/*
 * Copyright (c) 1996, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
 */

package java.math;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamField;
import java.util.Arrays;
import java.util.Objects;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;

import jdk.internal.math.DoubleConsts;
import jdk.internal.math.FloatConsts;
import jdk.internal.HotSpotIntrinsicCandidate;

Immutable arbitrary-precision integers. All operations behave as if BigIntegers were represented in two's-complement notation (like Java's primitive integer types). BigInteger provides analogues to all of Java's primitive integer operators, and all relevant methods from java.lang.Math. Additionally, BigInteger provides operations for modular arithmetic, GCD calculation, primality testing, prime generation, bit manipulation, and a few other miscellaneous operations.

Semantics of arithmetic operations exactly mimic those of Java's integer arithmetic operators, as defined in The Java™ Language Specification. For example, division by zero throws an ArithmeticException, and division of a negative by a positive yields a negative (or zero) remainder.

Semantics of shift operations extend those of Java's shift operators to allow for negative shift distances. A right-shift with a negative shift distance results in a left shift, and vice-versa. The unsigned right shift operator (>>>) is omitted since this operation only makes sense for a fixed sized word and not for a representation conceptually having an infinite number of leading virtual sign bits.

Semantics of bitwise logical operations exactly mimic those of Java's bitwise integer operators. The binary operators (and, or, xor) implicitly perform sign extension on the shorter of the two operands prior to performing the operation.

Comparison operations perform signed integer comparisons, analogous to those performed by Java's relational and equality operators.

Modular arithmetic operations are provided to compute residues, perform exponentiation, and compute multiplicative inverses. These methods always return a non-negative result, between 0 and (modulus - 1), inclusive.

Bit operations operate on a single bit of the two's-complement representation of their operand. If necessary, the operand is sign- extended so that it contains the designated bit. None of the single-bit operations can produce a BigInteger with a different sign from the BigInteger being operated on, as they affect only a single bit, and the arbitrarily large abstraction provided by this class ensures that conceptually there are infinitely many "virtual sign bits" preceding each BigInteger.

For the sake of brevity and clarity, pseudo-code is used throughout the descriptions of BigInteger methods. The pseudo-code expression (i + j) is shorthand for "a BigInteger whose value is that of the BigInteger i plus that of the BigInteger j." The pseudo-code expression (i == j) is shorthand for "true if and only if the BigInteger i represents the same value as the BigInteger j." Other pseudo-code expressions are interpreted similarly.

All methods and constructors in this class throw NullPointerException when passed a null object reference for any input parameter. BigInteger must support values in the range -2Integer.MAX_VALUE (exclusive) to +2Integer.MAX_VALUE (exclusive) and may support values outside of that range. An ArithmeticException is thrown when a BigInteger constructor or method would generate a value outside of the supported range. The range of probable prime values is limited and may be less than the full supported positive range of BigInteger. The range must be at least 1 to 2500000000.

Author: Josh Bloch, Michael McCloskey, Alan Eliasen, Timothy Buktu
See Also:
Implementation Note: In the reference implementation, BigInteger constructors and operations throw ArithmeticException when the result is out of the supported range of -2Integer.MAX_VALUE (exclusive) to +2Integer.MAX_VALUE (exclusive).
@jls 4.2.2 Integer Operations
Since:1.1
/** * Immutable arbitrary-precision integers. All operations behave as if * BigIntegers were represented in two's-complement notation (like Java's * primitive integer types). BigInteger provides analogues to all of Java's * primitive integer operators, and all relevant methods from java.lang.Math. * Additionally, BigInteger provides operations for modular arithmetic, GCD * calculation, primality testing, prime generation, bit manipulation, * and a few other miscellaneous operations. * * <p>Semantics of arithmetic operations exactly mimic those of Java's integer * arithmetic operators, as defined in <i>The Java&trade; Language Specification</i>. * For example, division by zero throws an {@code ArithmeticException}, and * division of a negative by a positive yields a negative (or zero) remainder. * * <p>Semantics of shift operations extend those of Java's shift operators * to allow for negative shift distances. A right-shift with a negative * shift distance results in a left shift, and vice-versa. The unsigned * right shift operator ({@code >>>}) is omitted since this operation * only makes sense for a fixed sized word and not for a * representation conceptually having an infinite number of leading * virtual sign bits. * * <p>Semantics of bitwise logical operations exactly mimic those of Java's * bitwise integer operators. The binary operators ({@code and}, * {@code or}, {@code xor}) implicitly perform sign extension on the shorter * of the two operands prior to performing the operation. * * <p>Comparison operations perform signed integer comparisons, analogous to * those performed by Java's relational and equality operators. * * <p>Modular arithmetic operations are provided to compute residues, perform * exponentiation, and compute multiplicative inverses. These methods always * return a non-negative result, between {@code 0} and {@code (modulus - 1)}, * inclusive. * * <p>Bit operations operate on a single bit of the two's-complement * representation of their operand. If necessary, the operand is sign- * extended so that it contains the designated bit. None of the single-bit * operations can produce a BigInteger with a different sign from the * BigInteger being operated on, as they affect only a single bit, and the * arbitrarily large abstraction provided by this class ensures that conceptually * there are infinitely many "virtual sign bits" preceding each BigInteger. * * <p>For the sake of brevity and clarity, pseudo-code is used throughout the * descriptions of BigInteger methods. The pseudo-code expression * {@code (i + j)} is shorthand for "a BigInteger whose value is * that of the BigInteger {@code i} plus that of the BigInteger {@code j}." * The pseudo-code expression {@code (i == j)} is shorthand for * "{@code true} if and only if the BigInteger {@code i} represents the same * value as the BigInteger {@code j}." Other pseudo-code expressions are * interpreted similarly. * * <p>All methods and constructors in this class throw * {@code NullPointerException} when passed * a null object reference for any input parameter. * * BigInteger must support values in the range * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) * and may support values outside of that range. * * An {@code ArithmeticException} is thrown when a BigInteger * constructor or method would generate a value outside of the * supported range. * * The range of probable prime values is limited and may be less than * the full supported positive range of {@code BigInteger}. * The range must be at least 1 to 2<sup>500000000</sup>. * * @implNote * In the reference implementation, BigInteger constructors and * operations throw {@code ArithmeticException} when the result is out * of the supported range of * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive). * * @see BigDecimal * @jls 4.2.2 Integer Operations * @author Josh Bloch * @author Michael McCloskey * @author Alan Eliasen * @author Timothy Buktu * @since 1.1 */
public class BigInteger extends Number implements Comparable<BigInteger> {
The signum of this BigInteger: -1 for negative, 0 for zero, or 1 for positive. Note that the BigInteger zero must have a signum of 0. This is necessary to ensures that there is exactly one representation for each BigInteger value.
/** * The signum of this BigInteger: -1 for negative, 0 for zero, or * 1 for positive. Note that the BigInteger zero <em>must</em> have * a signum of 0. This is necessary to ensures that there is exactly one * representation for each BigInteger value. */
final int signum;
The magnitude of this BigInteger, in big-endian order: the zeroth element of this array is the most-significant int of the magnitude. The magnitude must be "minimal" in that the most-significant int (mag[0]) must be non-zero. This is necessary to ensure that there is exactly one representation for each BigInteger value. Note that this implies that the BigInteger zero has a zero-length mag array.
/** * The magnitude of this BigInteger, in <i>big-endian</i> order: the * zeroth element of this array is the most-significant int of the * magnitude. The magnitude must be "minimal" in that the most-significant * int ({@code mag[0]}) must be non-zero. This is necessary to * ensure that there is exactly one representation for each BigInteger * value. Note that this implies that the BigInteger zero has a * zero-length mag array. */
final int[] mag; // The following fields are stable variables. A stable variable's value // changes at most once from the default zero value to a non-zero stable // value. A stable value is calculated lazily on demand.
One plus the bitCount of this BigInteger. This is a stable variable.
See Also:
  • bitCount
/** * One plus the bitCount of this BigInteger. This is a stable variable. * * @see #bitCount */
private int bitCountPlusOne;
One plus the bitLength of this BigInteger. This is a stable variable. (either value is acceptable).
See Also:
  • bitLength()
/** * One plus the bitLength of this BigInteger. This is a stable variable. * (either value is acceptable). * * @see #bitLength() */
private int bitLengthPlusOne;
Two plus the lowest set bit of this BigInteger. This is a stable variable.
See Also:
  • getLowestSetBit
/** * Two plus the lowest set bit of this BigInteger. This is a stable variable. * * @see #getLowestSetBit */
private int lowestSetBitPlusTwo;
Two plus the index of the lowest-order int in the magnitude of this BigInteger that contains a nonzero int. This is a stable variable. The least significant int has int-number 0, the next int in order of increasing significance has int-number 1, and so forth.

Note: never used for a BigInteger with a magnitude of zero.

