package org.bouncycastle.pqc.crypto.ntru;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.KeyGenerationParameters;
import org.bouncycastle.pqc.math.ntru.euclid.BigIntEuclidean;
import org.bouncycastle.pqc.math.ntru.polynomial.BigDecimalPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.BigIntPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.DenseTernaryPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.IntegerPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.Polynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.ProductFormPolynomial;
import org.bouncycastle.pqc.math.ntru.polynomial.Resultant;

import static java.math.BigInteger.ONE;
import static java.math.BigInteger.ZERO;

public class NTRUSigningKeyPairGenerator
    implements AsymmetricCipherKeyPairGenerator
{
    private NTRUSigningKeyGenerationParameters params;

    public void init(KeyGenerationParameters param)
    {
        this.params = (NTRUSigningKeyGenerationParameters)param;
    }

    
Generates a new signature key pair. Starts B+1 threads.
Returns:a key pair
/** * Generates a new signature key pair. Starts <code>B+1</code> threads. * * @return a key pair */
public AsymmetricCipherKeyPair generateKeyPair() { NTRUSigningPublicKeyParameters pub = null; ExecutorService executor = Executors.newCachedThreadPool(); List<Future<NTRUSigningPrivateKeyParameters.Basis>> bases = new ArrayList<Future<NTRUSigningPrivateKeyParameters.Basis>>(); for (int k = params.B; k >= 0; k--) { bases.add(executor.submit(new BasisGenerationTask())); } executor.shutdown(); List<NTRUSigningPrivateKeyParameters.Basis> basises = new ArrayList<NTRUSigningPrivateKeyParameters.Basis>(); for (int k = params.B; k >= 0; k--) { Future<NTRUSigningPrivateKeyParameters.Basis> basis = bases.get(k); try { basises.add(basis.get()); if (k == params.B) { pub = new NTRUSigningPublicKeyParameters(basis.get().h, params.getSigningParameters()); } } catch (Exception e) { throw new IllegalStateException(e); } } NTRUSigningPrivateKeyParameters priv = new NTRUSigningPrivateKeyParameters(basises, pub); AsymmetricCipherKeyPair kp = new AsymmetricCipherKeyPair(pub, priv); return kp; }
Generates a new signature key pair. Runs in a single thread.
Returns:a key pair
/** * Generates a new signature key pair. Runs in a single thread. * * @return a key pair */
public AsymmetricCipherKeyPair generateKeyPairSingleThread() { List<NTRUSigningPrivateKeyParameters.Basis> basises = new ArrayList<NTRUSigningPrivateKeyParameters.Basis>(); NTRUSigningPublicKeyParameters pub = null; for (int k = params.B; k >= 0; k--) { NTRUSigningPrivateKeyParameters.Basis basis = generateBoundedBasis(); basises.add(basis); if (k == 0) { pub = new NTRUSigningPublicKeyParameters(basis.h, params.getSigningParameters()); } } NTRUSigningPrivateKeyParameters priv = new NTRUSigningPrivateKeyParameters(basises, pub); return new AsymmetricCipherKeyPair(pub, priv); } /* * Implementation of the optional steps 20 through 26 in EESS1v2.pdf, section 3.5.1.1. * This doesn't seem to have much of an effect and sometimes actually increases the * norm of F, but on average it slightly reduces the norm.<br/> * This method changes <code>F</code> and <code>g</code> but leaves <code>f</code> and * <code>g</code> unchanged. */ private void minimizeFG(IntegerPolynomial f, IntegerPolynomial g, IntegerPolynomial F, IntegerPolynomial G, int N) { int E = 0; for (int j = 0; j < N; j++) { E += 2 * N * (f.coeffs[j] * f.coeffs[j] + g.coeffs[j] * g.coeffs[j]); } // [f(1)+g(1)]^2 = 4 E -= 4; IntegerPolynomial u = (IntegerPolynomial)f.clone(); IntegerPolynomial v = (IntegerPolynomial)g.clone(); int j = 0; int k = 0; int maxAdjustment = N; while (k < maxAdjustment && j < N) { int D = 0; int i = 0; while (i < N) { int D1 = F.coeffs[i] * f.coeffs[i]; int D2 = G.coeffs[i] * g.coeffs[i]; int D3 = 4 * N * (D1 + D2); D += D3; i++; } // f(1)+g(1) = 2 int D1 = 4 * (F.sumCoeffs() + G.sumCoeffs()); D -= D1; if (D > E) { F.sub(u); G.sub(v); k++; j = 0; } else if (D < -E) { F.add(u); G.add(v); k++; j = 0; } j++; u.rotate1(); v.rotate1(); } }
Creates a NTRUSigner basis consisting of polynomials f, g, F, G, h.
