffer.append("(this Map)"); } buffer.append('='); Object value = valueAt(i); if (value != this) { buffer.append(value); } else { buffer.append("(this Map)"); } } buffer.append('}'); return buffer.toString(); } // ------------------------------------------------------------------------ // Interop with traditional Java containers. Not as efficient as using // specialized collection APIs. // ------------------------------------------------------------------------ private MapCollections<K, V> getCollection() { if (mCollections == null) { mCollections = new MapCollections<K, V>() { @Override protected int colGetSize() { return mSize; } @Override protected Object colGetEntry(int index, int offset) { return mArray[(index<<1) + offset]; } @Override protected int colIndexOfKey(Object key) { return indexOfKey(key); } @Override protected int colIndexOfValue(Object value) { return indexOfValue(value); } @Override protected Map<K, V> colGetMap() { return ArrayMap.this; } @Override protected void colPut(K key, V value) { put(key, value); } @Override protected V colSetValue(int index, V value) { return setValueAt(index, value); } @Override protected void colRemoveAt(int index) { removeAt(index); } @Override protected void colClear() { clear(); } }; } return mCollections; }
Determine if the array map contains all of the keys in the given collection.
Params:
  • collection – The collection whose contents are to be checked against.
Returns:Returns true if this array map contains a key for every entry in collection, else returns false.
/** * Determine if the array map contains all of the keys in the given collection. * @param collection The collection whose contents are to be checked against. * @return Returns true if this array map contains a key for every entry * in <var>collection</var>, else returns false. */
public boolean containsAll(Collection<?> collection) { return MapCollections.containsAllHelper(this, collection); }
Perform a put(Object, Object) of all key/value pairs in map
Params:
  • map – The map whose contents are to be retrieved.
/** * Perform a {@link #put(Object, Object)} of all key/value pairs in <var>map</var> * @param map The map whose contents are to be retrieved. */
@Override public void putAll(Map<? extends K, ? extends V> map) { ensureCapacity(mSize + map.size()); for (Map.Entry<? extends K, ? extends V> entry : map.entrySet()) { put(entry.getKey(), entry.getValue()); } }
Remove all keys in the array map that exist in the given collection.
Params:
  • collection – The collection whose contents are to be used to remove keys.
Returns:Returns true if any keys were removed from the array map, else false.
/** * Remove all keys in the array map that exist in the given collection. * @param collection The collection whose contents are to be used to remove keys. * @return Returns true if any keys were removed from the array map, else false. */
public boolean removeAll(Collection<?> collection) { return MapCollections.removeAllHelper(this, collection); }
Remove all keys in the array map that do not exist in the given collection.
Params:
  • collection – The collection whose contents are to be used to determine which keys to keep.
Returns:Returns true if any keys were removed from the array map, else false.
/** * Remove all keys in the array map that do <b>not</b> exist in the given collection. * @param collection The collection whose contents are to be used to determine which * keys to keep. * @return Returns true if any keys were removed from the array map, else false. */
public boolean retainAll(Collection<?> collection) { return MapCollections.retainAllHelper(this, collection); }
Return a Set for iterating over and interacting with all mappings in the array map.

Note: this is a very inefficient way to access the array contents, it requires generating a number of temporary objects and allocates additional state information associated with the container that will remain for the life of the container.

Note:

the semantics of this Set are subtly different than that of a HashMap: most important, the Map.Entry object returned by its iterator is a single object that exists for the entire iterator, so you can not hold on to it after calling Iterator.next.

/** * Return a {@link java.util.Set} for iterating over and interacting with all mappings * in the array map. * * <p><b>Note:</b> this is a very inefficient way to access the array contents, it * requires generating a number of temporary objects and allocates additional state * information associated with the container that will remain for the life of the container.</p> * * <p><b>Note:</b></p> the semantics of this * Set are subtly different than that of a {@link java.util.HashMap}: most important, * the {@link java.util.Map.Entry Map.Entry} object returned by its iterator is a single * object that exists for the entire iterator, so you can <b>not</b> hold on to it * after calling {@link java.util.Iterator#next() Iterator.next}.</p> */
@Override public Set<Map.Entry<K, V>> entrySet() { return getCollection().getEntrySet(); }
Return a Set for iterating over and interacting with all keys in the array map.

Note: this is a fairly inefficient way to access the array contents, it requires generating a number of temporary objects and allocates additional state information associated with the container that will remain for the life of the container.

/** * Return a {@link java.util.Set} for iterating over and interacting with all keys * in the array map. * * <p><b>Note:</b> this is a fairly inefficient way to access the array contents, it * requires generating a number of temporary objects and allocates additional state * information associated with the container that will remain for the life of the container.</p> */
@Override public Set<K> keySet() { return getCollection().getKeySet(); }
Return a Collection for iterating over and interacting with all values in the array map.

Note: this is a fairly inefficient way to access the array contents, it requires generating a number of temporary objects and allocates additional state information associated with the container that will remain for the life of the container.

/** * Return a {@link java.util.Collection} for iterating over and interacting with all values * in the array map. * * <p><b>Note:</b> this is a fairly inefficient way to access the array contents, it * requires generating a number of temporary objects and allocates additional state * information associated with the container that will remain for the life of the container.</p> */
@Override public Collection<V> values() { return getCollection().getValues(); } }