See Also:
  • firstNonzeroIntNum()
/** * Two plus the index of the lowest-order int in the magnitude of this * BigInteger that contains a nonzero int. This is a stable variable. The * least significant int has int-number 0, the next int in order of * increasing significance has int-number 1, and so forth. * * <p>Note: never used for a BigInteger with a magnitude of zero. * * @see #firstNonzeroIntNum() */
private int firstNonzeroIntNumPlusTwo;
This mask is used to obtain the value of an int as if it were unsigned.
/** * This mask is used to obtain the value of an int as if it were unsigned. */
static final long LONG_MASK = 0xffffffffL;
This constant limits mag.length of BigIntegers to the supported range.
/** * This constant limits {@code mag.length} of BigIntegers to the supported * range. */
private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26)
Bit lengths larger than this constant can cause overflow in searchLen calculation and in BitSieve.singleSearch method.
/** * Bit lengths larger than this constant can cause overflow in searchLen * calculation and in BitSieve.singleSearch method. */
private static final int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;
The threshold value for using Karatsuba multiplication. If the number of ints in both mag arrays are greater than this number, then Karatsuba multiplication will be used. This value is found experimentally to work well.
/** * The threshold value for using Karatsuba multiplication. If the number * of ints in both mag arrays are greater than this number, then * Karatsuba multiplication will be used. This value is found * experimentally to work well. */
private static final int KARATSUBA_THRESHOLD = 80;
The threshold value for using 3-way Toom-Cook multiplication. If the number of ints in each mag array is greater than the Karatsuba threshold, and the number of ints in at least one of the mag arrays is greater than this threshold, then Toom-Cook multiplication will be used.
/** * The threshold value for using 3-way Toom-Cook multiplication. * If the number of ints in each mag array is greater than the * Karatsuba threshold, and the number of ints in at least one of * the mag arrays is greater than this threshold, then Toom-Cook * multiplication will be used. */
private static final int TOOM_COOK_THRESHOLD = 240;
The threshold value for using Karatsuba squaring. If the number of ints in the number are larger than this value, Karatsuba squaring will be used. This value is found experimentally to work well.
/** * The threshold value for using Karatsuba squaring. If the number * of ints in the number are larger than this value, * Karatsuba squaring will be used. This value is found * experimentally to work well. */
private static final int KARATSUBA_SQUARE_THRESHOLD = 128;
The threshold value for using Toom-Cook squaring. If the number of ints in the number are larger than this value, Toom-Cook squaring will be used. This value is found experimentally to work well.
/** * The threshold value for using Toom-Cook squaring. If the number * of ints in the number are larger than this value, * Toom-Cook squaring will be used. This value is found * experimentally to work well. */
private static final int TOOM_COOK_SQUARE_THRESHOLD = 216;
The threshold value for using Burnikel-Ziegler division. If the number of ints in the divisor are larger than this value, Burnikel-Ziegler division may be used. This value is found experimentally to work well.
/** * The threshold value for using Burnikel-Ziegler division. If the number * of ints in the divisor are larger than this value, Burnikel-Ziegler * division may be used. This value is found experimentally to work well. */
static final int BURNIKEL_ZIEGLER_THRESHOLD = 80;
The offset value for using Burnikel-Ziegler division. If the number of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the number of ints in the dividend is greater than the number of ints in the divisor plus this value, Burnikel-Ziegler division will be used. This value is found experimentally to work well.
/** * The offset value for using Burnikel-Ziegler division. If the number * of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the * number of ints in the dividend is greater than the number of ints in the * divisor plus this value, Burnikel-Ziegler division will be used. This * value is found experimentally to work well. */
static final int BURNIKEL_ZIEGLER_OFFSET = 40;
The threshold value for using Schoenhage recursive base conversion. If the number of ints in the number are larger than this value, the Schoenhage algorithm will be used. In practice, it appears that the Schoenhage routine is faster for any threshold down to 2, and is relatively flat for thresholds between 2-25, so this choice may be varied within this range for very small effect.
/** * The threshold value for using Schoenhage recursive base conversion. If * the number of ints in the number are larger than this value, * the Schoenhage algorithm will be used. In practice, it appears that the * Schoenhage routine is faster for any threshold down to 2, and is * relatively flat for thresholds between 2-25, so this choice may be * varied within this range for very small effect. */
private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;
The threshold value for using squaring code to perform multiplication of a BigInteger instance by itself. If the number of ints in the number are larger than this value, multiply(this) will return square().
/** * The threshold value for using squaring code to perform multiplication * of a {@code BigInteger} instance by itself. If the number of ints in * the number are larger than this value, {@code multiply(this)} will * return {@code square()}. */
private static final int MULTIPLY_SQUARE_THRESHOLD = 20;
The threshold for using an intrinsic version of implMontgomeryXXX to perform Montgomery multiplication. If the number of ints in the number is more than this value we do not use the intrinsic.
/** * The threshold for using an intrinsic version of * implMontgomeryXXX to perform Montgomery multiplication. If the * number of ints in the number is more than this value we do not * use the intrinsic. */
private static final int MONTGOMERY_INTRINSIC_THRESHOLD = 512; // Constructors
Translates a byte sub-array containing the two's-complement binary representation of a BigInteger into a BigInteger. The sub-array is specified via an offset into the array and a length. The sub-array is assumed to be in big-endian byte-order: the most significant byte is the element at index off. The val array is assumed to be unchanged for the duration of the constructor call. An IndexOutOfBoundsException is thrown if the length of the array val is non-zero and either off is negative, len is negative, or off+len is greater than the length of val.
Params:
  • val – byte array containing a sub-array which is the big-endian two's-complement binary representation of a BigInteger.
  • off – the start offset of the binary representation.
  • len – the number of bytes to use.
Throws:
Since:9
/** * Translates a byte sub-array containing the two's-complement binary * representation of a BigInteger into a BigInteger. The sub-array is * specified via an offset into the array and a length. The sub-array is * assumed to be in <i>big-endian</i> byte-order: the most significant * byte is the element at index {@code off}. The {@code val} array is * assumed to be unchanged for the duration of the constructor call. * * An {@code IndexOutOfBoundsException} is thrown if the length of the array * {@code val} is non-zero and either {@code off} is negative, {@code len} * is negative, or {@code off+len} is greater than the length of * {@code val}. * * @param val byte array containing a sub-array which is the big-endian * two's-complement binary representation of a BigInteger. * @param off the start offset of the binary representation. * @param len the number of bytes to use. * @throws NumberFormatException {@code val} is zero bytes long. * @throws IndexOutOfBoundsException if the provided array offset and * length would cause an index into the byte array to be * negative or greater than or equal to the array length. * @since 9 */
public BigInteger(byte[] val, int off, int len) { if (val.length == 0) { throw new NumberFormatException("Zero length BigInteger"); } Objects.checkFromIndexSize(off, len, val.length); if (val[off] < 0) { mag = makePositive(val, off, len); signum = -1; } else { mag = stripLeadingZeroBytes(val, off, len); signum = (mag.length == 0 ? 0 : 1); } if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
Translates a byte array containing the two's-complement binary representation of a BigInteger into a BigInteger. The input array is assumed to be in big-endian byte-order: the most significant byte is in the zeroth element. The val array is assumed to be unchanged for the duration of the constructor call.
Params:
  • val – big-endian two's-complement binary representation of a BigInteger.
Throws:
/** * Translates a byte array containing the two's-complement binary * representation of a BigInteger into a BigInteger. The input array is * assumed to be in <i>big-endian</i> byte-order: the most significant * byte is in the zeroth element. The {@code val} array is assumed to be * unchanged for the duration of the constructor call. * * @param val big-endian two's-complement binary representation of a * BigInteger. * @throws NumberFormatException {@code val} is zero bytes long. */
public BigInteger(byte[] val) { this(val, 0, val.length); }
This private constructor translates an int array containing the two's-complement binary representation of a BigInteger into a BigInteger. The input array is assumed to be in big-endian int-order: the most significant int is in the zeroth element. The val array is assumed to be unchanged for the duration of the constructor call.
/** * This private constructor translates an int array containing the * two's-complement binary representation of a BigInteger into a * BigInteger. The input array is assumed to be in <i>big-endian</i> * int-order: the most significant int is in the zeroth element. The * {@code val} array is assumed to be unchanged for the duration of * the constructor call. */
private BigInteger(int[] val) { if (val.length == 0) throw new NumberFormatException("Zero length BigInteger"); if (val[0] < 0) { mag = makePositive(val); signum = -1; } else { mag = trustedStripLeadingZeroInts(val); signum = (mag.length == 0 ? 0 : 1); } if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
Translates the sign-magnitude representation of a BigInteger into a BigInteger. The sign is represented as an integer signum value: -1 for negative, 0 for zero, or 1 for positive. The magnitude is a sub-array of a byte array in big-endian byte-order: the most significant byte is the element at index off. A zero value of the length len is permissible, and will result in a BigInteger value of 0, whether signum is -1, 0 or 1. The magnitude array is assumed to be unchanged for the duration of the constructor call. An IndexOutOfBoundsException is thrown if the length of the array magnitude is non-zero and either off is negative, len is negative, or off+len is greater than the length of magnitude.
Params:
  • signum – signum of the number (-1 for negative, 0 for zero, 1 for positive).
  • magnitude – big-endian binary representation of the magnitude of the number.
  • off – the start offset of the binary representation.
  • len – the number of bytes to use.
Throws:
  • NumberFormatExceptionsignum is not one of the three legal values (-1, 0, and 1), or signum is 0 and magnitude contains one or more non-zero bytes.
  • IndexOutOfBoundsException – if the provided array offset and length would cause an index into the byte array to be negative or greater than or equal to the array length.
Since:9
/** * Translates the sign-magnitude representation of a BigInteger into a * BigInteger. The sign is represented as an integer signum value: -1 for * negative, 0 for zero, or 1 for positive. The magnitude is a sub-array of * a byte array in <i>big-endian</i> byte-order: the most significant byte * is the element at index {@code off}. A zero value of the length * {@code len} is permissible, and will result in a BigInteger value of 0, * whether signum is -1, 0 or 1. The {@code magnitude} array is assumed to * be unchanged for the duration of the constructor call. * * An {@code IndexOutOfBoundsException} is thrown if the length of the array * {@code magnitude} is non-zero and either {@code off} is negative, * {@code len} is negative, or {@code off+len} is greater than the length of * {@code magnitude}. * * @param signum signum of the number (-1 for negative, 0 for zero, 1 * for positive). * @param magnitude big-endian binary representation of the magnitude of * the number. * @param off the start offset of the binary representation. * @param len the number of bytes to use. * @throws NumberFormatException {@code signum} is not one of the three * legal values (-1, 0, and 1), or {@code signum} is 0 and * {@code magnitude} contains one or more non-zero bytes. * @throws IndexOutOfBoundsException if the provided array offset and * length would cause an index into the byte array to be * negative or greater than or equal to the array length. * @since 9 */
public BigInteger(int signum, byte[] magnitude, int off, int len) { if (signum < -1 || signum > 1) { throw(new NumberFormatException("Invalid signum value")); } Objects.checkFromIndexSize(off, len, magnitude.length); // stripLeadingZeroBytes() returns a zero length array if len == 0 this.mag = stripLeadingZeroBytes(magnitude, off, len); if (this.mag.length == 0) { this.signum = 0; } else { if (signum == 0) throw(new NumberFormatException("signum-magnitude mismatch")); this.signum = signum; } if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
Translates the sign-magnitude representation of a BigInteger into a BigInteger. The sign is represented as an integer signum value: -1 for negative, 0 for zero, or 1 for positive. The magnitude is a byte array in big-endian byte-order: the most significant byte is the zeroth element. A zero-length magnitude array is permissible, and will result in a BigInteger value of 0, whether signum is -1, 0 or 1. The magnitude array is assumed to be unchanged for the duration of the constructor call.
Params:
  • signum – signum of the number (-1 for negative, 0 for zero, 1 for positive).
  • magnitude – big-endian binary representation of the magnitude of the number.
Throws:
  • NumberFormatExceptionsignum is not one of the three legal values (-1, 0, and 1), or signum is 0 and magnitude contains one or more non-zero bytes.
/** * Translates the sign-magnitude representation of a BigInteger into a * BigInteger. The sign is represented as an integer signum value: -1 for * negative, 0 for zero, or 1 for positive. The magnitude is a byte array * in <i>big-endian</i> byte-order: the most significant byte is the * zeroth element. A zero-length magnitude array is permissible, and will * result in a BigInteger value of 0, whether signum is -1, 0 or 1. The * {@code magnitude} array is assumed to be unchanged for the duration of * the constructor call. * * @param signum signum of the number (-1 for negative, 0 for zero, 1 * for positive). * @param magnitude big-endian binary representation of the magnitude of * the number. * @throws NumberFormatException {@code signum} is not one of the three * legal values (-1, 0, and 1), or {@code signum} is 0 and * {@code magnitude} contains one or more non-zero bytes. */
public BigInteger(int signum, byte[] magnitude) { this(signum, magnitude, 0, magnitude.length); }
A constructor for internal use that translates the sign-magnitude representation of a BigInteger into a BigInteger. It checks the arguments and copies the magnitude so this constructor would be safe for external use. The magnitude array is assumed to be unchanged for the duration of the constructor call.
/** * A constructor for internal use that translates the sign-magnitude * representation of a BigInteger into a BigInteger. It checks the * arguments and copies the magnitude so this constructor would be * safe for external use. The {@code magnitude} array is assumed to be * unchanged for the duration of the constructor call. */
private BigInteger(int signum, int[] magnitude) { this.mag = stripLeadingZeroInts(magnitude); if (signum < -1 || signum > 1) throw(new NumberFormatException("Invalid signum value")); if (this.mag.length == 0) { this.signum = 0; } else { if (signum == 0) throw(new NumberFormatException("signum-magnitude mismatch")); this.signum = signum; } if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
Translates the String representation of a BigInteger in the specified radix into a BigInteger. The String representation consists of an optional minus or plus sign followed by a sequence of one or more digits in the specified radix. The character-to-digit mapping is provided by Character.digit. The String may not contain any extraneous characters (whitespace, for example).
Params:
  • val – String representation of BigInteger.
  • radix – radix to be used in interpreting val.
Throws:
See Also:
/** * Translates the String representation of a BigInteger in the * specified radix into a BigInteger. The String representation * consists of an optional minus or plus sign followed by a * sequence of one or more digits in the specified radix. The * character-to-digit mapping is provided by {@code * Character.digit}. The String may not contain any extraneous * characters (whitespace, for example). * * @param val String representation of BigInteger. * @param radix radix to be used in interpreting {@code val}. * @throws NumberFormatException {@code val} is not a valid representation * of a BigInteger in the specified radix, or {@code radix} is * outside the range from {@link Character#MIN_RADIX} to * {@link Character#MAX_RADIX}, inclusive. * @see Character#digit */
public BigInteger(String val, int radix) { int cursor = 0, numDigits; final int len = val.length(); if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) throw new NumberFormatException("Radix out of range"); if (len == 0) throw new NumberFormatException("Zero length BigInteger"); // Check for at most one leading sign int sign = 1; int index1 = val.lastIndexOf('-'); int index2 = val.lastIndexOf('+'); if (index1 >= 0) { if (index1 != 0 || index2 >= 0) { throw new NumberFormatException("Illegal embedded sign character"); } sign = -1; cursor = 1; } else if (index2 >= 0) { if (index2 != 0) { throw new NumberFormatException("Illegal embedded sign character"); } cursor = 1; } if (cursor == len) throw new NumberFormatException("Zero length BigInteger"); // Skip leading zeros and compute number of digits in magnitude while (cursor < len && Character.digit(val.charAt(cursor), radix) == 0) { cursor++; } if (cursor == len) { signum = 0; mag = ZERO.mag; return; } numDigits = len - cursor; signum = sign; // Pre-allocate array of expected size. May be too large but can // never be too small. Typically exact. long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1; if (numBits + 31 >= (1L << 32)) { reportOverflow(); } int numWords = (int) (numBits + 31) >>> 5; int[] magnitude = new int[numWords]; // Process first (potentially short) digit group int firstGroupLen = numDigits % digitsPerInt[radix]; if (firstGroupLen == 0) firstGroupLen = digitsPerInt[radix]; String group = val.substring(cursor, cursor += firstGroupLen); magnitude[numWords - 1] = Integer.parseInt(group, radix); if (magnitude[numWords - 1] < 0) throw new NumberFormatException("Illegal digit"); // Process remaining digit groups int superRadix = intRadix[radix]; int groupVal = 0; while (cursor < len) { group = val.substring(cursor, cursor += digitsPerInt[radix]); groupVal = Integer.parseInt(group, radix); if (groupVal < 0) throw new NumberFormatException("Illegal digit"); destructiveMulAdd(magnitude, superRadix, groupVal); } // Required for cases where the array was overallocated. mag = trustedStripLeadingZeroInts(magnitude); if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } } /* * Constructs a new BigInteger using a char array with radix=10. * Sign is precalculated outside and not allowed in the val. The {@code val} * array is assumed to be unchanged for the duration of the constructor * call. */ BigInteger(char[] val, int sign, int len) { int cursor = 0, numDigits; // Skip leading zeros and compute number of digits in magnitude while (cursor < len && Character.digit(val[cursor], 10) == 0) { cursor++; } if (cursor == len) { signum = 0; mag = ZERO.mag; return; } numDigits = len - cursor; signum = sign; // Pre-allocate array of expected size int numWords; if (len < 10) { numWords = 1; } else { long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1; if (numBits + 31 >= (1L << 32)) { reportOverflow(); } numWords = (int) (numBits + 31) >>> 5; } int[] magnitude = new int[numWords]; // Process first (potentially short) digit group int firstGroupLen = numDigits % digitsPerInt[10]; if (firstGroupLen == 0) firstGroupLen = digitsPerInt[10]; magnitude[numWords - 1] = parseInt(val, cursor, cursor += firstGroupLen); // Process remaining digit groups while (cursor < len) { int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]); destructiveMulAdd(magnitude, intRadix[10], groupVal); } mag = trustedStripLeadingZeroInts(magnitude); if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } } // Create an integer with the digits between the two indexes // Assumes start < end. The result may be negative, but it // is to be treated as an unsigned value. private int parseInt(char[] source, int start, int end) { int result = Character.digit(source[start++], 10); if (result == -1) throw new NumberFormatException(new String(source)); for (int index = start; index < end; index++) { int nextVal = Character.digit(source[index], 10); if (nextVal == -1) throw new NumberFormatException(new String(source)); result = 10*result + nextVal; } return result; } // bitsPerDigit in the given radix times 1024 // Rounded up to avoid underallocation. private static long bitsPerDigit[] = { 0, 0, 1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672, 3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633, 4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210, 5253, 5295}; // Multiply x array times word y in place, and add word z private static void destructiveMulAdd(int[] x, int y, int z) { // Perform the multiplication word by word long ylong = y & LONG_MASK; long zlong = z & LONG_MASK; int len = x.length; long product = 0; long carry = 0; for (int i = len-1; i >= 0; i--) { product = ylong * (x[i] & LONG_MASK) + carry; x[i] = (int)product; carry = product >>> 32; } // Perform the addition long sum = (x[len-1] & LONG_MASK) + zlong; x[len-1] = (int)sum; carry = sum >>> 32; for (int i = len-2; i >= 0; i--) { sum = (x[i] & LONG_MASK) + carry; x[i] = (int)sum; carry = sum >>> 32; } }
Translates the decimal String representation of a BigInteger into a BigInteger. The String representation consists of an optional minus sign followed by a sequence of one or more decimal digits. The character-to-digit mapping is provided by Character.digit. The String may not contain any extraneous characters (whitespace, for example).
Params:
  • val – decimal String representation of BigInteger.
Throws:
See Also:
/** * Translates the decimal String representation of a BigInteger into a * BigInteger. The String representation consists of an optional minus * sign followed by a sequence of one or more decimal digits. The * character-to-digit mapping is provided by {@code Character.digit}. * The String may not contain any extraneous characters (whitespace, for * example). * * @param val decimal String representation of BigInteger. * @throws NumberFormatException {@code val} is not a valid representation * of a BigInteger. * @see Character#digit */
public BigInteger(String val) { this(val, 10); }
Constructs a randomly generated BigInteger, uniformly distributed over the range 0 to (2numBits - 1), inclusive. The uniformity of the distribution assumes that a fair source of random bits is provided in rnd. Note that this constructor always constructs a non-negative BigInteger.
Params:
  • numBits – maximum bitLength of the new BigInteger.
  • rnd – source of randomness to be used in computing the new BigInteger.
Throws:
See Also:
/** * Constructs a randomly generated BigInteger, uniformly distributed over * the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive. * The uniformity of the distribution assumes that a fair source of random * bits is provided in {@code rnd}. Note that this constructor always * constructs a non-negative BigInteger. * * @param numBits maximum bitLength of the new BigInteger. * @param rnd source of randomness to be used in computing the new * BigInteger. * @throws IllegalArgumentException {@code numBits} is negative. * @see #bitLength() */
public BigInteger(int numBits, Random rnd) { this(1, randomBits(numBits, rnd)); } private static byte[] randomBits(int numBits, Random rnd) { if (numBits < 0) throw new IllegalArgumentException("numBits must be non-negative"); int numBytes = (int)(((long)numBits+7)/8); // avoid overflow byte[] randomBits = new byte[numBytes]; // Generate random bytes and mask out any excess bits if (numBytes > 0) { rnd.nextBytes(randomBits); int excessBits = 8*numBytes - numBits; randomBits[0] &= (1 << (8-excessBits)) - 1; } return randomBits; }
Constructs a randomly generated positive BigInteger that is probably prime, with the specified bitLength.
Params:
  • bitLength – bitLength of the returned BigInteger.
  • certainty – a measure of the uncertainty that the caller is willing to tolerate. The probability that the new BigInteger represents a prime number will exceed (1 - 1/2certainty). The execution time of this constructor is proportional to the value of this parameter.
  • rnd – source of random bits used to select candidates to be tested for primality.
Throws:
See Also:
API Note:It is recommended that the probablePrime method be used in preference to this constructor unless there is a compelling need to specify a certainty.
/** * Constructs a randomly generated positive BigInteger that is probably * prime, with the specified bitLength. * * @apiNote It is recommended that the {@link #probablePrime probablePrime} * method be used in preference to this constructor unless there * is a compelling need to specify a certainty. * * @param bitLength bitLength of the returned BigInteger. * @param certainty a measure of the uncertainty that the caller is * willing to tolerate. The probability that the new BigInteger * represents a prime number will exceed * (1 - 1/2<sup>{@code certainty}</sup>). The execution time of * this constructor is proportional to the value of this parameter. * @param rnd source of random bits used to select candidates to be * tested for primality. * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large. * @see #bitLength() */
public BigInteger(int bitLength, int certainty, Random rnd) { BigInteger prime; if (bitLength < 2) throw new ArithmeticException("bitLength < 2"); prime = (bitLength < SMALL_PRIME_THRESHOLD ? smallPrime(bitLength, certainty, rnd) : largePrime(bitLength, certainty, rnd)); signum = 1; mag = prime.mag; } // Minimum size in bits that the requested prime number has // before we use the large prime number generating algorithms. // The cutoff of 95 was chosen empirically for best performance. private static final int SMALL_PRIME_THRESHOLD = 95; // Certainty required to meet the spec of probablePrime private static final int DEFAULT_PRIME_CERTAINTY = 100;
