/*
 * Copyright (C) 2006 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.util;

import com.android.internal.util.ArrayUtils;
import com.android.internal.util.GrowingArrayUtils;

import libcore.util.EmptyArray;

SparseArray maps integers to Objects and, unlike a normal array of Objects, its indices can contain gaps. SparseArray is intended to be more memory-efficient than a HashMap, because it avoids auto-boxing keys and its data structure doesn't rely on an extra entry object for each mapping.

Note that this container keeps its mappings in an array data structure, using a binary search to find keys. The implementation is not intended to be appropriate for data structures that may contain large numbers of items. It is generally slower than a HashMap because lookups require a binary search, and adds and removes require inserting and deleting entries in the array. For containers holding up to hundreds of items, the performance difference is less than 50%.

To help with performance, the container includes an optimization when removing keys: instead of compacting its array immediately, it leaves the removed entry marked as deleted. The entry can then be re-used for the same key or compacted later in a single garbage collection of all removed entries. This garbage collection must be performed whenever the array needs to be grown, or when the map size or entry values are retrieved.

It is possible to iterate over the items in this container using keyAt(int) and valueAt(int). Iterating over the keys using keyAt(int) with ascending values of the index returns the keys in ascending order. In the case of valueAt(int), the values corresponding to the keys are returned in ascending order.

/** * <code>SparseArray</code> maps integers to Objects and, unlike a normal array of Objects, * its indices can contain gaps. <code>SparseArray</code> is intended to be more memory-efficient * than a * <a href="/reference/java/util/HashMap"><code>HashMap</code></a>, because it avoids * auto-boxing keys and its data structure doesn't rely on an extra entry object * for each mapping. * * <p>Note that this container keeps its mappings in an array data structure, * using a binary search to find keys. The implementation is not intended to be appropriate for * data structures * that may contain large numbers of items. It is generally slower than a * <code>HashMap</code> because lookups require a binary search, * and adds and removes require inserting * and deleting entries in the array. For containers holding up to hundreds of items, * the performance difference is less than 50%. * * <p>To help with performance, the container includes an optimization when removing * keys: instead of compacting its array immediately, it leaves the removed entry marked * as deleted. The entry can then be re-used for the same key or compacted later in * a single garbage collection of all removed entries. This garbage collection * must be performed whenever the array needs to be grown, or when the map size or * entry values are retrieved. * * <p>It is possible to iterate over the items in this container using * {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using * <code>keyAt(int)</code> with ascending values of the index returns the * keys in ascending order. In the case of <code>valueAt(int)</code>, the * values corresponding to the keys are returned in ascending order. */
public class SparseArray<E> implements Cloneable { private static final Object DELETED = new Object(); private boolean mGarbage = false; private int[] mKeys; private Object[] mValues; private int mSize;
Creates a new SparseArray containing no mappings.
/** * Creates a new SparseArray containing no mappings. */
public SparseArray() { this(10); }
Creates a new SparseArray containing no mappings that will not require any additional memory allocation to store the specified number of mappings. If you supply an initial capacity of 0, the sparse array will be initialized with a light-weight representation not requiring any additional array allocations.
/** * Creates a new SparseArray containing no mappings that will not * require any additional memory allocation to store the specified * number of mappings. If you supply an initial capacity of 0, the * sparse array will be initialized with a light-weight representation * not requiring any additional array allocations. */
public SparseArray(int initialCapacity) { if (initialCapacity == 0) { mKeys = EmptyArray.INT; mValues = EmptyArray.OBJECT; } else { mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity); mKeys = new int[mValues.length]; } mSize = 0; } @Override @SuppressWarnings("unchecked") public SparseArray<E> clone() { SparseArray<E> clone = null; try { clone = (SparseArray<E>) super.clone(); clone.mKeys = mKeys.clone(); clone.mValues = mValues.clone(); } catch (CloneNotSupportedException cnse) { /* ignore */ } return clone; }
Gets the Object mapped from the specified key, or null if no such mapping has been made.
/** * Gets the Object mapped from the specified key, or <code>null</code> * if no such mapping has been made. */
public E get(int key) { return get(key, null); }
Gets the Object mapped from the specified key, or the specified Object if no such mapping has been made.
/** * Gets the Object mapped from the specified key, or the specified Object * if no such mapping has been made. */
@SuppressWarnings("unchecked") public E get(int key, E valueIfKeyNotFound) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i < 0 || mValues[i] == DELETED) { return valueIfKeyNotFound; } else { return (E) mValues[i]; } }
Removes the mapping from the specified key, if there was any.
/** * Removes the mapping from the specified key, if there was any. */
public void delete(int key) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i >= 0) { if (mValues[i] != DELETED) { mValues[i] = DELETED; mGarbage = true; } } }
@hide Removes the mapping from the specified key, if there was any, returning the old value.
/** * @hide * Removes the mapping from the specified key, if there was any, returning the old value. */
public E removeReturnOld(int key) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i >= 0) { if (mValues[i] != DELETED) { final E old = (E) mValues[i]; mValues[i] = DELETED; mGarbage = true; return old; } } return null; }
Alias for delete(int).
/** * Alias for {@link #delete(int)}. */
public void remove(int key) { delete(key); }
Removes the mapping at the specified index.