If KeyGenAlg=FLOAT, the basis may not be valid and this method must be rerun if that is the case.
See Also:
  • generateBoundedBasis()
/** * Creates a NTRUSigner basis consisting of polynomials <code>f, g, F, G, h</code>.<br/> * If <code>KeyGenAlg=FLOAT</code>, the basis may not be valid and this method must be rerun if that is the case.<br/> * * @see #generateBoundedBasis() */
private FGBasis generateBasis() { int N = params.N; int q = params.q; int d = params.d; int d1 = params.d1; int d2 = params.d2; int d3 = params.d3; int basisType = params.basisType; Polynomial f; IntegerPolynomial fInt; Polynomial g; IntegerPolynomial gInt; IntegerPolynomial fq; Resultant rf; Resultant rg; BigIntEuclidean r; int _2n1 = 2 * N + 1; boolean primeCheck = params.primeCheck; do { do { f = params.polyType== NTRUParameters.TERNARY_POLYNOMIAL_TYPE_SIMPLE ? DenseTernaryPolynomial.generateRandom(N, d + 1, d, CryptoServicesRegistrar.getSecureRandom()) : ProductFormPolynomial.generateRandom(N, d1, d2, d3 + 1, d3, CryptoServicesRegistrar.getSecureRandom()); fInt = f.toIntegerPolynomial(); } while (primeCheck && fInt.resultant(_2n1).res.equals(ZERO)); fq = fInt.invertFq(q); } while (fq == null); rf = fInt.resultant(); do { do { do { g = params.polyType == NTRUParameters.TERNARY_POLYNOMIAL_TYPE_SIMPLE ? DenseTernaryPolynomial.generateRandom(N, d + 1, d, CryptoServicesRegistrar.getSecureRandom()) : ProductFormPolynomial.generateRandom(N, d1, d2, d3 + 1, d3, CryptoServicesRegistrar.getSecureRandom()); gInt = g.toIntegerPolynomial(); } while (primeCheck && gInt.resultant(_2n1).res.equals(ZERO)); } while (gInt.invertFq(q) == null); rg = gInt.resultant(); r = BigIntEuclidean.calculate(rf.res, rg.res); } while (!r.gcd.equals(ONE)); BigIntPolynomial A = (BigIntPolynomial)rf.rho.clone(); A.mult(r.x.multiply(BigInteger.valueOf(q))); BigIntPolynomial B = (BigIntPolynomial)rg.rho.clone(); B.mult(r.y.multiply(BigInteger.valueOf(-q))); BigIntPolynomial C; if (params.keyGenAlg == NTRUSigningKeyGenerationParameters.KEY_GEN_ALG_RESULTANT) { int[] fRevCoeffs = new int[N]; int[] gRevCoeffs = new int[N]; fRevCoeffs[0] = fInt.coeffs[0]; gRevCoeffs[0] = gInt.coeffs[0]; for (int i = 1; i < N; i++) { fRevCoeffs[i] = fInt.coeffs[N - i]; gRevCoeffs[i] = gInt.coeffs[N - i]; } IntegerPolynomial fRev = new IntegerPolynomial(fRevCoeffs); IntegerPolynomial gRev = new IntegerPolynomial(gRevCoeffs); IntegerPolynomial t = f.mult(fRev); t.add(g.mult(gRev)); Resultant rt = t.resultant(); C = fRev.mult(B); // fRev.mult(B) is actually faster than new SparseTernaryPolynomial(fRev).mult(B), possibly due to cache locality? C.add(gRev.mult(A)); C = C.mult(rt.rho); C.div(rt.res); } else { // KeyGenAlg.FLOAT // calculate ceil(log10(N)) int log10N = 0; for (int i = 1; i < N; i *= 10) { log10N++; } // * Cdec needs to be accurate to 1 decimal place so it can be correctly rounded; // * fInv loses up to (#digits of longest coeff of B) places in fInv.mult(B); // * multiplying fInv by B also multiplies the rounding error by a factor of N; // so make #decimal places of fInv the sum of the above. BigDecimalPolynomial fInv = rf.rho.div(new BigDecimal(rf.res), B.getMaxCoeffLength() + 1 + log10N); BigDecimalPolynomial gInv = rg.rho.div(new BigDecimal(rg.res), A.getMaxCoeffLength() + 1 + log10N); BigDecimalPolynomial Cdec = fInv.mult(B); Cdec.add(gInv.mult(A)); Cdec.halve(); C = Cdec.round(); } BigIntPolynomial F = (BigIntPolynomial)B.clone(); F.sub(f.mult(C)); BigIntPolynomial G = (BigIntPolynomial)A.clone(); G.sub(g.mult(C)); IntegerPolynomial FInt = new IntegerPolynomial(F); IntegerPolynomial GInt = new IntegerPolynomial(G); minimizeFG(fInt, gInt, FInt, GInt, N); Polynomial fPrime; IntegerPolynomial h; if (basisType == NTRUSigningKeyGenerationParameters.BASIS_TYPE_STANDARD) { fPrime = FInt; h = g.mult(fq, q); } else { fPrime = g; h = FInt.mult(fq, q); } h.modPositive(q); return new FGBasis(f, fPrime, h, FInt, GInt, params); }
Creates a basis such that |F| < keyNormBound and |G| < keyNormBound
Returns:a NTRUSigner basis
/** * Creates a basis such that <code>|F| &lt; keyNormBound</code> and <code>|G| &lt; keyNormBound</code> * * @return a NTRUSigner basis */
public NTRUSigningPrivateKeyParameters.Basis generateBoundedBasis() { while (true) { FGBasis basis = generateBasis(); if (basis.isNormOk()) { return basis; } } } private class BasisGenerationTask implements Callable<NTRUSigningPrivateKeyParameters.Basis> { public NTRUSigningPrivateKeyParameters.Basis call() throws Exception { return generateBoundedBasis(); } }
A subclass of Basis that additionally contains the polynomials F and G.
/** * A subclass of Basis that additionally contains the polynomials <code>F</code> and <code>G</code>. */
public class FGBasis extends NTRUSigningPrivateKeyParameters.Basis { public IntegerPolynomial F; public IntegerPolynomial G; FGBasis(Polynomial f, Polynomial fPrime, IntegerPolynomial h, IntegerPolynomial F, IntegerPolynomial G, NTRUSigningKeyGenerationParameters params) { super(f, fPrime, h, params); this.F = F; this.G = G; } /* * Returns <code>true</code> if the norms of the polynomials <code>F</code> and <code>G</code> * are within {@link NTRUSigningKeyGenerationParameters#keyNormBound}. */ boolean isNormOk() { double keyNormBoundSq = params.keyNormBoundSq; int q = params.q; return (F.centeredNormSq(q) < keyNormBoundSq && G.centeredNormSq(q) < keyNormBoundSq); } } }