Returns a positive BigInteger that is probably prime, with the specified bitLength. The probability that a BigInteger returned by this method is composite does not exceed 2-100.
Params:
  • bitLength – bitLength of the returned BigInteger.
  • rnd – source of random bits used to select candidates to be tested for primality.
Throws:
See Also:
Returns:a BigInteger of bitLength bits that is probably prime
Since:1.4
/** * Returns a positive BigInteger that is probably prime, with the * specified bitLength. The probability that a BigInteger returned * by this method is composite does not exceed 2<sup>-100</sup>. * * @param bitLength bitLength of the returned BigInteger. * @param rnd source of random bits used to select candidates to be * tested for primality. * @return a BigInteger of {@code bitLength} bits that is probably prime * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large. * @see #bitLength() * @since 1.4 */
public static BigInteger probablePrime(int bitLength, Random rnd) { if (bitLength < 2) throw new ArithmeticException("bitLength < 2"); return (bitLength < SMALL_PRIME_THRESHOLD ? smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) : largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd)); }
Find a random number of the specified bitLength that is probably prime. This method is used for smaller primes, its performance degrades on larger bitlengths. This method assumes bitLength > 1.
/** * Find a random number of the specified bitLength that is probably prime. * This method is used for smaller primes, its performance degrades on * larger bitlengths. * * This method assumes bitLength > 1. */
private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) { int magLen = (bitLength + 31) >>> 5; int temp[] = new int[magLen]; int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int int highMask = (highBit << 1) - 1; // Bits to keep in high int while (true) { // Construct a candidate for (int i=0; i < magLen; i++) temp[i] = rnd.nextInt(); temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length if (bitLength > 2) temp[magLen-1] |= 1; // Make odd if bitlen > 2 BigInteger p = new BigInteger(temp, 1); // Do cheap "pre-test" if applicable if (bitLength > 6) { long r = p.remainder(SMALL_PRIME_PRODUCT).longValue(); if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) continue; // Candidate is composite; try another } // All candidates of bitLength 2 and 3 are prime by this point if (bitLength < 4) return p; // Do expensive test if we survive pre-test (or it's inapplicable) if (p.primeToCertainty(certainty, rnd)) return p; } } private static final BigInteger SMALL_PRIME_PRODUCT = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
Find a random number of the specified bitLength that is probably prime. This method is more appropriate for larger bitlengths since it uses a sieve to eliminate most composites before using a more expensive test.
/** * Find a random number of the specified bitLength that is probably prime. * This method is more appropriate for larger bitlengths since it uses * a sieve to eliminate most composites before using a more expensive * test. */
private static BigInteger largePrime(int bitLength, int certainty, Random rnd) { BigInteger p; p = new BigInteger(bitLength, rnd).setBit(bitLength-1); p.mag[p.mag.length-1] &= 0xfffffffe; // Use a sieve length likely to contain the next prime number int searchLen = getPrimeSearchLen(bitLength); BitSieve searchSieve = new BitSieve(p, searchLen); BigInteger candidate = searchSieve.retrieve(p, certainty, rnd); while ((candidate == null) || (candidate.bitLength() != bitLength)) { p = p.add(BigInteger.valueOf(2*searchLen)); if (p.bitLength() != bitLength) p = new BigInteger(bitLength, rnd).setBit(bitLength-1); p.mag[p.mag.length-1] &= 0xfffffffe; searchSieve = new BitSieve(p, searchLen); candidate = searchSieve.retrieve(p, certainty, rnd); } return candidate; }
Returns the first integer greater than this BigInteger that is probably prime. The probability that the number returned by this method is composite does not exceed 2-100. This method will never skip over a prime when searching: if it returns p, there is no prime q such that this < q < p.
Throws:
Returns:the first integer greater than this BigInteger that is probably prime.
Since:1.5
/** * Returns the first integer greater than this {@code BigInteger} that * is probably prime. The probability that the number returned by this * method is composite does not exceed 2<sup>-100</sup>. This method will * never skip over a prime when searching: if it returns {@code p}, there * is no prime {@code q} such that {@code this < q < p}. * * @return the first integer greater than this {@code BigInteger} that * is probably prime. * @throws ArithmeticException {@code this < 0} or {@code this} is too large. * @since 1.5 */
public BigInteger nextProbablePrime() { if (this.signum < 0) throw new ArithmeticException("start < 0: " + this); // Handle trivial cases if ((this.signum == 0) || this.equals(ONE)) return TWO; BigInteger result = this.add(ONE); // Fastpath for small numbers if (result.bitLength() < SMALL_PRIME_THRESHOLD) { // Ensure an odd number if (!result.testBit(0)) result = result.add(ONE); while (true) { // Do cheap "pre-test" if applicable if (result.bitLength() > 6) { long r = result.remainder(SMALL_PRIME_PRODUCT).longValue(); if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) { result = result.add(TWO); continue; // Candidate is composite; try another } } // All candidates of bitLength 2 and 3 are prime by this point if (result.bitLength() < 4) return result; // The expensive test if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null)) return result; result = result.add(TWO); } } // Start at previous even number if (result.testBit(0)) result = result.subtract(ONE); // Looking for the next large prime int searchLen = getPrimeSearchLen(result.bitLength()); while (true) { BitSieve searchSieve = new BitSieve(result, searchLen); BigInteger candidate = searchSieve.retrieve(result, DEFAULT_PRIME_CERTAINTY, null); if (candidate != null) return candidate; result = result.add(BigInteger.valueOf(2 * searchLen)); } } private static int getPrimeSearchLen(int bitLength) { if (bitLength > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) { throw new ArithmeticException("Prime search implementation restriction on bitLength"); } return bitLength / 20 * 64; }
Returns true if this BigInteger is probably prime, false if it's definitely composite. This method assumes bitLength > 2.
Params:
  • certainty – a measure of the uncertainty that the caller is willing to tolerate: if the call returns true the probability that this BigInteger is prime exceeds (1 - 1/2<sup>certainty</sup>). The execution time of this method is proportional to the value of this parameter.
Returns:true if this BigInteger is probably prime, false if it's definitely composite.
/** * Returns {@code true} if this BigInteger is probably prime, * {@code false} if it's definitely composite. * * This method assumes bitLength > 2. * * @param certainty a measure of the uncertainty that the caller is * willing to tolerate: if the call returns {@code true} * the probability that this BigInteger is prime exceeds * {@code (1 - 1/2<sup>certainty</sup>)}. The execution time of * this method is proportional to the value of this parameter. * @return {@code true} if this BigInteger is probably prime, * {@code false} if it's definitely composite. */
boolean primeToCertainty(int certainty, Random random) { int rounds = 0; int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2; // The relationship between the certainty and the number of rounds // we perform is given in the draft standard ANSI X9.80, "PRIME // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES". int sizeInBits = this.bitLength(); if (sizeInBits < 100) { rounds = 50; rounds = n < rounds ? n : rounds; return passesMillerRabin(rounds, random); } if (sizeInBits < 256) { rounds = 27; } else if (sizeInBits < 512) { rounds = 15; } else if (sizeInBits < 768) { rounds = 8; } else if (sizeInBits < 1024) { rounds = 4; } else { rounds = 2; } rounds = n < rounds ? n : rounds; return passesMillerRabin(rounds, random) && passesLucasLehmer(); }
Returns true iff this BigInteger is a Lucas-Lehmer probable prime. The following assumptions are made: This BigInteger is a positive, odd number.
/** * Returns true iff this BigInteger is a Lucas-Lehmer probable prime. * * The following assumptions are made: * This BigInteger is a positive, odd number. */
private boolean passesLucasLehmer() { BigInteger thisPlusOne = this.add(ONE); // Step 1 int d = 5; while (jacobiSymbol(d, this) != -1) { // 5, -7, 9, -11, ... d = (d < 0) ? Math.abs(d)+2 : -(d+2); } // Step 2 BigInteger u = lucasLehmerSequence(d, thisPlusOne, this); // Step 3 return u.mod(this).equals(ZERO); }
Computes Jacobi(p,n). Assumes n positive, odd, n>=3.
/** * Computes Jacobi(p,n). * Assumes n positive, odd, n>=3. */
private static int jacobiSymbol(int p, BigInteger n) { if (p == 0) return 0; // Algorithm and comments adapted from Colin Plumb's C library. int j = 1; int u = n.mag[n.mag.length-1]; // Make p positive if (p < 0) { p = -p; int n8 = u & 7; if ((n8 == 3) || (n8 == 7)) j = -j; // 3 (011) or 7 (111) mod 8 } // Get rid of factors of 2 in p while ((p & 3) == 0) p >>= 2; if ((p & 1) == 0) { p >>= 1; if (((u ^ (u>>1)) & 2) != 0) j = -j; // 3 (011) or 5 (101) mod 8 } if (p == 1) return j; // Then, apply quadratic reciprocity if ((p & u & 2) != 0) // p = u = 3 (mod 4)? j = -j; // And reduce u mod p u = n.mod(BigInteger.valueOf(p)).intValue(); // Now compute Jacobi(u,p), u < p while (u != 0) { while ((u & 3) == 0) u >>= 2; if ((u & 1) == 0) { u >>= 1; if (((p ^ (p>>1)) & 2) != 0) j = -j; // 3 (011) or 5 (101) mod 8 } if (u == 1) return j; // Now both u and p are odd, so use quadratic reciprocity assert (u < p); int t = u; u = p; p = t; if ((u & p & 2) != 0) // u = p = 3 (mod 4)? j = -j; // Now u >= p, so it can be reduced u %= p; } return 0; } private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) { BigInteger d = BigInteger.valueOf(z); BigInteger u = ONE; BigInteger u2; BigInteger v = ONE; BigInteger v2; for (int i=k.bitLength()-2; i >= 0; i--) { u2 = u.multiply(v).mod(n); v2 = v.square().add(d.multiply(u.square())).mod(n); if (v2.testBit(0)) v2 = v2.subtract(n); v2 = v2.shiftRight(1); u = u2; v = v2; if (k.testBit(i)) { u2 = u.add(v).mod(n); if (u2.testBit(0)) u2 = u2.subtract(n); u2 = u2.shiftRight(1); v2 = v.add(d.multiply(u)).mod(n); if (v2.testBit(0)) v2 = v2.subtract(n); v2 = v2.shiftRight(1); u = u2; v = v2; } } return u; }
Returns true iff this BigInteger passes the specified number of Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS 186-2). The following assumptions are made: This BigInteger is a positive, odd number greater than 2. iterations<=50.
/** * Returns true iff this BigInteger passes the specified number of * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS * 186-2). * * The following assumptions are made: * This BigInteger is a positive, odd number greater than 2. * iterations<=50. */
private boolean passesMillerRabin(int iterations, Random rnd) { // Find a and m such that m is odd and this == 1 + 2**a * m BigInteger thisMinusOne = this.subtract(ONE); BigInteger m = thisMinusOne; int a = m.getLowestSetBit(); m = m.shiftRight(a); // Do the tests if (rnd == null) { rnd = ThreadLocalRandom.current(); } for (int i=0; i < iterations; i++) { // Generate a uniform random on (1, this) BigInteger b; do { b = new BigInteger(this.bitLength(), rnd); } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0); int j = 0; BigInteger z = b.modPow(m, this); while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) { if (j > 0 && z.equals(ONE) || ++j == a) return false; z = z.modPow(TWO, this); } } return true; }
This internal constructor differs from its public cousin with the arguments reversed in two ways: it assumes that its arguments are correct, and it doesn't copy the magnitude array.
/** * This internal constructor differs from its public cousin * with the arguments reversed in two ways: it assumes that its * arguments are correct, and it doesn't copy the magnitude array. */
BigInteger(int[] magnitude, int signum) { this.signum = (magnitude.length == 0 ? 0 : signum); this.mag = magnitude; if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
This private constructor is for internal use and assumes that its arguments are correct. The magnitude array is assumed to be unchanged for the duration of the constructor call.
/** * This private constructor is for internal use and assumes that its * arguments are correct. The {@code magnitude} array is assumed to be * unchanged for the duration of the constructor call. */
private BigInteger(byte[] magnitude, int signum) { this.signum = (magnitude.length == 0 ? 0 : signum); this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length); if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
Throws an ArithmeticException if the BigInteger would be out of the supported range.
Throws:
/** * Throws an {@code ArithmeticException} if the {@code BigInteger} would be * out of the supported range. * * @throws ArithmeticException if {@code this} exceeds the supported range. */
private void checkRange() { if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) { reportOverflow(); } } private static void reportOverflow() { throw new ArithmeticException("BigInteger would overflow supported range"); } //Static Factory Methods
Returns a BigInteger whose value is equal to that of the specified long.
Params:
  • val – value of the BigInteger to return.
API Note:This static factory method is provided in preference to a (long) constructor because it allows for reuse of frequently used BigIntegers.
Returns:a BigInteger with the specified value.
/** * Returns a BigInteger whose value is equal to that of the * specified {@code long}. * * @apiNote This static factory method is provided in preference * to a ({@code long}) constructor because it allows for reuse of * frequently used BigIntegers. * * @param val value of the BigInteger to return. * @return a BigInteger with the specified value. */
public static BigInteger valueOf(long val) { // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant if (val == 0) return ZERO; if (val > 0 && val <= MAX_CONSTANT) return posConst[(int) val]; else if (val < 0 && val >= -MAX_CONSTANT) return negConst[(int) -val]; return new BigInteger(val); }
Constructs a BigInteger with the specified value, which may not be zero.
/** * Constructs a BigInteger with the specified value, which may not be zero. */
private BigInteger(long val) { if (val < 0) { val = -val; signum = -1; } else { signum = 1; } int highWord = (int)(val >>> 32); if (highWord == 0) { mag = new int[1]; mag[0] = (int)val; } else { mag = new int[2]; mag[0] = highWord; mag[1] = (int)val; } }
Returns a BigInteger with the given two's complement representation. Assumes that the input array will not be modified (the returned BigInteger will reference the input array if feasible).
/** * Returns a BigInteger with the given two's complement representation. * Assumes that the input array will not be modified (the returned * BigInteger will reference the input array if feasible). */
private static BigInteger valueOf(int val[]) { return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val)); } // Constants
Initialize static constant array when class is loaded.
/** * Initialize static constant array when class is loaded. */
private static final int MAX_CONSTANT = 16; private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1]; private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
The cache of powers of each radix. This allows us to not have to recalculate powers of radix^(2^n) more than once. This speeds Schoenhage recursive base conversion significantly.
/** * The cache of powers of each radix. This allows us to not have to * recalculate powers of radix^(2^n) more than once. This speeds * Schoenhage recursive base conversion significantly. */
private static volatile BigInteger[][] powerCache;
The cache of logarithms of radices for base conversion.
/** The cache of logarithms of radices for base conversion. */
private static final double[] logCache;
The natural log of 2. This is used in computing cache indices.
/** The natural log of 2. This is used in computing cache indices. */
private static final double LOG_TWO = Math.log(2.0); static { assert 0 < KARATSUBA_THRESHOLD && KARATSUBA_THRESHOLD < TOOM_COOK_THRESHOLD && TOOM_COOK_THRESHOLD < Integer.MAX_VALUE && 0 < KARATSUBA_SQUARE_THRESHOLD && KARATSUBA_SQUARE_THRESHOLD < TOOM_COOK_SQUARE_THRESHOLD && TOOM_COOK_SQUARE_THRESHOLD < Integer.MAX_VALUE : "Algorithm thresholds are inconsistent"; for (int i = 1; i <= MAX_CONSTANT; i++) { int[] magnitude = new int[1]; magnitude[0] = i; posConst[i] = new BigInteger(magnitude, 1); negConst[i] = new BigInteger(magnitude, -1); } /* * Initialize the cache of radix^(2^x) values used for base conversion * with just the very first value. Additional values will be created * on demand. */ powerCache = new BigInteger[Character.MAX_RADIX+1][]; logCache = new double[Character.MAX_RADIX+1]; for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) { powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) }; logCache[i] = Math.log(i); } }
The BigInteger constant zero.
Since: 1.2
/** * The BigInteger constant zero. * * @since 1.2 */
public static final BigInteger ZERO = new BigInteger(new int[0], 0);
The BigInteger constant one.
Since: 1.2
/** * The BigInteger constant one. * * @since 1.2 */
public static final BigInteger ONE = valueOf(1);
The BigInteger constant two.
Since: 9
/** * The BigInteger constant two. * * @since 9 */
public static final BigInteger TWO = valueOf(2);
The BigInteger constant -1. (Not exported.)
/** * The BigInteger constant -1. (Not exported.) */
private static final BigInteger NEGATIVE_ONE = valueOf(-1);
The BigInteger constant ten.
Since: 1.5
/** * The BigInteger constant ten. * * @since 1.5 */
public static final BigInteger TEN = valueOf(10); // Arithmetic Operations
Returns a BigInteger whose value is (this + val).
Params:
  • val – value to be added to this BigInteger.
Returns:this + val
/** * Returns a BigInteger whose value is {@code (this + val)}. * * @param val value to be added to this BigInteger. * @return {@code this + val} */
public BigInteger add(BigInteger val) { if (val.signum == 0) return this; if (signum == 0) return val; if (val.signum == signum) return new BigInteger(add(mag, val.mag), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) : subtract(val.mag, mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); }
Package private methods used by BigDecimal code to add a BigInteger with a long. Assumes val is not equal to INFLATED.
/** * Package private methods used by BigDecimal code to add a BigInteger * with a long. Assumes val is not equal to INFLATED. */
BigInteger add(long val) { if (val == 0) return this; if (signum == 0) return valueOf(val); if (Long.signum(val) == signum) return new BigInteger(add(mag, Math.abs(val)), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); }
Adds the contents of the int array x and long value val. This method allocates a new int array to hold the answer and returns a reference to that array. Assumes x.length > 0 and val is non-negative
/** * Adds the contents of the int array x and long value val. This * method allocates a new int array to hold the answer and returns * a reference to that array. Assumes x.length &gt; 0 and val is * non-negative */
private static int[] add(int[] x, long val) { int[] y; long sum = 0; int xIndex = x.length; int[] result; int highWord = (int)(val >>> 32); if (highWord == 0) { result = new int[xIndex]; sum = (x[--xIndex] & LONG_MASK) + val; result[xIndex] = (int)sum; } else { if (xIndex == 1) { result = new int[2]; sum = val + (x[0] & LONG_MASK); result[1] = (int)sum; result[0] = (int)(sum >>> 32); return result; } else { result = new int[xIndex]; sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK); result[xIndex] = (int)sum; sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32); result[xIndex] = (int)sum; } } // Copy remainder of longer number while carry propagation is required boolean carry = (sum >>> 32 != 0); while (xIndex > 0 && carry) carry = ((result[--xIndex] = x[xIndex] + 1) == 0); // Copy remainder of longer number while (xIndex > 0) result[--xIndex] = x[xIndex]; // Grow result if necessary if (carry) { int bigger[] = new int[result.length + 1]; System.arraycopy(result, 0, bigger, 1, result.length); bigger[0] = 0x01; return bigger; } return result; }
Adds the contents of the int arrays x and y. This method allocates a new int array to hold the answer and returns a reference to that array.
/** * Adds the contents of the int arrays x and y. This method allocates * a new int array to hold the answer and returns a reference to that * array. */
private static int[] add(int[] x, int[] y) { // If x is shorter, swap the two arrays if (x.length < y.length) { int[] tmp = x; x = y; y = tmp; } int xIndex = x.length; int yIndex = y.length; int result[] = new int[xIndex]; long sum = 0; if (yIndex == 1) { sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ; result[xIndex] = (int)sum; } else { // Add common parts of both numbers while (yIndex > 0) { sum = (x[--xIndex] & LONG_MASK) + (y[--yIndex] & LONG_MASK) + (sum >>> 32); result[xIndex] = (int)sum; } } // Copy remainder of longer number while carry propagation is required boolean carry = (sum >>> 32 != 0); while (xIndex > 0 && carry) carry = ((result[--xIndex] = x[xIndex] + 1) == 0); // Copy remainder of longer number while (xIndex > 0) result[--xIndex] = x[xIndex]; // Grow result if necessary if (carry) { int bigger[] = new int[result.length + 1]; System.arraycopy(result, 0, bigger, 1, result.length); bigger[0] = 0x01; return bigger; } return result; } private static int[] subtract(long val, int[] little) { int highWord = (int)(val >>> 32); if (highWord == 0) { int result[] = new int[1]; result[0] = (int)(val - (little[0] & LONG_MASK)); return result; } else { int result[] = new int[2]; if (little.length == 1) { long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK); result[1] = (int)difference; // Subtract remainder of longer number while borrow propagates boolean borrow = (difference >> 32 != 0); if (borrow) { result[0] = highWord - 1; } else { // Copy remainder of longer number result[0] = highWord; } return result; } else { // little.length == 2 long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK); result[1] = (int)difference; difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32); result[0] = (int)difference; return result; } } }
Subtracts the contents of the second argument (val) from the first (big). The first int array (big) must represent a larger number than the second. This method allocates the space necessary to hold the answer. assumes val >= 0
/** * Subtracts the contents of the second argument (val) from the * first (big). The first int array (big) must represent a larger number * than the second. This method allocates the space necessary to hold the * answer. * assumes val &gt;= 0 */
private static int[] subtract(int[] big, long val) { int highWord = (int)(val >>> 32); int bigIndex = big.length; int result[] = new int[bigIndex]; long difference = 0; if (highWord == 0) { difference = (big[--bigIndex] & LONG_MASK) - val; result[bigIndex] = (int)difference; } else { difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK); result[bigIndex] = (int)difference; difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32); result[bigIndex] = (int)difference; } // Subtract remainder of longer number while borrow propagates boolean borrow = (difference >> 32 != 0); while (bigIndex > 0 && borrow) borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); // Copy remainder of longer number while (bigIndex > 0) result[--bigIndex] = big[bigIndex]; return result; }
Returns a BigInteger whose value is (this - val).
Params:
  • val – value to be subtracted from this BigInteger.
Returns:this - val
/** * Returns a BigInteger whose value is {@code (this - val)}. * * @param val value to be subtracted from this BigInteger. * @return {@code this - val} */
public BigInteger subtract(BigInteger val) { if (val.signum == 0) return this; if (signum == 0) return val.negate(); if (val.signum != signum) return new BigInteger(add(mag, val.mag), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) : subtract(val.mag, mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); }
Subtracts the contents of the second int arrays (little) from the first (big). The first int array (big) must represent a larger number than the second. This method allocates the space necessary to hold the answer.
/** * Subtracts the contents of the second int arrays (little) from the * first (big). The first int array (big) must represent a larger number * than the second. This method allocates the space necessary to hold the * answer. */
private static int[] subtract(int[] big, int[] little) { int bigIndex = big.length; int result[] = new int[bigIndex]; int littleIndex = little.length; long difference = 0; // Subtract common parts of both numbers while (littleIndex > 0) { difference = (big[--bigIndex] & LONG_MASK) - (little[--littleIndex] & LONG_MASK) + (difference >> 32); result[bigIndex] = (int)difference; } // Subtract remainder of longer number while borrow propagates boolean borrow = (difference >> 32 != 0); while (bigIndex > 0 && borrow) borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); // Copy remainder of longer number while (bigIndex > 0) result[--bigIndex] = big[bigIndex]; return result; }
Returns a BigInteger whose value is (this * val).
Params:
  • val – value to be multiplied by this BigInteger.
Implementation Note:An implementation may offer better algorithmic performance when val == this.
Returns:this * val
/** * Returns a BigInteger whose value is {@code (this * val)}. * * @implNote An implementation may offer better algorithmic * performance when {@code val == this}. * * @param val value to be multiplied by this BigInteger. * @return {@code this * val} */
public BigInteger multiply(BigInteger val) { return multiply(val, false); }
Returns a BigInteger whose value is (this * val). If the invocation is recursive certain overflow checks are skipped.
Params:
  • val – value to be multiplied by this BigInteger.
  • isRecursion – whether this is a recursive invocation
Returns:this * val
/** * Returns a BigInteger whose value is {@code (this * val)}. If * the invocation is recursive certain overflow checks are skipped. * * @param val value to be multiplied by this BigInteger. * @param isRecursion whether this is a recursive invocation * @return {@code this * val} */