For indices outside of the range 0...size()-1, the behavior is undefined.

/** * Removes the mapping at the specified index. * * <p>For indices outside of the range <code>0...size()-1</code>, * the behavior is undefined.</p> */
public void removeAt(int index) { if (mValues[index] != DELETED) { mValues[index] = DELETED; mGarbage = true; } }
Remove a range of mappings as a batch.
Params:
  • index – Index to begin at
  • size – Number of mappings to remove

    For indices outside of the range 0...size()-1, the behavior is undefined.

/** * Remove a range of mappings as a batch. * * @param index Index to begin at * @param size Number of mappings to remove * * <p>For indices outside of the range <code>0...size()-1</code>, * the behavior is undefined.</p> */
public void removeAtRange(int index, int size) { final int end = Math.min(mSize, index + size); for (int i = index; i < end; i++) { removeAt(i); } } private void gc() { // Log.e("SparseArray", "gc start with " + mSize); int n = mSize; int o = 0; int[] keys = mKeys; Object[] values = mValues; for (int i = 0; i < n; i++) { Object val = values[i]; if (val != DELETED) { if (i != o) { keys[o] = keys[i]; values[o] = val; values[i] = null; } o++; } } mGarbage = false; mSize = o; // Log.e("SparseArray", "gc end with " + mSize); }
Adds a mapping from the specified key to the specified value, replacing the previous mapping from the specified key if there was one.
/** * Adds a mapping from the specified key to the specified value, * replacing the previous mapping from the specified key if there * was one. */
public void put(int key, E value) { int i = ContainerHelpers.binarySearch(mKeys, mSize, key); if (i >= 0) { mValues[i] = value; } else { i = ~i; if (i < mSize && mValues[i] == DELETED) { mKeys[i] = key; mValues[i] = value; return; } if (mGarbage && mSize >= mKeys.length) { gc(); // Search again because indices may have changed. i = ~ContainerHelpers.binarySearch(mKeys, mSize, key); } mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key); mValues = GrowingArrayUtils.insert(mValues, mSize, i, value); mSize++; } }
Returns the number of key-value mappings that this SparseArray currently stores.
/** * Returns the number of key-value mappings that this SparseArray * currently stores. */
public int size() { if (mGarbage) { gc(); } return mSize; }
Given an index in the range 0...size()-1, returns the key from the indexth key-value mapping that this SparseArray stores.

The keys corresponding to indices in ascending order are guaranteed to be in ascending order, e.g., keyAt(0) will return the smallest key and keyAt(size()-1) will return the largest key.

For indices outside of the range 0...size()-1, the behavior is undefined.

/** * Given an index in the range <code>0...size()-1</code>, returns * the key from the <code>index</code>th key-value mapping that this * SparseArray stores. * * <p>The keys corresponding to indices in ascending order are guaranteed to * be in ascending order, e.g., <code>keyAt(0)</code> will return the * smallest key and <code>keyAt(size()-1)</code> will return the largest * key.</p> * * <p>For indices outside of the range <code>0...size()-1</code>, * the behavior is undefined.</p> */
public int keyAt(int index) { if (mGarbage) { gc(); } return mKeys[index]; }
Given an index in the range 0...size()-1, returns the value from the indexth key-value mapping that this SparseArray stores.

The values corresponding to indices in ascending order are guaranteed to be associated with keys in ascending order, e.g., valueAt(0) will return the value associated with the smallest key and valueAt(size()-1) will return the value associated with the largest key.

For indices outside of the range 0...size()-1, the behavior is undefined.

