package org.bouncycastle.pqc.math.ntru.euclid;
import java.math.BigInteger;
Extended Euclidean Algorithm in BigInteger
s
/**
* Extended Euclidean Algorithm in <code>BigInteger</code>s
*/
public class BigIntEuclidean
{
public BigInteger x, y, gcd;
private BigIntEuclidean()
{
}
Params: - a –
- b –
Returns: a BigIntEuclidean
object that contains the result in the variables x
, y
, and gcd
/**
* Runs the EEA on two <code>BigInteger</code>s<br>
* Implemented from pseudocode on <a href="http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm">Wikipedia</a>.
*
* @param a
* @param b
* @return a <code>BigIntEuclidean</code> object that contains the result in the variables <code>x</code>, <code>y</code>, and <code>gcd</code>
*/
public static BigIntEuclidean calculate(BigInteger a, BigInteger b)
{
BigInteger x = BigInteger.ZERO;
BigInteger lastx = BigInteger.ONE;
BigInteger y = BigInteger.ONE;
BigInteger lasty = BigInteger.ZERO;
while (!b.equals(BigInteger.ZERO))
{
BigInteger[] quotientAndRemainder = a.divideAndRemainder(b);
BigInteger quotient = quotientAndRemainder[0];
BigInteger temp = a;
a = b;
b = quotientAndRemainder[1];
temp = x;
x = lastx.subtract(quotient.multiply(x));
lastx = temp;
temp = y;
y = lasty.subtract(quotient.multiply(y));
lasty = temp;
}
BigIntEuclidean result = new BigIntEuclidean();
result.x = lastx;
result.y = lasty;
result.gcd = a;
return result;
}
}