private BigInteger multiply(BigInteger val, boolean isRecursion) { if (val.signum == 0 || signum == 0) return ZERO; int xlen = mag.length; if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) { return square(); } int ylen = val.mag.length; if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) { int resultSign = signum == val.signum ? 1 : -1; if (val.mag.length == 1) { return multiplyByInt(mag,val.mag[0], resultSign); } if (mag.length == 1) { return multiplyByInt(val.mag,mag[0], resultSign); } int[] result = multiplyToLen(mag, xlen, val.mag, ylen, null); result = trustedStripLeadingZeroInts(result); return new BigInteger(result, resultSign); } else { if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) { return multiplyKaratsuba(this, val); } else { // // In "Hacker's Delight" section 2-13, p.33, it is explained // that if x and y are unsigned 32-bit quantities and m and n // are their respective numbers of leading zeros within 32 bits, // then the number of leading zeros within their product as a // 64-bit unsigned quantity is either m + n or m + n + 1. If // their product is not to overflow, it cannot exceed 32 bits, // and so the number of leading zeros of the product within 64 // bits must be at least 32, i.e., the leftmost set bit is at // zero-relative position 31 or less. // // From the above there are three cases: // // m + n leftmost set bit condition // ----- ---------------- --------- // >= 32 x <= 64 - 32 = 32 no overflow // == 31 x >= 64 - 32 = 32 possible overflow // <= 30 x >= 64 - 31 = 33 definite overflow // // The "possible overflow" condition cannot be detected by // examning data lengths alone and requires further calculation. // // By analogy, if 'this' and 'val' have m and n as their // respective numbers of leading zeros within 32*MAX_MAG_LENGTH // bits, then: // // m + n >= 32*MAX_MAG_LENGTH no overflow // m + n == 32*MAX_MAG_LENGTH - 1 possible overflow // m + n <= 32*MAX_MAG_LENGTH - 2 definite overflow // // Note however that if the number of ints in the result // were to be MAX_MAG_LENGTH and mag[0] < 0, then there would // be overflow. As a result the leftmost bit (of mag[0]) cannot // be used and the constraints must be adjusted by one bit to: // // m + n > 32*MAX_MAG_LENGTH no overflow // m + n == 32*MAX_MAG_LENGTH possible overflow // m + n < 32*MAX_MAG_LENGTH definite overflow // // The foregoing leading zero-based discussion is for clarity // only. The actual calculations use the estimated bit length // of the product as this is more natural to the internal // array representation of the magnitude which has no leading // zero elements. // if (!isRecursion) { // The bitLength() instance method is not used here as we // are only considering the magnitudes as non-negative. The // Toom-Cook multiplication algorithm determines the sign // at its end from the two signum values. if (bitLength(mag, mag.length) + bitLength(val.mag, val.mag.length) > 32L*MAX_MAG_LENGTH) { reportOverflow(); } } return multiplyToomCook3(this, val); } } } private static BigInteger multiplyByInt(int[] x, int y, int sign) { if (Integer.bitCount(y) == 1) { return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign); } int xlen = x.length; int[] rmag = new int[xlen + 1]; long carry = 0; long yl = y & LONG_MASK; int rstart = rmag.length - 1; for (int i = xlen - 1; i >= 0; i--) { long product = (x[i] & LONG_MASK) * yl + carry; rmag[rstart--] = (int)product; carry = product >>> 32; } if (carry == 0L) { rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length); } else { rmag[rstart] = (int)carry; } return new BigInteger(rmag, sign); }
Package private methods used by BigDecimal code to multiply a BigInteger with a long. Assumes v is not equal to INFLATED.
/** * Package private methods used by BigDecimal code to multiply a BigInteger * with a long. Assumes v is not equal to INFLATED. */
BigInteger multiply(long v) { if (v == 0 || signum == 0) return ZERO; if (v == BigDecimal.INFLATED) return multiply(BigInteger.valueOf(v)); int rsign = (v > 0 ? signum : -signum); if (v < 0) v = -v; long dh = v >>> 32; // higher order bits long dl = v & LONG_MASK; // lower order bits int xlen = mag.length; int[] value = mag; int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]); long carry = 0; int rstart = rmag.length - 1; for (int i = xlen - 1; i >= 0; i--) { long product = (value[i] & LONG_MASK) * dl + carry; rmag[rstart--] = (int)product; carry = product >>> 32; } rmag[rstart] = (int)carry; if (dh != 0L) { carry = 0; rstart = rmag.length - 2; for (int i = xlen - 1; i >= 0; i--) { long product = (value[i] & LONG_MASK) * dh + (rmag[rstart] & LONG_MASK) + carry; rmag[rstart--] = (int)product; carry = product >>> 32; } rmag[0] = (int)carry; } if (carry == 0L) rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length); return new BigInteger(rmag, rsign); }
Multiplies int arrays x and y to the specified lengths and places the result into z. There will be no leading zeros in the resultant array.
/** * Multiplies int arrays x and y to the specified lengths and places * the result into z. There will be no leading zeros in the resultant array. */
private static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) { multiplyToLenCheck(x, xlen); multiplyToLenCheck(y, ylen); return implMultiplyToLen(x, xlen, y, ylen, z); } @HotSpotIntrinsicCandidate private static int[] implMultiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) { int xstart = xlen - 1; int ystart = ylen - 1; if (z == null || z.length < (xlen+ ylen)) z = new int[xlen+ylen]; long carry = 0; for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) { long product = (y[j] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; z[k] = (int)product; carry = product >>> 32; } z[xstart] = (int)carry; for (int i = xstart-1; i >= 0; i--) { carry = 0; for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) { long product = (y[j] & LONG_MASK) * (x[i] & LONG_MASK) + (z[k] & LONG_MASK) + carry; z[k] = (int)product; carry = product >>> 32; } z[i] = (int)carry; } return z; } private static void multiplyToLenCheck(int[] array, int length) { if (length <= 0) { return; // not an error because multiplyToLen won't execute if len <= 0 } Objects.requireNonNull(array); if (length > array.length) { throw new ArrayIndexOutOfBoundsException(length - 1); } }
Multiplies two BigIntegers using the Karatsuba multiplication algorithm. This is a recursive divide-and-conquer algorithm which is more efficient for large numbers than what is commonly called the "grade-school" algorithm used in multiplyToLen. If the numbers to be multiplied have length n, the "grade-school" algorithm has an asymptotic complexity of O(n^2). In contrast, the Karatsuba algorithm has complexity of O(n^(log2(3))), or O(n^1.585). It achieves this increased performance by doing 3 multiplies instead of 4 when evaluating the product. As it has some overhead, should be used when both numbers are larger than a certain threshold (found experimentally). See: http://en.wikipedia.org/wiki/Karatsuba_algorithm
/** * Multiplies two BigIntegers using the Karatsuba multiplication * algorithm. This is a recursive divide-and-conquer algorithm which is * more efficient for large numbers than what is commonly called the * "grade-school" algorithm used in multiplyToLen. If the numbers to be * multiplied have length n, the "grade-school" algorithm has an * asymptotic complexity of O(n^2). In contrast, the Karatsuba algorithm * has complexity of O(n^(log2(3))), or O(n^1.585). It achieves this * increased performance by doing 3 multiplies instead of 4 when * evaluating the product. As it has some overhead, should be used when * both numbers are larger than a certain threshold (found * experimentally). * * See: http://en.wikipedia.org/wiki/Karatsuba_algorithm */
private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) { int xlen = x.mag.length; int ylen = y.mag.length; // The number of ints in each half of the number. int half = (Math.max(xlen, ylen)+1) / 2; // xl and yl are the lower halves of x and y respectively, // xh and yh are the upper halves. BigInteger xl = x.getLower(half); BigInteger xh = x.getUpper(half); BigInteger yl = y.getLower(half); BigInteger yh = y.getUpper(half); BigInteger p1 = xh.multiply(yh); // p1 = xh*yh BigInteger p2 = xl.multiply(yl); // p2 = xl*yl // p3=(xh+xl)*(yh+yl) BigInteger p3 = xh.add(xl).multiply(yh.add(yl)); // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2 BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2); if (x.signum != y.signum) { return result.negate(); } else { return result; } }
Multiplies two BigIntegers using a 3-way Toom-Cook multiplication algorithm. This is a recursive divide-and-conquer algorithm which is more efficient for large numbers than what is commonly called the "grade-school" algorithm used in multiplyToLen. If the numbers to be multiplied have length n, the "grade-school" algorithm has an asymptotic complexity of O(n^2). In contrast, 3-way Toom-Cook has a complexity of about O(n^1.465). It achieves this increased asymptotic performance by breaking each number into three parts and by doing 5 multiplies instead of 9 when evaluating the product. Due to overhead (additions, shifts, and one division) in the Toom-Cook algorithm, it should only be used when both numbers are larger than a certain threshold (found experimentally). This threshold is generally larger than that for Karatsuba multiplication, so this algorithm is generally only used when numbers become significantly larger. The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined by Marco Bodrato. See: http://bodrato.it/toom-cook/ http://bodrato.it/papers/#WAIFI2007 "Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO; In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133, LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
/** * Multiplies two BigIntegers using a 3-way Toom-Cook multiplication * algorithm. This is a recursive divide-and-conquer algorithm which is * more efficient for large numbers than what is commonly called the * "grade-school" algorithm used in multiplyToLen. If the numbers to be * multiplied have length n, the "grade-school" algorithm has an * asymptotic complexity of O(n^2). In contrast, 3-way Toom-Cook has a * complexity of about O(n^1.465). It achieves this increased asymptotic * performance by breaking each number into three parts and by doing 5 * multiplies instead of 9 when evaluating the product. Due to overhead * (additions, shifts, and one division) in the Toom-Cook algorithm, it * should only be used when both numbers are larger than a certain * threshold (found experimentally). This threshold is generally larger * than that for Karatsuba multiplication, so this algorithm is generally * only used when numbers become significantly larger. * * The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined * by Marco Bodrato. * * See: http://bodrato.it/toom-cook/ * http://bodrato.it/papers/#WAIFI2007 * * "Towards Optimal Toom-Cook Multiplication for Univariate and * Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO; * In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133, * LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007. * */
private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) { int alen = a.mag.length; int blen = b.mag.length; int largest = Math.max(alen, blen); // k is the size (in ints) of the lower-order slices. int k = (largest+2)/3; // Equal to ceil(largest/3) // r is the size (in ints) of the highest-order slice. int r = largest - 2*k; // Obtain slices of the numbers. a2 and b2 are the most significant // bits of the numbers a and b, and a0 and b0 the least significant. BigInteger a0, a1, a2, b0, b1, b2; a2 = a.getToomSlice(k, r, 0, largest); a1 = a.getToomSlice(k, r, 1, largest); a0 = a.getToomSlice(k, r, 2, largest); b2 = b.getToomSlice(k, r, 0, largest); b1 = b.getToomSlice(k, r, 1, largest); b0 = b.getToomSlice(k, r, 2, largest); BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1; v0 = a0.multiply(b0, true); da1 = a2.add(a0); db1 = b2.add(b0); vm1 = da1.subtract(a1).multiply(db1.subtract(b1), true); da1 = da1.add(a1); db1 = db1.add(b1); v1 = da1.multiply(db1, true); v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply( db1.add(b2).shiftLeft(1).subtract(b0), true); vinf = a2.multiply(b2, true); // The algorithm requires two divisions by 2 and one by 3. // All divisions are known to be exact, that is, they do not produce // remainders, and all results are positive. The divisions by 2 are // implemented as right shifts which are relatively efficient, leaving // only an exact division by 3, which is done by a specialized // linear-time algorithm. t2 = v2.subtract(vm1).exactDivideBy3(); tm1 = v1.subtract(vm1).shiftRight(1); t1 = v1.subtract(v0); t2 = t2.subtract(t1).shiftRight(1); t1 = t1.subtract(tm1).subtract(vinf); t2 = t2.subtract(vinf.shiftLeft(1)); tm1 = tm1.subtract(t2); // Number of bits to shift left. int ss = k*32; BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0); if (a.signum != b.signum) { return result.negate(); } else { return result; } }
Returns a slice of a BigInteger for use in Toom-Cook multiplication.
Params:
  • lowerSize – The size of the lower-order bit slices.
  • upperSize – The size of the higher-order bit slices.
  • slice – The index of which slice is requested, which must be a number from 0 to size-1. Slice 0 is the highest-order bits, and slice size-1 are the lowest-order bits. Slice 0 may be of different size than the other slices.
  • fullsize – The size of the larger integer array, used to align slices to the appropriate position when multiplying different-sized numbers.
/** * Returns a slice of a BigInteger for use in Toom-Cook multiplication. * * @param lowerSize The size of the lower-order bit slices. * @param upperSize The size of the higher-order bit slices. * @param slice The index of which slice is requested, which must be a * number from 0 to size-1. Slice 0 is the highest-order bits, and slice * size-1 are the lowest-order bits. Slice 0 may be of different size than * the other slices. * @param fullsize The size of the larger integer array, used to align * slices to the appropriate position when multiplying different-sized * numbers. */
private BigInteger getToomSlice(int lowerSize, int upperSize, int slice, int fullsize) { int start, end, sliceSize, len, offset; len = mag.length; offset = fullsize - len; if (slice == 0) { start = 0 - offset; end = upperSize - 1 - offset; } else { start = upperSize + (slice-1)*lowerSize - offset; end = start + lowerSize - 1; } if (start < 0) { start = 0; } if (end < 0) { return ZERO; } sliceSize = (end-start) + 1; if (sliceSize <= 0) { return ZERO; } // While performing Toom-Cook, all slices are positive and // the sign is adjusted when the final number is composed. if (start == 0 && sliceSize >= len) { return this.abs(); } int intSlice[] = new int[sliceSize]; System.arraycopy(mag, start, intSlice, 0, sliceSize); return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1); }
Does an exact division (that is, the remainder is known to be zero) of the specified number by 3. This is used in Toom-Cook multiplication. This is an efficient algorithm that runs in linear time. If the argument is not exactly divisible by 3, results are undefined. Note that this is expected to be called with positive arguments only.
/** * Does an exact division (that is, the remainder is known to be zero) * of the specified number by 3. This is used in Toom-Cook * multiplication. This is an efficient algorithm that runs in linear * time. If the argument is not exactly divisible by 3, results are * undefined. Note that this is expected to be called with positive * arguments only. */
private BigInteger exactDivideBy3() { int len = mag.length; int[] result = new int[len]; long x, w, q, borrow; borrow = 0L; for (int i=len-1; i >= 0; i--) { x = (mag[i] & LONG_MASK); w = x - borrow; if (borrow > x) { // Did we make the number go negative? borrow = 1L; } else { borrow = 0L; } // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32). Thus, // the effect of this is to divide by 3 (mod 2^32). // This is much faster than division on most architectures. q = (w * 0xAAAAAAABL) & LONG_MASK; result[i] = (int) q; // Now check the borrow. The second check can of course be // eliminated if the first fails. if (q >= 0x55555556L) { borrow++; if (q >= 0xAAAAAAABL) borrow++; } } result = trustedStripLeadingZeroInts(result); return new BigInteger(result, signum); }
Returns a new BigInteger representing n lower ints of the number. This is used by Karatsuba multiplication and Karatsuba squaring.
/** * Returns a new BigInteger representing n lower ints of the number. * This is used by Karatsuba multiplication and Karatsuba squaring. */
private BigInteger getLower(int n) { int len = mag.length; if (len <= n) { return abs(); } int lowerInts[] = new int[n]; System.arraycopy(mag, len-n, lowerInts, 0, n); return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1); }
Returns a new BigInteger representing mag.length-n upper ints of the number. This is used by Karatsuba multiplication and Karatsuba squaring.
/** * Returns a new BigInteger representing mag.length-n upper * ints of the number. This is used by Karatsuba multiplication and * Karatsuba squaring. */
private BigInteger getUpper(int n) { int len = mag.length; if (len <= n) { return ZERO; } int upperLen = len - n; int upperInts[] = new int[upperLen]; System.arraycopy(mag, 0, upperInts, 0, upperLen); return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1); } // Squaring
Returns a BigInteger whose value is (this<sup>2</sup>).
Returns:this<sup>2</sup>
/** * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}. * * @return {@code this<sup>2</sup>} */
private BigInteger square() { return square(false); }
Returns a BigInteger whose value is (this<sup>2</sup>). If the invocation is recursive certain overflow checks are skipped.
Params:
  • isRecursion – whether this is a recursive invocation
Returns:this<sup>2</sup>
/** * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}. If * the invocation is recursive certain overflow checks are skipped. * * @param isRecursion whether this is a recursive invocation * @return {@code this<sup>2</sup>} */
private BigInteger square(boolean isRecursion) { if (signum == 0) { return ZERO; } int len = mag.length; if (len < KARATSUBA_SQUARE_THRESHOLD) { int[] z = squareToLen(mag, len, null); return new BigInteger(trustedStripLeadingZeroInts(z), 1); } else { if (len < TOOM_COOK_SQUARE_THRESHOLD) { return squareKaratsuba(); } else { // // For a discussion of overflow detection see multiply() // if (!isRecursion) { if (bitLength(mag, mag.length) > 16L*MAX_MAG_LENGTH) { reportOverflow(); } } return squareToomCook3(); } } }
Squares the contents of the int array x. The result is placed into the int array z. The contents of x are not changed.
/** * Squares the contents of the int array x. The result is placed into the * int array z. The contents of x are not changed. */
private static final int[] squareToLen(int[] x, int len, int[] z) { int zlen = len << 1; if (z == null || z.length < zlen) z = new int[zlen]; // Execute checks before calling intrinsified method. implSquareToLenChecks(x, len, z, zlen); return implSquareToLen(x, len, z, zlen); }
Parameters validation.
/** * Parameters validation. */
private static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException { if (len < 1) { throw new IllegalArgumentException("invalid input length: " + len); } if (len > x.length) { throw new IllegalArgumentException("input length out of bound: " + len + " > " + x.length); } if (len * 2 > z.length) { throw new IllegalArgumentException("input length out of bound: " + (len * 2) + " > " + z.length); } if (zlen < 1) { throw new IllegalArgumentException("invalid input length: " + zlen); } if (zlen > z.length) { throw new IllegalArgumentException("input length out of bound: " + len + " > " + z.length); } }
Java Runtime may use intrinsic for this method.
/** * Java Runtime may use intrinsic for this method. */
@HotSpotIntrinsicCandidate private static final int[] implSquareToLen(int[] x, int len, int[] z, int zlen) { /* * The algorithm used here is adapted from Colin Plumb's C library. * Technique: Consider the partial products in the multiplication * of "abcde" by itself: * * a b c d e * * a b c d e * ================== * ae be ce de ee * ad bd cd dd de * ac bc cc cd ce * ab bb bc bd be * aa ab ac ad ae * * Note that everything above the main diagonal: * ae be ce de = (abcd) * e * ad bd cd = (abc) * d * ac bc = (ab) * c * ab = (a) * b * * is a copy of everything below the main diagonal: * de * cd ce * bc bd be * ab ac ad ae * * Thus, the sum is 2 * (off the diagonal) + diagonal. * * This is accumulated beginning with the diagonal (which * consist of the squares of the digits of the input), which is then * divided by two, the off-diagonal added, and multiplied by two * again. The low bit is simply a copy of the low bit of the * input, so it doesn't need special care. */ // Store the squares, right shifted one bit (i.e., divided by 2) int lastProductLowWord = 0; for (int j=0, i=0; j < len; j++) { long piece = (x[j] & LONG_MASK); long product = piece * piece; z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33); z[i++] = (int)(product >>> 1); lastProductLowWord = (int)product; } // Add in off-diagonal sums for (int i=len, offset=1; i > 0; i--, offset+=2) { int t = x[i-1]; t = mulAdd(z, x, offset, i-1, t); addOne(z, offset-1, i, t); } // Shift back up and set low bit primitiveLeftShift(z, zlen, 1); z[zlen-1] |= x[len-1] & 1; return z; }
Squares a BigInteger using the Karatsuba squaring algorithm. It should be used when both numbers are larger than a certain threshold (found experimentally). It is a recursive divide-and-conquer algorithm that has better asymptotic performance than the algorithm used in squareToLen.
/** * Squares a BigInteger using the Karatsuba squaring algorithm. It should * be used when both numbers are larger than a certain threshold (found * experimentally). It is a recursive divide-and-conquer algorithm that * has better asymptotic performance than the algorithm used in * squareToLen. */
private BigInteger squareKaratsuba() { int half = (mag.length+1) / 2; BigInteger xl = getLower(half); BigInteger xh = getUpper(half); BigInteger xhs = xh.square(); // xhs = xh^2 BigInteger xls = xl.square(); // xls = xl^2 // xh^2 << 64 + (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2 return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls); }
Squares a BigInteger using the 3-way Toom-Cook squaring algorithm. It should be used when both numbers are larger than a certain threshold (found experimentally). It is a recursive divide-and-conquer algorithm that has better asymptotic performance than the algorithm used in squareToLen or squareKaratsuba.
/** * Squares a BigInteger using the 3-way Toom-Cook squaring algorithm. It * should be used when both numbers are larger than a certain threshold * (found experimentally). It is a recursive divide-and-conquer algorithm * that has better asymptotic performance than the algorithm used in * squareToLen or squareKaratsuba. */
private BigInteger squareToomCook3() { int len = mag.length; // k is the size (in ints) of the lower-order slices. int k = (len+2)/3; // Equal to ceil(largest/3) // r is the size (in ints) of the highest-order slice. int r = len - 2*k; // Obtain slices of the numbers. a2 is the most significant // bits of the number, and a0 the least significant. BigInteger a0, a1, a2; a2 = getToomSlice(k, r, 0, len); a1 = getToomSlice(k, r, 1, len); a0 = getToomSlice(k, r, 2, len); BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1; v0 = a0.square(true); da1 = a2.add(a0); vm1 = da1.subtract(a1).square(true); da1 = da1.add(a1); v1 = da1.square(true); vinf = a2.square(true); v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(true); // The algorithm requires two divisions by 2 and one by 3. // All divisions are known to be exact, that is, they do not produce // remainders, and all results are positive. The divisions by 2 are // implemented as right shifts which are relatively efficient, leaving // only a division by 3. // The division by 3 is done by an optimized algorithm for this case. t2 = v2.subtract(vm1).exactDivideBy3(); tm1 = v1.subtract(vm1).shiftRight(1); t1 = v1.subtract(v0); t2 = t2.subtract(t1).shiftRight(1); t1 = t1.subtract(tm1).subtract(vinf); t2 = t2.subtract(vinf.shiftLeft(1)); tm1 = tm1.subtract(t2); // Number of bits to shift left. int ss = k*32; return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0); } // Division
Returns a BigInteger whose value is (this / val).
Params:
  • val – value by which this BigInteger is to be divided.
Throws:
Returns:this / val
/** * Returns a BigInteger whose value is {@code (this / val)}. * * @param val value by which this BigInteger is to be divided. * @return {@code this / val} * @throws ArithmeticException if {@code val} is zero. */
public BigInteger divide(BigInteger val) { if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { return divideKnuth(val); } else { return divideBurnikelZiegler(val); } }
Returns a BigInteger whose value is (this / val) using an O(n^2) algorithm from Knuth.
Params:
  • val – value by which this BigInteger is to be divided.
Throws:
See Also:
Returns:this / val
/** * Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth. * * @param val value by which this BigInteger is to be divided. * @return {@code this / val} * @throws ArithmeticException if {@code val} is zero. * @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean) */
private BigInteger divideKnuth(BigInteger val) { MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(this.mag), b = new MutableBigInteger(val.mag); a.divideKnuth(b, q, false); return q.toBigInteger(this.signum * val.signum); }
Returns an array of two BigIntegers containing (this / val) followed by (this % val).
Params:
  • val – value by which this BigInteger is to be divided, and the remainder computed.
Throws:
Returns:an array of two BigIntegers: the quotient (this / val) is the initial element, and the remainder (this % val) is the final element.
/** * Returns an array of two BigIntegers containing {@code (this / val)} * followed by {@code (this % val)}. * * @param val value by which this BigInteger is to be divided, and the * remainder computed. * @return an array of two BigIntegers: the quotient {@code (this / val)} * is the initial element, and the remainder {@code (this % val)} * is the final element. * @throws ArithmeticException if {@code val} is zero. */
public BigInteger[] divideAndRemainder(BigInteger val) { if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { return divideAndRemainderKnuth(val); } else { return divideAndRemainderBurnikelZiegler(val); } }
Long division
/** Long division */
private BigInteger[] divideAndRemainderKnuth(BigInteger val) { BigInteger[] result = new BigInteger[2]; MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(this.mag), b = new MutableBigInteger(val.mag); MutableBigInteger r = a.divideKnuth(b, q); result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1); result[1] = r.toBigInteger(this.signum); return result; }
Returns a BigInteger whose value is (this % val).
Params:
  • val – value by which this BigInteger is to be divided, and the remainder computed.
Throws:
Returns:this % val
/** * Returns a BigInteger whose value is {@code (this % val)}. * * @param val value by which this BigInteger is to be divided, and the * remainder computed. * @return {@code this % val} * @throws ArithmeticException if {@code val} is zero. */
public BigInteger remainder(BigInteger val) { if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { return remainderKnuth(val); } else { return remainderBurnikelZiegler(val); } }
Long division
/** Long division */
private BigInteger remainderKnuth(BigInteger val) { MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(this.mag), b = new MutableBigInteger(val.mag); return a.divideKnuth(b, q).toBigInteger(this.signum); }
Calculates this / val using the Burnikel-Ziegler algorithm.