/** * Given an index in the range <code>0...size()-1</code>, returns * the value from the <code>index</code>th key-value mapping that this * SparseArray stores. * * <p>The values corresponding to indices in ascending order are guaranteed * to be associated with keys in ascending order, e.g., * <code>valueAt(0)</code> will return the value associated with the * smallest key and <code>valueAt(size()-1)</code> will return the value * associated with the largest key.</p> * * <p>For indices outside of the range <code>0...size()-1</code>, * the behavior is undefined.</p> */
@SuppressWarnings("unchecked") public E valueAt(int index) { if (mGarbage) { gc(); } return (E) mValues[index]; }
Given an index in the range 0...size()-1, sets a new value for the indexth key-value mapping that this SparseArray stores.

For indices outside of the range 0...size()-1, the behavior is undefined.

/** * Given an index in the range <code>0...size()-1</code>, sets a new * value for the <code>index</code>th key-value mapping that this * SparseArray stores. * * <p>For indices outside of the range <code>0...size()-1</code>, the behavior is undefined.</p> */
public void setValueAt(int index, E value) { if (mGarbage) { gc(); } mValues[index] = value; }
Returns the index for which keyAt would return the specified key, or a negative number if the specified key is not mapped.
/** * Returns the index for which {@link #keyAt} would return the * specified key, or a negative number if the specified * key is not mapped. */
public int indexOfKey(int key) { if (mGarbage) { gc(); } return ContainerHelpers.binarySearch(mKeys, mSize, key); }
Returns an index for which valueAt would return the specified value, or a negative number if no keys map to the specified value.

Beware that this is a linear search, unlike lookups by key, and that multiple keys can map to the same value and this will find only one of them.

Note also that unlike most collections' indexOf methods, this method compares values using == rather than equals.

/** * Returns an index for which {@link #valueAt} would return the * specified value, or a negative number if no keys map to the * specified value. * <p>Beware that this is a linear search, unlike lookups by key, * and that multiple keys can map to the same value and this will * find only one of them. * <p>Note also that unlike most collections' {@code indexOf} methods, * this method compares values using {@code ==} rather than {@code equals}. */
public int indexOfValue(E value) { if (mGarbage) { gc(); } for (int i = 0; i < mSize; i++) { if (mValues[i] == value) { return i; } } return -1; }
Returns an index for which valueAt would return the specified value, or a negative number if no keys map to the specified value.

Beware that this is a linear search, unlike lookups by key, and that multiple keys can map to the same value and this will find only one of them.

Note also that this method uses equals unlike indexOfValue.

@hide
/** * Returns an index for which {@link #valueAt} would return the * specified value, or a negative number if no keys map to the * specified value. * <p>Beware that this is a linear search, unlike lookups by key, * and that multiple keys can map to the same value and this will * find only one of them. * <p>Note also that this method uses {@code equals} unlike {@code indexOfValue}. * @hide */
public int indexOfValueByValue(E value) { if (mGarbage) { gc(); } for (int i = 0; i < mSize; i++) { if (value == null) { if (mValues[i] == null) { return i; } } else { if (value.equals(mValues[i])) { return i; } } } return -1; }
Removes all key-value mappings from this SparseArray.
/** * Removes all key-value mappings from this SparseArray. */
public void clear() { int n = mSize; Object[] values = mValues; for (int i = 0; i < n; i++) { values[i] = null; } mSize = 0; mGarbage = false; }
Puts a key/value pair into the array, optimizing for the case where the key is greater than all existing keys in the array.
/** * Puts a key/value pair into the array, optimizing for the case where * the key is greater than all existing keys in the array. */
public void append(int key, E value) { if (mSize != 0 && key <= mKeys[mSize - 1]) { put(key, value); return; } if (mGarbage && mSize >= mKeys.length) { gc(); } mKeys = GrowingArrayUtils.append(mKeys, mSize, key); mValues = GrowingArrayUtils.append(mValues, mSize, value); mSize++; }
{@inheritDoc}

This implementation composes a string by iterating over its mappings. If this map contains itself as a value, the string "(this Map)" will appear in its place.

/** * {@inheritDoc} * * <p>This implementation composes a string by iterating over its mappings. If * this map contains itself as a value, the string "(this Map)" * will appear in its place. */
@Override public String toString() { if (size() <= 0) { return "{}"; } StringBuilder buffer = new StringBuilder(mSize * 28); buffer.append('{'); for (int i=0; i<mSize; i++) { if (i > 0) { buffer.append(", "); } int key = keyAt(i); buffer.append(key); buffer.append('='); Object value = valueAt(i); if (value != this) { buffer.append(value); } else { buffer.append("(this Map)"); } } buffer.append('}'); return buffer.toString(); } }