Params:
  • val – the divisor
Returns:this / val
/** * Calculates {@code this / val} using the Burnikel-Ziegler algorithm. * @param val the divisor * @return {@code this / val} */
private BigInteger divideBurnikelZiegler(BigInteger val) { return divideAndRemainderBurnikelZiegler(val)[0]; }
Calculates this % val using the Burnikel-Ziegler algorithm.
Params:
  • val – the divisor
Returns:this % val
/** * Calculates {@code this % val} using the Burnikel-Ziegler algorithm. * @param val the divisor * @return {@code this % val} */
private BigInteger remainderBurnikelZiegler(BigInteger val) { return divideAndRemainderBurnikelZiegler(val)[1]; }
Computes this / val and this % val using the Burnikel-Ziegler algorithm.
Params:
  • val – the divisor
Returns:an array containing the quotient and remainder
/** * Computes {@code this / val} and {@code this % val} using the * Burnikel-Ziegler algorithm. * @param val the divisor * @return an array containing the quotient and remainder */
private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) { MutableBigInteger q = new MutableBigInteger(); MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q); BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum); BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum); return new BigInteger[] {qBigInt, rBigInt}; }
Returns a BigInteger whose value is (thisexponent). Note that exponent is an integer rather than a BigInteger.
Params:
  • exponent – exponent to which this BigInteger is to be raised.
Throws:
  • ArithmeticExceptionexponent is negative. (This would cause the operation to yield a non-integer value.)
Returns:thisexponent
/** * Returns a BigInteger whose value is <code>(this<sup>exponent</sup>)</code>. * Note that {@code exponent} is an integer rather than a BigInteger. * * @param exponent exponent to which this BigInteger is to be raised. * @return <code>this<sup>exponent</sup></code> * @throws ArithmeticException {@code exponent} is negative. (This would * cause the operation to yield a non-integer value.) */
public BigInteger pow(int exponent) { if (exponent < 0) { throw new ArithmeticException("Negative exponent"); } if (signum == 0) { return (exponent == 0 ? ONE : this); } BigInteger partToSquare = this.abs(); // Factor out powers of two from the base, as the exponentiation of // these can be done by left shifts only. // The remaining part can then be exponentiated faster. The // powers of two will be multiplied back at the end. int powersOfTwo = partToSquare.getLowestSetBit(); long bitsToShiftLong = (long)powersOfTwo * exponent; if (bitsToShiftLong > Integer.MAX_VALUE) { reportOverflow(); } int bitsToShift = (int)bitsToShiftLong; int remainingBits; // Factor the powers of two out quickly by shifting right, if needed. if (powersOfTwo > 0) { partToSquare = partToSquare.shiftRight(powersOfTwo); remainingBits = partToSquare.bitLength(); if (remainingBits == 1) { // Nothing left but +/- 1? if (signum < 0 && (exponent&1) == 1) { return NEGATIVE_ONE.shiftLeft(bitsToShift); } else { return ONE.shiftLeft(bitsToShift); } } } else { remainingBits = partToSquare.bitLength(); if (remainingBits == 1) { // Nothing left but +/- 1? if (signum < 0 && (exponent&1) == 1) { return NEGATIVE_ONE; } else { return ONE; } } } // This is a quick way to approximate the size of the result, // similar to doing log2[n] * exponent. This will give an upper bound // of how big the result can be, and which algorithm to use. long scaleFactor = (long)remainingBits * exponent; // Use slightly different algorithms for small and large operands. // See if the result will safely fit into a long. (Largest 2^63-1) if (partToSquare.mag.length == 1 && scaleFactor <= 62) { // Small number algorithm. Everything fits into a long. int newSign = (signum <0 && (exponent&1) == 1 ? -1 : 1); long result = 1; long baseToPow2 = partToSquare.mag[0] & LONG_MASK; int workingExponent = exponent; // Perform exponentiation using repeated squaring trick while (workingExponent != 0) { if ((workingExponent & 1) == 1) { result = result * baseToPow2; } if ((workingExponent >>>= 1) != 0) { baseToPow2 = baseToPow2 * baseToPow2; } } // Multiply back the powers of two (quickly, by shifting left) if (powersOfTwo > 0) { if (bitsToShift + scaleFactor <= 62) { // Fits in long? return valueOf((result << bitsToShift) * newSign); } else { return valueOf(result*newSign).shiftLeft(bitsToShift); } } else { return valueOf(result*newSign); } } else { if ((long)bitLength() * exponent / Integer.SIZE > MAX_MAG_LENGTH) { reportOverflow(); } // Large number algorithm. This is basically identical to // the algorithm above, but calls multiply() and square() // which may use more efficient algorithms for large numbers. BigInteger answer = ONE; int workingExponent = exponent; // Perform exponentiation using repeated squaring trick while (workingExponent != 0) { if ((workingExponent & 1) == 1) { answer = answer.multiply(partToSquare); } if ((workingExponent >>>= 1) != 0) { partToSquare = partToSquare.square(); } } // Multiply back the (exponentiated) powers of two (quickly, // by shifting left) if (powersOfTwo > 0) { answer = answer.shiftLeft(bitsToShift); } if (signum < 0 && (exponent&1) == 1) { return answer.negate(); } else { return answer; } } }
Returns the integer square root of this BigInteger. The integer square root of the corresponding mathematical integer n is the largest mathematical integer s such that s*s <= n. It is equal to the value of floor(sqrt(n)), where sqrt(n) denotes the real square root of n treated as a real. Note that the integer square root will be less than the real square root if the latter is not representable as an integral value.
Throws:
  • ArithmeticException – if this is negative. (The square root of a negative integer val is (i * sqrt(-val)) where i is the imaginary unit and is equal to sqrt(-1).)
Returns:the integer square root of this
Since: 9
/** * Returns the integer square root of this BigInteger. The integer square * root of the corresponding mathematical integer {@code n} is the largest * mathematical integer {@code s} such that {@code s*s <= n}. It is equal * to the value of {@code floor(sqrt(n))}, where {@code sqrt(n)} denotes the * real square root of {@code n} treated as a real. Note that the integer * square root will be less than the real square root if the latter is not * representable as an integral value. * * @return the integer square root of {@code this} * @throws ArithmeticException if {@code this} is negative. (The square * root of a negative integer {@code val} is * {@code (i * sqrt(-val))} where <i>i</i> is the * <i>imaginary unit</i> and is equal to * {@code sqrt(-1)}.) * @since 9 */
public BigInteger sqrt() { if (this.signum < 0) { throw new ArithmeticException("Negative BigInteger"); } return new MutableBigInteger(this.mag).sqrt().toBigInteger(); }
Returns an array of two BigIntegers containing the integer square root s of this and its remainder this - s*s, respectively.
Throws:
  • ArithmeticException – if this is negative. (The square root of a negative integer val is (i * sqrt(-val)) where i is the imaginary unit and is equal to sqrt(-1).)
See Also:
Returns:an array of two BigIntegers with the integer square root at offset 0 and the remainder at offset 1
Since: 9
/** * Returns an array of two BigIntegers containing the integer square root * {@code s} of {@code this} and its remainder {@code this - s*s}, * respectively. * * @return an array of two BigIntegers with the integer square root at * offset 0 and the remainder at offset 1 * @throws ArithmeticException if {@code this} is negative. (The square * root of a negative integer {@code val} is * {@code (i * sqrt(-val))} where <i>i</i> is the * <i>imaginary unit</i> and is equal to * {@code sqrt(-1)}.) * @see #sqrt() * @since 9 */
public BigInteger[] sqrtAndRemainder() { BigInteger s = sqrt(); BigInteger r = this.subtract(s.square()); assert r.compareTo(BigInteger.ZERO) >= 0; return new BigInteger[] {s, r}; }
Returns a BigInteger whose value is the greatest common divisor of abs(this) and abs(val). Returns 0 if this == 0 && val == 0.
Params:
  • val – value with which the GCD is to be computed.
Returns:GCD(abs(this), abs(val))
/** * Returns a BigInteger whose value is the greatest common divisor of * {@code abs(this)} and {@code abs(val)}. Returns 0 if * {@code this == 0 && val == 0}. * * @param val value with which the GCD is to be computed. * @return {@code GCD(abs(this), abs(val))} */
public BigInteger gcd(BigInteger val) { if (val.signum == 0) return this.abs(); else if (this.signum == 0) return val.abs(); MutableBigInteger a = new MutableBigInteger(this); MutableBigInteger b = new MutableBigInteger(val); MutableBigInteger result = a.hybridGCD(b); return result.toBigInteger(1); }
Package private method to return bit length for an integer.
/** * Package private method to return bit length for an integer. */
static int bitLengthForInt(int n) { return 32 - Integer.numberOfLeadingZeros(n); }
Left shift int array a up to len by n bits. Returns the array that results from the shift since space may have to be reallocated.
/** * Left shift int array a up to len by n bits. Returns the array that * results from the shift since space may have to be reallocated. */
private static int[] leftShift(int[] a, int len, int n) { int nInts = n >>> 5; int nBits = n&0x1F; int bitsInHighWord = bitLengthForInt(a[0]); // If shift can be done without recopy, do so if (n <= (32-bitsInHighWord)) { primitiveLeftShift(a, len, nBits); return a; } else { // Array must be resized if (nBits <= (32-bitsInHighWord)) { int result[] = new int[nInts+len]; System.arraycopy(a, 0, result, 0, len); primitiveLeftShift(result, result.length, nBits); return result; } else { int result[] = new int[nInts+len+1]; System.arraycopy(a, 0, result, 0, len); primitiveRightShift(result, result.length, 32 - nBits); return result; } } } // shifts a up to len right n bits assumes no leading zeros, 0<n<32 static void primitiveRightShift(int[] a, int len, int n) { int n2 = 32 - n; for (int i=len-1, c=a[i]; i > 0; i--) { int b = c; c = a[i-1]; a[i] = (c << n2) | (b >>> n); } a[0] >>>= n; } // shifts a up to len left n bits assumes no leading zeros, 0<=n<32 static void primitiveLeftShift(int[] a, int len, int n) { if (len == 0 || n == 0) return; int n2 = 32 - n; for (int i=0, c=a[i], m=i+len-1; i < m; i++) { int b = c; c = a[i+1]; a[i] = (b << n) | (c >>> n2); } a[len-1] <<= n; }
Calculate bitlength of contents of the first len elements an int array, assuming there are no leading zero ints.
/** * Calculate bitlength of contents of the first len elements an int array, * assuming there are no leading zero ints. */
private static int bitLength(int[] val, int len) { if (len == 0) return 0; return ((len - 1) << 5) + bitLengthForInt(val[0]); }
Returns a BigInteger whose value is the absolute value of this BigInteger.
Returns:abs(this)
/** * Returns a BigInteger whose value is the absolute value of this * BigInteger. * * @return {@code abs(this)} */
public BigInteger abs() { return (signum >= 0 ? this : this.negate()); }
Returns a BigInteger whose value is (-this).
Returns:-this
/** * Returns a BigInteger whose value is {@code (-this)}. * * @return {@code -this} */
public BigInteger negate() { return new BigInteger(this.mag, -this.signum); }
Returns the signum function of this BigInteger.
Returns:-1, 0 or 1 as the value of this BigInteger is negative, zero or positive.
/** * Returns the signum function of this BigInteger. * * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or * positive. */
public int signum() { return this.signum; } // Modular Arithmetic Operations
Returns a BigInteger whose value is (this mod m). This method differs from remainder in that it always returns a non-negative BigInteger.
Params:
  • m – the modulus.
Throws:
See Also:
Returns:this mod m
/** * Returns a BigInteger whose value is {@code (this mod m}). This method * differs from {@code remainder} in that it always returns a * <i>non-negative</i> BigInteger. * * @param m the modulus. * @return {@code this mod m} * @throws ArithmeticException {@code m} &le; 0 * @see #remainder */
public BigInteger mod(BigInteger m) { if (m.signum <= 0) throw new ArithmeticException("BigInteger: modulus not positive"); BigInteger result = this.remainder(m); return (result.signum >= 0 ? result : result.add(m)); }
Returns a BigInteger whose value is (thisexponent mod m). (Unlike pow, this method permits negative exponents.)
Params:
  • exponent – the exponent.
  • m – the modulus.
Throws:
  • ArithmeticExceptionm ≤ 0 or the exponent is negative and this BigInteger is not relatively prime to m.
See Also:
Returns:thisexponent mod m
/** * Returns a BigInteger whose value is * <code>(this<sup>exponent</sup> mod m)</code>. (Unlike {@code pow}, this * method permits negative exponents.) * * @param exponent the exponent. * @param m the modulus. * @return <code>this<sup>exponent</sup> mod m</code> * @throws ArithmeticException {@code m} &le; 0 or the exponent is * negative and this BigInteger is not <i>relatively * prime</i> to {@code m}. * @see #modInverse */
public BigInteger modPow(BigInteger exponent, BigInteger m) { if (m.signum <= 0) throw new ArithmeticException("BigInteger: modulus not positive"); // Trivial cases if (exponent.signum == 0) return (m.equals(ONE) ? ZERO : ONE); if (this.equals(ONE)) return (m.equals(ONE) ? ZERO : ONE); if (this.equals(ZERO) && exponent.signum >= 0) return ZERO; if (this.equals(negConst[1]) && (!exponent.testBit(0))) return (m.equals(ONE) ? ZERO : ONE); boolean invertResult; if ((invertResult = (exponent.signum < 0))) exponent = exponent.negate(); BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0 ? this.mod(m) : this); BigInteger result; if (m.testBit(0)) { // odd modulus result = base.oddModPow(exponent, m); } else { /* * Even modulus. Tear it into an "odd part" (m1) and power of two * (m2), exponentiate mod m1, manually exponentiate mod m2, and * use Chinese Remainder Theorem to combine results. */ // Tear m apart into odd part (m1) and power of 2 (m2) int p = m.getLowestSetBit(); // Max pow of 2 that divides m BigInteger m1 = m.shiftRight(p); // m/2**p BigInteger m2 = ONE.shiftLeft(p); // 2**p // Calculate new base from m1 BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0 ? this.mod(m1) : this); // Caculate (base ** exponent) mod m1. BigInteger a1 = (m1.equals(ONE) ? ZERO : base2.oddModPow(exponent, m1)); // Calculate (this ** exponent) mod m2 BigInteger a2 = base.modPow2(exponent, p); // Combine results using Chinese Remainder Theorem BigInteger y1 = m2.modInverse(m1); BigInteger y2 = m1.modInverse(m2); if (m.mag.length < MAX_MAG_LENGTH / 2) { result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m); } else { MutableBigInteger t1 = new MutableBigInteger(); new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1); MutableBigInteger t2 = new MutableBigInteger(); new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2); t1.add(t2); MutableBigInteger q = new MutableBigInteger(); result = t1.divide(new MutableBigInteger(m), q).toBigInteger(); } } return (invertResult ? result.modInverse(m) : result); } // Montgomery multiplication. These are wrappers for // implMontgomeryXX routines which are expected to be replaced by // virtual machine intrinsics. We don't use the intrinsics for // very large operands: MONTGOMERY_INTRINSIC_THRESHOLD should be // larger than any reasonable crypto key. private static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv, int[] product) { implMontgomeryMultiplyChecks(a, b, n, len, product); if (len > MONTGOMERY_INTRINSIC_THRESHOLD) { // Very long argument: do not use an intrinsic product = multiplyToLen(a, len, b, len, product); return montReduce(product, n, len, (int)inv); } else { return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len)); } } private static int[] montgomerySquare(int[] a, int[] n, int len, long inv, int[] product) { implMontgomeryMultiplyChecks(a, a, n, len, product); if (len > MONTGOMERY_INTRINSIC_THRESHOLD) { // Very long argument: do not use an intrinsic product = squareToLen(a, len, product); return montReduce(product, n, len, (int)inv); } else { return implMontgomerySquare(a, n, len, inv, materialize(product, len)); } } // Range-check everything. private static void implMontgomeryMultiplyChecks (int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException { if (len % 2 != 0) { throw new IllegalArgumentException("input array length must be even: " + len); } if (len < 1) { throw new IllegalArgumentException("invalid input length: " + len); } if (len > a.length || len > b.length || len > n.length || (product != null && len > product.length)) { throw new IllegalArgumentException("input array length out of bound: " + len); } } // Make sure that the int array z (which is expected to contain // the result of a Montgomery multiplication) is present and // sufficiently large. private static int[] materialize(int[] z, int len) { if (z == null || z.length < len) z = new int[len]; return z; } // These methods are intended to be replaced by virtual machine // intrinsics. @HotSpotIntrinsicCandidate private static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv, int[] product) { product = multiplyToLen(a, len, b, len, product); return montReduce(product, n, len, (int)inv); } @HotSpotIntrinsicCandidate private static int[] implMontgomerySquare(int[] a, int[] n, int len, long inv, int[] product) { product = squareToLen(a, len, product); return montReduce(product, n, len, (int)inv); } static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793, Integer.MAX_VALUE}; // Sentinel
Returns a BigInteger whose value is x to the power of y mod z. Assumes: z is odd && x < z.
/** * Returns a BigInteger whose value is x to the power of y mod z. * Assumes: z is odd && x < z. */
private BigInteger oddModPow(BigInteger y, BigInteger z) { /* * The algorithm is adapted from Colin Plumb's C library. * * The window algorithm: * The idea is to keep a running product of b1 = n^(high-order bits of exp) * and then keep appending exponent bits to it. The following patterns * apply to a 3-bit window (k = 3): * To append 0: square * To append 1: square, multiply by n^1 * To append 10: square, multiply by n^1, square * To append 11: square, square, multiply by n^3 * To append 100: square, multiply by n^1, square, square * To append 101: square, square, square, multiply by n^5 * To append 110: square, square, multiply by n^3, square * To append 111: square, square, square, multiply by n^7 * * Since each pattern involves only one multiply, the longer the pattern * the better, except that a 0 (no multiplies) can be appended directly. * We precompute a table of odd powers of n, up to 2^k, and can then * multiply k bits of exponent at a time. Actually, assuming random * exponents, there is on average one zero bit between needs to * multiply (1/2 of the time there's none, 1/4 of the time there's 1, * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so * you have to do one multiply per k+1 bits of exponent. * * The loop walks down the exponent, squaring the result buffer as * it goes. There is a wbits+1 bit lookahead buffer, buf, that is * filled with the upcoming exponent bits. (What is read after the * end of the exponent is unimportant, but it is filled with zero here.) * When the most-significant bit of this buffer becomes set, i.e. * (buf & tblmask) != 0, we have to decide what pattern to multiply * by, and when to do it. We decide, remember to do it in future * after a suitable number of squarings have passed (e.g. a pattern * of "100" in the buffer requires that we multiply by n^1 immediately; * a pattern of "110" calls for multiplying by n^3 after one more * squaring), clear the buffer, and continue. * * When we start, there is one more optimization: the result buffer * is implcitly one, so squaring it or multiplying by it can be * optimized away. Further, if we start with a pattern like "100" * in the lookahead window, rather than placing n into the buffer * and then starting to square it, we have already computed n^2 * to compute the odd-powers table, so we can place that into * the buffer and save a squaring. * * This means that if you have a k-bit window, to compute n^z, * where z is the high k bits of the exponent, 1/2 of the time * it requires no squarings. 1/4 of the time, it requires 1 * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings. * And the remaining 1/2^(k-1) of the time, the top k bits are a * 1 followed by k-1 0 bits, so it again only requires k-2 * squarings, not k-1. The average of these is 1. Add that * to the one squaring we have to do to compute the table, * and you'll see that a k-bit window saves k-2 squarings * as well as reducing the multiplies. (It actually doesn't * hurt in the case k = 1, either.) */ // Special case for exponent of one if (y.equals(ONE)) return this; // Special case for base of zero if (signum == 0) return ZERO; int[] base = mag.clone(); int[] exp = y.mag; int[] mod = z.mag; int modLen = mod.length; // Make modLen even. It is conventional to use a cryptographic // modulus that is 512, 768, 1024, or 2048 bits, so this code // will not normally be executed. However, it is necessary for // the correct functioning of the HotSpot intrinsics. if ((modLen & 1) != 0) { int[] x = new int[modLen + 1]; System.arraycopy(mod, 0, x, 1, modLen); mod = x; modLen++; } // Select an appropriate window size int wbits = 0; int ebits = bitLength(exp, exp.length); // if exponent is 65537 (0x10001), use minimum window size if ((ebits != 17) || (exp[0] != 65537)) { while (ebits > bnExpModThreshTable[wbits]) { wbits++; } } // Calculate appropriate table size int tblmask = 1 << wbits; // Allocate table for precomputed odd powers of base in Montgomery form int[][] table = new int[tblmask][]; for (int i=0; i < tblmask; i++) table[i] = new int[modLen]; // Compute the modular inverse of the least significant 64-bit // digit of the modulus long n0 = (mod[modLen-1] & LONG_MASK) + ((mod[modLen-2] & LONG_MASK) << 32); long inv = -MutableBigInteger.inverseMod64(n0); // Convert base to Montgomery form int[] a = leftShift(base, base.length, modLen << 5); MutableBigInteger q = new MutableBigInteger(), a2 = new MutableBigInteger(a), b2 = new MutableBigInteger(mod); b2.normalize(); // MutableBigInteger.divide() assumes that its // divisor is in normal form. MutableBigInteger r= a2.divide(b2, q); table[0] = r.toIntArray(); // Pad table[0] with leading zeros so its length is at least modLen if (table[0].length < modLen) { int offset = modLen - table[0].length; int[] t2 = new int[modLen]; System.arraycopy(table[0], 0, t2, offset, table[0].length); table[0] = t2; } // Set b to the square of the base int[] b = montgomerySquare(table[0], mod, modLen, inv, null); // Set t to high half of b int[] t = Arrays.copyOf(b, modLen); // Fill in the table with odd powers of the base for (int i=1; i < tblmask; i++) { table[i] = montgomeryMultiply(t, table[i-1], mod, modLen, inv, null); } // Pre load the window that slides over the exponent int bitpos = 1 << ((ebits-1) & (32-1)); int buf = 0; int elen = exp.length; int eIndex = 0; for (int i = 0; i <= wbits; i++) { buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0); bitpos >>>= 1; if (bitpos == 0) { eIndex++; bitpos = 1 << (32-1); elen--; } } int multpos = ebits; // The first iteration, which is hoisted out of the main loop ebits--; boolean isone = true; multpos = ebits - wbits; while ((buf & 1) == 0) { buf >>>= 1; multpos++; } int[] mult = table[buf >>> 1]; buf = 0; if (multpos == ebits) isone = false; // The main loop while (true) { ebits--; // Advance the window buf <<= 1; if (elen != 0) { buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0; bitpos >>>= 1; if (bitpos == 0) { eIndex++; bitpos = 1 << (32-1); elen--; } } // Examine the window for pending multiplies if ((buf & tblmask) != 0) { multpos = ebits - wbits; while ((buf & 1) == 0) { buf >>>= 1; multpos++; } mult = table[buf >>> 1]; buf = 0; } // Perform multiply if (ebits == multpos) { if (isone) { b = mult.clone(); isone = false; } else { t = b; a = montgomeryMultiply(t, mult, mod, modLen, inv, a); t = a; a = b; b = t; } } // Check if done if (ebits == 0) break; // Square the input if (!isone) { t = b; a = montgomerySquare(t, mod, modLen, inv, a); t = a; a = b; b = t; } } // Convert result out of Montgomery form and return int[] t2 = new int[2*modLen]; System.arraycopy(b, 0, t2, modLen, modLen); b = montReduce(t2, mod, modLen, (int)inv); t2 = Arrays.copyOf(b, modLen); return new BigInteger(1, t2); }
Montgomery reduce n, modulo mod. This reduces modulo mod and divides by 2^(32*mlen). Adapted from Colin Plumb's C library.
/** * Montgomery reduce n, modulo mod. This reduces modulo mod and divides * by 2^(32*mlen). Adapted from Colin Plumb's C library. */
private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) { int c=0; int len = mlen; int offset=0; do { int nEnd = n[n.length-1-offset]; int carry = mulAdd(n, mod, offset, mlen, inv * nEnd); c += addOne(n, offset, mlen, carry); offset++; } while (--len > 0); while (c > 0) c += subN(n, mod, mlen); while (intArrayCmpToLen(n, mod, mlen) >= 0) subN(n, mod, mlen); return n; } /* * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than, * equal to, or greater than arg2 up to length len. */ private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) { for (int i=0; i < len; i++) { long b1 = arg1[i] & LONG_MASK; long b2 = arg2[i] & LONG_MASK; if (b1 < b2) return -1; if (b1 > b2) return 1; } return 0; }
Subtracts two numbers of same length, returning borrow.
/** * Subtracts two numbers of same length, returning borrow. */
private static int subN(int[] a, int[] b, int len) { long sum = 0; while (--len >= 0) { sum = (a[len] & LONG_MASK) - (b[len] & LONG_MASK) + (sum >> 32); a[len] = (int)sum; } return (int)(sum >> 32); }
Multiply an array by one word k and add to result, return the carry
/** * Multiply an array by one word k and add to result, return the carry */
static int mulAdd(int[] out, int[] in, int offset, int len, int k) { implMulAddCheck(out, in, offset, len, k); return implMulAdd(out, in, offset, len, k); }
Parameters validation.
/** * Parameters validation. */
private static void implMulAddCheck(int[] out, int[] in, int offset, int len, int k) { if (len > in.length) { throw new IllegalArgumentException("input length is out of bound: " + len + " > " + in.length); } if (offset < 0) { throw new IllegalArgumentException("input offset is invalid: " + offset); } if (offset > (out.length - 1)) { throw new IllegalArgumentException("input offset is out of bound: " + offset + " > " + (out.length - 1)); } if (len > (out.length - offset)) { throw new IllegalArgumentException("input len is out of bound: " + len + " > " + (out.length - offset)); } }
Java Runtime may use intrinsic for this method.
/** * Java Runtime may use intrinsic for this method. */
@HotSpotIntrinsicCandidate private static int implMulAdd(int[] out, int[] in, int offset, int len, int k) { long kLong = k & LONG_MASK; long carry = 0; offset = out.length-offset - 1; for (int j=len-1; j >= 0; j--) { long product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; out[offset--] = (int)product; carry = product >>> 32; } return (int)carry; }
Add one word to the number a mlen words into a. Return the resulting carry.
/** * Add one word to the number a mlen words into a. Return the resulting * carry. */
static int addOne(int[] a, int offset, int mlen, int carry) { offset = a.length-1-mlen-offset; long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK); a[offset] = (int)t; if ((t >>> 32) == 0) return 0; while (--mlen >= 0) { if (--offset < 0) { // Carry out of number return 1; } else { a[offset]++; if (a[offset] != 0) return 0; } } return 1; }
Returns a BigInteger whose value is (this ** exponent) mod (2**p)
/** * Returns a BigInteger whose value is (this ** exponent) mod (2**p) */
private BigInteger modPow2(BigInteger exponent, int p) { /* * Perform exponentiation using repeated squaring trick, chopping off * high order bits as indicated by modulus. */ BigInteger result = ONE; BigInteger baseToPow2 = this.mod2(p); int expOffset = 0; int limit = exponent.bitLength(); if (this.testBit(0)) limit = (p-1) < limit ? (p-1) : limit; while (expOffset < limit) { if (exponent.testBit(expOffset)) result = result.multiply(baseToPow2).mod2(p); expOffset++; if (expOffset < limit) baseToPow2 = baseToPow2.square().mod2(p); } return result; }
Returns a BigInteger whose value is this mod(2**p). Assumes that this BigInteger >= 0 and p > 0.
/** * Returns a BigInteger whose value is this mod(2**p). * Assumes that this {@code BigInteger >= 0} and {@code p > 0}. */
private BigInteger mod2(int p) { if (bitLength() <= p) return this; // Copy remaining ints of mag int numInts = (p + 31) >>> 5; int[] mag = new int[numInts]; System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts); // Mask out any excess bits int excessBits = (numInts << 5) - p; mag[0] &= (1L << (32-excessBits)) - 1; return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1)); }
Returns a BigInteger whose value is (this-1 mod m).
Params:
  • m – the modulus.
Throws:
  • ArithmeticException m ≤ 0, or this BigInteger has no multiplicative inverse mod m (that is, this BigInteger is not relatively prime to m).
Returns:this-1 mod m.
/** * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}. * * @param m the modulus. * @return {@code this}<sup>-1</sup> {@code mod m}. * @throws ArithmeticException {@code m} &le; 0, or this BigInteger * has no multiplicative inverse mod m (that is, this BigInteger * is not <i>relatively prime</i> to m). */
public BigInteger modInverse(BigInteger m) { if (m.signum != 1) throw new ArithmeticException("BigInteger: modulus not positive"); if (m.equals(ONE)) return ZERO; // Calculate (this mod m) BigInteger modVal = this; if (signum < 0 || (this.compareMagnitude(m) >= 0)) modVal = this.mod(m); if (modVal.equals(ONE)) return ONE; MutableBigInteger a = new MutableBigInteger(modVal); MutableBigInteger b = new MutableBigInteger(m); MutableBigInteger result = a.mutableModInverse(b); return result.toBigInteger(1); } // Shift Operations
Returns a BigInteger whose value is (this << n). The shift distance, n, may be negative, in which case this method performs a right shift. (Computes floor(this * 2n).)
Params:
  • n – shift distance, in bits.
See Also:
Returns:this << n
/** * Returns a BigInteger whose value is {@code (this << n)}. * The shift distance, {@code n}, may be negative, in which case * this method performs a right shift. * (Computes <code>floor(this * 2<sup>n</sup>)</code>.) * * @param n shift distance, in bits. * @return {@code this << n} * @see #shiftRight */
public BigInteger shiftLeft(int n) { if (signum == 0) return ZERO; if (n > 0) { return new BigInteger(shiftLeft(mag, n), signum); } else if (n == 0) { return this; } else { // Possible int overflow in (-n) is not a trouble, // because shiftRightImpl considers its argument unsigned return shiftRightImpl(-n); } }
Returns a magnitude array whose value is (mag << n). The shift distance, n, is considered unnsigned. (Computes this * 2n.)
Params:
  • mag – magnitude, the most-significant int (mag[0]) must be non-zero.
  • n – unsigned shift distance, in bits.
Returns:mag << n
/** * Returns a magnitude array whose value is {@code (mag << n)}. * The shift distance, {@code n}, is considered unnsigned. * (Computes <code>this * 2<sup>n</sup></code>.) * * @param mag magnitude, the most-significant int ({@code mag[0]}) must be non-zero. * @param n unsigned shift distance, in bits. * @return {@code mag << n} */
private static int[] shiftLeft(int[] mag, int n) { int nInts = n >>> 5; int nBits = n & 0x1f; int magLen = mag.length; int newMag[] = null; if (nBits == 0) { newMag = new int[magLen + nInts]; System.arraycopy(mag, 0, newMag, 0, magLen); } else { int i = 0; int nBits2 = 32 - nBits; int highBits = mag[0] >>> nBits2; if (highBits != 0) { newMag = new int[magLen + nInts + 1]; newMag[i++] = highBits; } else { newMag = new int[magLen + nInts]; } int j=0; while (j < magLen-1) newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2; newMag[i] = mag[j] << nBits; } return newMag; }
Returns a BigInteger whose value is (this >> n). Sign extension is performed. The shift distance, n, may be negative, in which case this method performs a left shift. (Computes floor(this / 2n).)
Params:
  • n – shift distance, in bits.
See Also:
Returns:this >> n
/** * Returns a BigInteger whose value is {@code (this >> n)}. Sign * extension is performed. The shift distance, {@code n}, may be * negative, in which case this method performs a left shift. * (Computes <code>floor(this / 2<sup>n</sup>)</code>.) * * @param n shift distance, in bits. * @return {@code this >> n} * @see #shiftLeft */
public BigInteger shiftRight(int n) { if (signum == 0) return ZERO; if (n > 0) { return shiftRightImpl(n); } else if (n == 0) { return this; } else { // Possible int overflow in {@code -n} is not a trouble, // because shiftLeft considers its argument unsigned return new BigInteger(shiftLeft(mag, -n), signum); } }
Returns a BigInteger whose value is (this >> n). The shift distance, n, is considered unsigned. (Computes floor(this * 2-n).)
Params:
  • n – unsigned shift distance, in bits.
Returns:this >> n
/** * Returns a BigInteger whose value is {@code (this >> n)}. The shift * distance, {@code n}, is considered unsigned. * (Computes <code>floor(this * 2<sup>-n</sup>)</code>.) * * @param n unsigned shift distance, in bits. * @return {@code this >> n} */
private BigInteger shiftRightImpl(int n) { int nInts = n >>> 5; int nBits = n & 0x1f; int magLen = mag.length; int newMag[] = null; // Special case: entire contents shifted off the end if (nInts >= magLen) return (signum >= 0 ? ZERO : negConst[1]); if (nBits == 0) { int newMagLen = magLen - nInts; newMag = Arrays.copyOf(mag, newMagLen); } else { int i = 0; int highBits = mag[0] >>> nBits; if (highBits != 0) { newMag = new int[magLen - nInts]; newMag[i++] = highBits; } else { newMag = new int[magLen - nInts -1]; } int nBits2 = 32 - nBits; int j=0; while (j < magLen - nInts - 1) newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits); } if (signum < 0) { // Find out whether any one-bits were shifted off the end. boolean onesLost = false; for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--) onesLost = (mag[i] != 0); if (!onesLost && nBits != 0) onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0); if (onesLost) newMag = javaIncrement(newMag); } return new BigInteger(newMag, signum); } int[] javaIncrement(int[] val) { int lastSum = 0; for (int i=val.length-1; i >= 0 && lastSum == 0; i--) lastSum = (val[i] += 1); if (lastSum == 0) { val = new int[val.length+1]; val[0] = 1; } return val; } // Bitwise Operations
Returns a BigInteger whose value is (this & val). (This method returns a negative BigInteger if and only if this and val are both negative.)
Params:
  • val – value to be AND'ed with this BigInteger.
Returns:this & val
/** * Returns a BigInteger whose value is {@code (this & val)}. (This * method returns a negative BigInteger if and only if this and val are * both negative.) * * @param val value to be AND'ed with this BigInteger. * @return {@code this & val} */
public BigInteger and(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i < result.length; i++) result[i] = (getInt(result.length-i-1) & val.getInt(result.length-i-1)); return valueOf(result); }
Returns a BigInteger whose value is (this | val). (This method returns a negative BigInteger if and only if either this or val is negative.)
Params:
  • val – value to be OR'ed with this BigInteger.
Returns:this | val
/** * Returns a BigInteger whose value is {@code (this | val)}. (This method * returns a negative BigInteger if and only if either this or val is * negative.) * * @param val value to be OR'ed with this BigInteger. * @return {@code this | val} */
public BigInteger or(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i < result.length; i++) result[i] = (getInt(result.length-i-1) | val.getInt(result.length-i-1)); return valueOf(result); }
Returns a BigInteger whose value is (this ^ val). (This method returns a negative BigInteger if and only if exactly one of this and val are negative.)
Params:
  • val – value to be XOR'ed with this BigInteger.
Returns:this ^ val
/** * Returns a BigInteger whose value is {@code (this ^ val)}. (This method * returns a negative BigInteger if and only if exactly one of this and * val are negative.) * * @param val value to be XOR'ed with this BigInteger. * @return {@code this ^ val} */
public BigInteger xor(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i < result.length; i++) result[i] = (getInt(result.length-i-1) ^ val.getInt(result.length-i-1)); return valueOf(result); }
Returns a BigInteger whose value is (~this). (This method returns a negative value if and only if this BigInteger is non-negative.)
Returns:~this
/** * Returns a BigInteger whose value is {@code (~this)}. (This method * returns a negative value if and only if this BigInteger is * non-negative.) * * @return {@code ~this} */
public BigInteger not() { int[] result = new int[intLength()]; for (int i=0; i < result.length; i++) result[i] = ~getInt(result.length-i-1); return valueOf(result); }
Returns a BigInteger whose value is (this & ~val). This method, which is equivalent to and(val.not()), is provided as a convenience for masking operations. (This method returns a negative BigInteger if and only if this is negative and val is positive.)
Params:
  • val – value to be complemented and AND'ed with this BigInteger.
Returns:this & ~val
/** * Returns a BigInteger whose value is {@code (this & ~val)}. This * method, which is equivalent to {@code and(val.not())}, is provided as * a convenience for masking operations. (This method returns a negative * BigInteger if and only if {@code this} is negative and {@code val} is * positive.) * * @param val value to be complemented and AND'ed with this BigInteger. * @return {@code this & ~val} */
public BigInteger andNot(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i < result.length; i++) result[i] = (getInt(result.length-i-1) & ~val.getInt(result.length-i-1)); return valueOf(result); } // Single Bit Operations
Returns true if and only if the designated bit is set. (Computes ((this & (1<<n)) != 0).)
Params:
  • n – index of bit to test.
Throws:
Returns:true if and only if the designated bit is set.
/** * Returns {@code true} if and only if the designated bit is set. * (Computes {@code ((this & (1<<n)) != 0)}.) * * @param n index of bit to test. * @return {@code true} if and only if the designated bit is set. * @throws ArithmeticException {@code n} is negative. */
public boolean testBit(int n) { if (n < 0) throw new ArithmeticException("Negative bit address"); return (getInt(n >>> 5) & (1 << (n & 31))) != 0; }
Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit set. (Computes (this | (1<<n)).)
Params:
  • n – index of bit to set.
Throws:
Returns:this | (1<<n)
/** * Returns a BigInteger whose value is equivalent to this BigInteger * with the designated bit set. (Computes {@code (this | (1<<n))}.) * * @param n index of bit to set. * @return {@code this | (1<<n)} * @throws ArithmeticException {@code n} is negative. */
public BigInteger setBit(int n) { if (n < 0) throw new ArithmeticException("Negative bit address"); int intNum = n >>> 5; int[] result = new int[Math.max(intLength(), intNum+2)]; for (int i=0; i < result.length; i++) result[result.length-i-1] = getInt(i); result[result.length-intNum-1] |= (1 << (n & 31)); return valueOf(result); }
Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit cleared. (Computes (this & ~(1<<n)).)
Params:
  • n – index of bit to clear.
Throws:
Returns:this & ~(1<<n)
/** * Returns a BigInteger whose value is equivalent to this BigInteger * with the designated bit cleared. * (Computes {@code (this & ~(1<<n))}.) * * @param n index of bit to clear. * @return {@code this & ~(1<<n)} * @throws ArithmeticException {@code n} is negative. */
public BigInteger clearBit(int n) { if (n < 0) throw new ArithmeticException("Negative bit address"); int intNum = n >>> 5; int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)]; for (int i=0; i < result.length; i++) result[result.length-i-1] = getInt(i); result[result.length-intNum-1] &= ~(1 << (n & 31)); return valueOf(result); }
Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit flipped. (Computes (this ^ (1<<n)).)
Params:
  • n – index of bit to flip.
Throws:
Returns:this ^ (1<<n)
/** * Returns a BigInteger whose value is equivalent to this BigInteger * with the designated bit flipped. * (Computes {@code (this ^ (1<<n))}.) * * @param n index of bit to flip. * @return {@code this ^ (1<<n)} * @throws ArithmeticException {@code n} is negative. */
public BigInteger flipBit(int n) { if (n < 0) throw new ArithmeticException("Negative bit address"); int intNum = n >>> 5; int[] result = new int[Math.max(intLength(), intNum+2)]; for (int i=0; i < result.length; i++) result[result.length-i-1] = getInt(i); result[result.length-intNum-1] ^= (1 << (n & 31)); return valueOf(result); }
Returns the index of the rightmost (lowest-order) one bit in this BigInteger (the number of zero bits to the right of the rightmost one bit). Returns -1 if this BigInteger contains no one bits. (Computes (this == 0? -1 : log2(this & -this)).)
Returns:index of the rightmost one bit in this BigInteger.
/** * Returns the index of the rightmost (lowest-order) one bit in this * BigInteger (the number of zero bits to the right of the rightmost * one bit). Returns -1 if this BigInteger contains no one bits. * (Computes {@code (this == 0? -1 : log2(this & -this))}.) * * @return index of the rightmost one bit in this BigInteger. */
public int getLowestSetBit() { int lsb = lowestSetBitPlusTwo - 2; if (lsb == -2) { // lowestSetBit not initialized yet lsb = 0; if (signum == 0) { lsb -= 1; } else { // Search for lowest order nonzero int int i,b; for (i=0; (b = getInt(i)) == 0; i++) ; lsb += (i << 5) + Integer.numberOfTrailingZeros(b); } lowestSetBitPlusTwo = lsb + 2; } return lsb; } // Miscellaneous Bit Operations
Returns the number of bits in the minimal two's-complement representation of this BigInteger, excluding a sign bit. For positive BigIntegers, this is equivalent to the number of bits in the ordinary binary representation. For zero this method returns 0. (Computes (ceil(log2(this < 0 ? -this : this+1))).)
Returns:number of bits in the minimal two's-complement representation of this BigInteger, excluding a sign bit.
/** * Returns the number of bits in the minimal two's-complement * representation of this BigInteger, <em>excluding</em> a sign bit. * For positive BigIntegers, this is equivalent to the number of bits in * the ordinary binary representation. For zero this method returns * {@code 0}. (Computes {@code (ceil(log2(this < 0 ? -this : this+1)))}.) * * @return number of bits in the minimal two's-complement * representation of this BigInteger, <em>excluding</em> a sign bit. */
public int bitLength() { int n = bitLengthPlusOne - 1; if (n == -1) { // bitLength not initialized yet int[] m = mag; int len = m.length; if (len == 0) { n = 0; // offset by one to initialize } else { // Calculate the bit length of the magnitude int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]); if (signum < 0) { // Check if magnitude is a power of two boolean pow2 = (Integer.bitCount(mag[0]) == 1); for (int i=1; i< len && pow2; i++) pow2 = (mag[i] == 0); n = (pow2 ? magBitLength - 1 : magBitLength); } else { n = magBitLength; } } bitLengthPlusOne = n + 1; } return n; }
Returns the number of bits in the two's complement representation of this BigInteger that differ from its sign bit. This method is useful when implementing bit-vector style sets atop BigIntegers.
Returns:number of bits in the two's complement representation of this BigInteger that differ from its sign bit.
/** * Returns the number of bits in the two's complement representation * of this BigInteger that differ from its sign bit. This method is * useful when implementing bit-vector style sets atop BigIntegers. * * @return number of bits in the two's complement representation * of this BigInteger that differ from its sign bit. */
public int bitCount() { int bc = bitCountPlusOne - 1; if (bc == -1) { // bitCount not initialized yet bc = 0; // offset by one to initialize // Count the bits in the magnitude for (int i=0; i < mag.length; i++) bc += Integer.bitCount(mag[i]); if (signum < 0) { // Count the trailing zeros in the magnitude int magTrailingZeroCount = 0, j; for (j=mag.length-1; mag[j] == 0; j--) magTrailingZeroCount += 32; magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]); bc += magTrailingZeroCount - 1; } bitCountPlusOne = bc + 1; } return bc; } // Primality Testing
Returns true if this BigInteger is probably prime, false if it's definitely composite. If certainty is ≤ 0, true is returned.
Params:
  • certainty – a measure of the uncertainty that the caller is willing to tolerate: if the call returns true the probability that this BigInteger is prime exceeds (1 - 1/2certainty). The execution time of this method is proportional to the value of this parameter.
Returns:true if this BigInteger is probably prime, false if it's definitely composite.
/** * Returns {@code true} if this BigInteger is probably prime, * {@code false} if it's definitely composite. If * {@code certainty} is &le; 0, {@code true} is * returned. * * @param certainty a measure of the uncertainty that the caller is * willing to tolerate: if the call returns {@code true} * the probability that this BigInteger is prime exceeds * (1 - 1/2<sup>{@code certainty}</sup>). The execution time of * this method is proportional to the value of this parameter. * @return {@code true} if this BigInteger is probably prime, * {@code false} if it's definitely composite. */
public boolean isProbablePrime(int certainty) { if (certainty <= 0) return true; BigInteger w = this.abs(); if (w.equals(TWO)) return true; if (!w.testBit(0) || w.equals(ONE)) return false; return w.primeToCertainty(certainty, null); } // Comparison Operations
Compares this BigInteger with the specified BigInteger. This method is provided in preference to individual methods for each of the six boolean comparison operators (<, ==, >, >=, !=, <=). The suggested idiom for performing these comparisons is: (x.compareTo(y) <op> 0), where <op> is one of the six comparison operators.
Params:
  • val – BigInteger to which this BigInteger is to be compared.
Returns:-1, 0 or 1 as this BigInteger is numerically less than, equal to, or greater than val.
/** * Compares this BigInteger with the specified BigInteger. This * method is provided in preference to individual methods for each * of the six boolean comparison operators ({@literal <}, ==, * {@literal >}, {@literal >=}, !=, {@literal <=}). The suggested * idiom for performing these comparisons is: {@code * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where * &lt;<i>op</i>&gt; is one of the six comparison operators. * * @param val BigInteger to which this BigInteger is to be compared. * @return -1, 0 or 1 as this BigInteger is numerically less than, equal * to, or greater than {@code val}. */
public int compareTo(BigInteger val) { if (signum == val.signum) { switch (signum) { case 1: return compareMagnitude(val); case -1: return val.compareMagnitude(this); default: return 0; } } return signum > val.signum ? 1 : -1; }
Compares the magnitude array of this BigInteger with the specified BigInteger's. This is the version of compareTo ignoring sign.
Params:
  • val – BigInteger whose magnitude array to be compared.
Returns:-1, 0 or 1 as this magnitude array is less than, equal to or greater than the magnitude aray for the specified BigInteger's.
/** * Compares the magnitude array of this BigInteger with the specified * BigInteger's. This is the version of compareTo ignoring sign. * * @param val BigInteger whose magnitude array to be compared. * @return -1, 0 or 1 as this magnitude array is less than, equal to or * greater than the magnitude aray for the specified BigInteger's. */
final int compareMagnitude(BigInteger val) { int[] m1 = mag; int len1 = m1.length; int[] m2 = val.mag; int len2 = m2.length; if (len1 < len2) return -1; if (len1 > len2) return 1; for (int i = 0; i < len1; i++) { int a = m1[i]; int b = m2[i]; if (a != b) return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1; } return 0; }
Version of compareMagnitude that compares magnitude with long value. val can't be Long.MIN_VALUE.
/** * Version of compareMagnitude that compares magnitude with long value. * val can't be Long.MIN_VALUE. */
final int compareMagnitude(long val) { assert val != Long.MIN_VALUE; int[] m1 = mag; int len = m1.length; if (len > 2) { return 1; } if (val < 0) { val = -val; } int highWord = (int)(val >>> 32); if (highWord == 0) { if (len < 1) return -1; if (len > 1) return 1; int a = m1[0]; int b = (int)val; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } return 0; } else { if (len < 2) return -1; int a = m1[0]; int b = highWord; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } a = m1[1]; b = (int)val; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } return 0; } }
Compares this BigInteger with the specified Object for equality.
Params:
  • x – Object to which this BigInteger is to be compared.
Returns:true if and only if the specified Object is a BigInteger whose value is numerically equal to this BigInteger.
/** * Compares this BigInteger with the specified Object for equality. * * @param x Object to which this BigInteger is to be compared. * @return {@code true} if and only if the specified Object is a * BigInteger whose value is numerically equal to this BigInteger. */
public boolean equals(Object x) { // This test is just an optimization, which may or may not help if (x == this) return true; if (!(x instanceof BigInteger)) return false; BigInteger xInt = (BigInteger) x; if (xInt.signum != signum) return false; int[] m = mag; int len = m.length; int[] xm = xInt.mag; if (len != xm.length) return false; for (int i = 0; i < len; i++) if (xm[i] != m[i]) return false; return true; }
Returns the minimum of this BigInteger and val.
Params:
  • val – value with which the minimum is to be computed.
Returns:the BigInteger whose value is the lesser of this BigInteger and val. If they are equal, either may be returned.
/** * Returns the minimum of this BigInteger and {@code val}. * * @param val value with which the minimum is to be computed. * @return the BigInteger whose value is the lesser of this BigInteger and * {@code val}. If they are equal, either may be returned. */
public BigInteger min(BigInteger val) { return (compareTo(val) < 0 ? this : val); }
Returns the maximum of this BigInteger and val.
Params:
  • val – value with which the maximum is to be computed.
Returns:the BigInteger whose value is the greater of this and val. If they are equal, either may be returned.
/** * Returns the maximum of this BigInteger and {@code val}. * * @param val value with which the maximum is to be computed. * @return the BigInteger whose value is the greater of this and * {@code val}. If they are equal, either may be returned. */
public BigInteger max(BigInteger val) { return (compareTo(val) > 0 ? this : val); } // Hash Function
Returns the hash code for this BigInteger.
Returns:hash code for this BigInteger.
/** * Returns the hash code for this BigInteger. * * @return hash code for this BigInteger. */
public int hashCode() { int hashCode = 0; for (int i=0; i < mag.length; i++) hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK)); return hashCode * signum; }
Returns the String representation of this BigInteger in the given radix. If the radix is outside the range from Character.MIN_RADIX to Character.MAX_RADIX inclusive, it will default to 10 (as is the case for Integer.toString). The digit-to-character mapping provided by Character.forDigit is used, and a minus sign is prepended if appropriate. (This representation is compatible with the (String, int) constructor.)
Params:
  • radix – radix of the String representation.
See Also:
Returns:String representation of this BigInteger in the given radix.
/** * Returns the String representation of this BigInteger in the * given radix. If the radix is outside the range from {@link * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive, * it will default to 10 (as is the case for * {@code Integer.toString}). The digit-to-character mapping * provided by {@code Character.forDigit} is used, and a minus * sign is prepended if appropriate. (This representation is * compatible with the {@link #BigInteger(String, int) (String, * int)} constructor.) * * @param radix radix of the String representation. * @return String representation of this BigInteger in the given radix. * @see Integer#toString * @see Character#forDigit * @see #BigInteger(java.lang.String, int) */
public String toString(int radix) { if (signum == 0) return "0"; if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) radix = 10; // If it's small enough, use smallToString. if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) return smallToString(radix); // Otherwise use recursive toString, which requires positive arguments. // The results will be concatenated into this StringBuilder StringBuilder sb = new StringBuilder(); if (signum < 0) { toString(this.negate(), sb, radix, 0); sb.insert(0, '-'); } else toString(this, sb, radix, 0); return sb.toString(); }
This method is used to perform toString when arguments are small.
/** This method is used to perform toString when arguments are small. */
private String smallToString(int radix) { if (signum == 0) { return "0"; } // Compute upper bound on number of digit groups and allocate space int maxNumDigitGroups = (4*mag.length + 6)/7; String digitGroup[] = new String[maxNumDigitGroups]; // Translate number to string, a digit group at a time BigInteger tmp = this.abs(); int numGroups = 0; while (tmp.signum != 0) { BigInteger d = longRadix[radix]; MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(tmp.mag), b = new MutableBigInteger(d.mag); MutableBigInteger r = a.divide(b, q); BigInteger q2 = q.toBigInteger(tmp.signum * d.signum); BigInteger r2 = r.toBigInteger(tmp.signum * d.signum); digitGroup[numGroups++] = Long.toString(r2.longValue(), radix); tmp = q2; } // Put sign (if any) and first digit group into result buffer StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1); if (signum < 0) { buf.append('-'); } buf.append(digitGroup[numGroups-1]); // Append remaining digit groups padded with leading zeros for (int i=numGroups-2; i >= 0; i--) { // Prepend (any) leading zeros for this digit group int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length(); if (numLeadingZeros != 0) { buf.append(zeros[numLeadingZeros]); } buf.append(digitGroup[i]); } return buf.toString(); }
Converts the specified BigInteger to a string and appends to sb. This implements the recursive Schoenhage algorithm for base conversions.

See Knuth, Donald, _The Art of Computer Programming_, Vol. 2, Answers to Exercises (4.4) Question 14.

Params:
  • u – The number to convert to a string.
  • sb – The StringBuilder that will be appended to in place.
  • radix – The base to convert to.
  • digits – The minimum number of digits to pad to.
/** * Converts the specified BigInteger to a string and appends to * {@code sb}. This implements the recursive Schoenhage algorithm * for base conversions. * <p> * See Knuth, Donald, _The Art of Computer Programming_, Vol. 2, * Answers to Exercises (4.4) Question 14. * * @param u The number to convert to a string. * @param sb The StringBuilder that will be appended to in place. * @param radix The base to convert to. * @param digits The minimum number of digits to pad to. */
private static void toString(BigInteger u, StringBuilder sb, int radix, int digits) { // If we're smaller than a certain threshold, use the smallToString // method, padding with leading zeroes when necessary. if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) { String s = u.smallToString(radix); // Pad with internal zeros if necessary. // Don't pad if we're at the beginning of the string. if ((s.length() < digits) && (sb.length() > 0)) { for (int i=s.length(); i < digits; i++) { sb.append('0'); } } sb.append(s); return; } int b, n; b = u.bitLength(); // Calculate a value for n in the equation radix^(2^n) = u // and subtract 1 from that value. This is used to find the // cache index that contains the best value to divide u. n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0); BigInteger v = getRadixConversionCache(radix, n); BigInteger[] results; results = u.divideAndRemainder(v); int expectedDigits = 1 << n; // Now recursively build the two halves of each number. toString(results[0], sb, radix, digits-expectedDigits); toString(results[1], sb, radix, expectedDigits); }
Returns the value radix^(2^exponent) from the cache. If this value doesn't already exist in the cache, it is added.

This could be changed to a more complicated caching method using Future.

/** * Returns the value radix^(2^exponent) from the cache. * If this value doesn't already exist in the cache, it is added. * <p> * This could be changed to a more complicated caching method using * {@code Future}. */
private static BigInteger getRadixConversionCache(int radix, int exponent) { BigInteger[] cacheLine = powerCache[radix]; // volatile read if (exponent < cacheLine.length) { return cacheLine[exponent]; } int oldLength = cacheLine.length; cacheLine = Arrays.copyOf(cacheLine, exponent + 1); for (int i = oldLength; i <= exponent; i++) { cacheLine[i] = cacheLine[i - 1].pow(2); } BigInteger[][] pc = powerCache; // volatile read again if (exponent >= pc[radix].length) { pc = pc.clone(); pc[radix] = cacheLine; powerCache = pc; // volatile write, publish } return cacheLine[exponent]; } /* zero[i] is a string of i consecutive zeros. */ private static String zeros[] = new String[64]; static { zeros[63] = "000000000000000000000000000000000000000000000000000000000000000"; for (int i=0; i < 63; i++) zeros[i] = zeros[63].substring(0, i); }
Returns the decimal String representation of this BigInteger. The digit-to-character mapping provided by Character.forDigit is used, and a minus sign is prepended if appropriate. (This representation is compatible with the (String) constructor, and allows for String concatenation with Java's + operator.)
See Also:
Returns:decimal String representation of this BigInteger.
/** * Returns the decimal String representation of this BigInteger. * The digit-to-character mapping provided by * {@code Character.forDigit} is used, and a minus sign is * prepended if appropriate. (This representation is compatible * with the {@link #BigInteger(String) (String)} constructor, and * allows for String concatenation with Java's + operator.) * * @return decimal String representation of this BigInteger. * @see Character#forDigit * @see #BigInteger(java.lang.String) */
public String toString() { return toString(10); }
Returns a byte array containing the two's-complement representation of this BigInteger. The byte array will be in big-endian byte-order: the most significant byte is in the zeroth element. The array will contain the minimum number of bytes required to represent this BigInteger, including at least one sign bit, which is (ceil((this.bitLength() + 1)/8)). (This representation is compatible with the (byte[]) constructor.)
See Also:
Returns:a byte array containing the two's-complement representation of this BigInteger.
/** * Returns a byte array containing the two's-complement * representation of this BigInteger. The byte array will be in * <i>big-endian</i> byte-order: the most significant byte is in * the zeroth element. The array will contain the minimum number * of bytes required to represent this BigInteger, including at * least one sign bit, which is {@code (ceil((this.bitLength() + * 1)/8))}. (This representation is compatible with the * {@link #BigInteger(byte[]) (byte[])} constructor.) * * @return a byte array containing the two's-complement representation of * this BigInteger. * @see #BigInteger(byte[]) */
public byte[] toByteArray() { int byteLen = bitLength()/8 + 1; byte[] byteArray = new byte[byteLen]; for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) { if (bytesCopied == 4) { nextInt = getInt(intIndex++); bytesCopied = 1; } else { nextInt >>>= 8; bytesCopied++; } byteArray[i] = (byte)nextInt; } return byteArray; }
Converts this BigInteger to an int. This conversion is analogous to a narrowing primitive conversion from long to int as defined in The Java™ Language Specification: if this BigInteger is too big to fit in an int, only the low-order 32 bits are returned. Note that this conversion can lose information about the overall magnitude of the BigInteger value as well as return a result with the opposite sign.
See Also:
Returns:this BigInteger converted to an int.
@jls5.1.3 Narrowing Primitive Conversion
/** * Converts this BigInteger to an {@code int}. This * conversion is analogous to a * <i>narrowing primitive conversion</i> from {@code long} to * {@code int} as defined in * <cite>The Java&trade; Language Specification</cite>: * if this BigInteger is too big to fit in an * {@code int}, only the low-order 32 bits are returned. * Note that this conversion can lose information about the * overall magnitude of the BigInteger value as well as return a * result with the opposite sign. * * @return this BigInteger converted to an {@code int}. * @see #intValueExact() * @jls 5.1.3 Narrowing Primitive Conversion */
public int intValue() { int result = 0; result = getInt(0); return result; }
Converts this BigInteger to a long. This conversion is analogous to a narrowing primitive conversion from long to int as defined in The Java™ Language Specification: if this BigInteger is too big to fit in a long, only the low-order 64 bits are returned. Note that this conversion can lose information about the overall magnitude of the BigInteger value as well as return a result with the opposite sign.
See Also:
Returns:this BigInteger converted to a long.
@jls5.1.3 Narrowing Primitive Conversion
/** * Converts this BigInteger to a {@code long}. This * conversion is analogous to a * <i>narrowing primitive conversion</i> from {@code long} to * {@code int} as defined in * <cite>The Java&trade; Language Specification</cite>: * if this BigInteger is too big to fit in a * {@code long}, only the low-order 64 bits are returned. * Note that this conversion can lose information about the * overall magnitude of the BigInteger value as well as return a * result with the opposite sign. * * @return this BigInteger converted to a {@code long}. * @see #longValueExact() * @jls 5.1.3 Narrowing Primitive Conversion */
public long longValue() { long result = 0; for (int i=1; i >= 0; i--) result = (result << 32) + (getInt(i) & LONG_MASK); return result; }
Converts this BigInteger to a float. This conversion is similar to the narrowing primitive conversion from double to float as defined in The Java™ Language Specification: if this BigInteger has too great a magnitude to represent as a float, it will be converted to Float.NEGATIVE_INFINITY or Float.POSITIVE_INFINITY as appropriate. Note that even when the return value is finite, this conversion can lose information about the precision of the BigInteger value.
Returns:this BigInteger converted to a float.
@jls5.1.3 Narrowing Primitive Conversion
/** * Converts this BigInteger to a {@code float}. This * conversion is similar to the * <i>narrowing primitive conversion</i> from {@code double} to * {@code float} as defined in * <cite>The Java&trade; Language Specification</cite>: * if this BigInteger has too great a magnitude * to represent as a {@code float}, it will be converted to * {@link Float#NEGATIVE_INFINITY} or {@link * Float#POSITIVE_INFINITY} as appropriate. Note that even when * the return value is finite, this conversion can lose * information about the precision of the BigInteger value. * * @return this BigInteger converted to a {@code float}. * @jls 5.1.3 Narrowing Primitive Conversion */
public float floatValue() { if (signum == 0) { return 0.0f; } int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1; // exponent == floor(log2(abs(this))) if (exponent < Long.SIZE - 1) { return longValue(); } else if (exponent > Float.MAX_EXPONENT) { return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY; } /* * We need the top SIGNIFICAND_WIDTH bits, including the "implicit" * one bit. To make rounding easier, we pick out the top * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1 * bits, and signifFloor the top SIGNIFICAND_WIDTH. * * It helps to consider the real number signif = abs(this) * * 2^(SIGNIFICAND_WIDTH - 1 - exponent). */ int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH; int twiceSignifFloor; // twiceSignifFloor will be == abs().shiftRight(shift).intValue() // We do the shift into an int directly to improve performance. int nBits = shift & 0x1f; int nBits2 = 32 - nBits; if (nBits == 0) { twiceSignifFloor = mag[0]; } else { twiceSignifFloor = mag[0] >>> nBits; if (twiceSignifFloor == 0) { twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits); } } int signifFloor = twiceSignifFloor >> 1; signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit /* * We round up if either the fractional part of signif is strictly * greater than 0.5 (which is true if the 0.5 bit is set and any lower * bit is set), or if the fractional part of signif is >= 0.5 and * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit * are set). This is equivalent to the desired HALF_EVEN rounding. */ boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift); int signifRounded = increment ? signifFloor + 1 : signifFloor; int bits = ((exponent + FloatConsts.EXP_BIAS)) << (FloatConsts.SIGNIFICAND_WIDTH - 1); bits += signifRounded; /* * If signifRounded == 2^24, we'd need to set all of the significand * bits to zero and add 1 to the exponent. This is exactly the behavior * we get from just adding signifRounded to bits directly. If the * exponent is Float.MAX_EXPONENT, we round up (correctly) to * Float.POSITIVE_INFINITY. */ bits |= signum & FloatConsts.SIGN_BIT_MASK; return Float.intBitsToFloat(bits); }
Converts this BigInteger to a double. This conversion is similar to the narrowing primitive conversion from double to float as defined in The Java™ Language Specification: if this BigInteger has too great a magnitude to represent as a double, it will be converted to Double.NEGATIVE_INFINITY or Double.POSITIVE_INFINITY as appropriate. Note that even when the return value is finite, this conversion can lose information about the precision of the BigInteger value.
Returns:this BigInteger converted to a double.
@jls5.1.3 Narrowing Primitive Conversion
/** * Converts this BigInteger to a {@code double}. This * conversion is similar to the * <i>narrowing primitive conversion</i> from {@code double} to * {@code float} as defined in * <cite>The Java&trade; Language Specification</cite>: * if this BigInteger has too great a magnitude * to represent as a {@code double}, it will be converted to * {@link Double#NEGATIVE_INFINITY} or {@link * Double#POSITIVE_INFINITY} as appropriate. Note that even when * the return value is finite, this conversion can lose * information about the precision of the BigInteger value. * * @return this BigInteger converted to a {@code double}. * @jls 5.1.3 Narrowing Primitive Conversion */
public double doubleValue() { if (signum == 0) { return 0.0; } int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1; // exponent == floor(log2(abs(this))Double) if (exponent < Long.SIZE - 1) { return longValue(); } else if (exponent > Double.MAX_EXPONENT) { return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY; } /* * We need the top SIGNIFICAND_WIDTH bits, including the "implicit" * one bit. To make rounding easier, we pick out the top * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1 * bits, and signifFloor the top SIGNIFICAND_WIDTH. * * It helps to consider the real number signif = abs(this) * * 2^(SIGNIFICAND_WIDTH - 1 - exponent). */ int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH; long twiceSignifFloor; // twiceSignifFloor will be == abs().shiftRight(shift).longValue() // We do the shift into a long directly to improve performance. int nBits = shift & 0x1f; int nBits2 = 32 - nBits; int highBits; int lowBits; if (nBits == 0) { highBits = mag[0]; lowBits = mag[1]; } else { highBits = mag[0] >>> nBits; lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits); if (highBits == 0) { highBits = lowBits; lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits); } } twiceSignifFloor = ((highBits & LONG_MASK) << 32) | (lowBits & LONG_MASK); long signifFloor = twiceSignifFloor >> 1; signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit /* * We round up if either the fractional part of signif is strictly * greater than 0.5 (which is true if the 0.5 bit is set and any lower * bit is set), or if the fractional part of signif is >= 0.5 and * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit * are set). This is equivalent to the desired HALF_EVEN rounding. */ boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift); long signifRounded = increment ? signifFloor + 1 : signifFloor; long bits = (long) ((exponent + DoubleConsts.EXP_BIAS)) << (DoubleConsts.SIGNIFICAND_WIDTH - 1); bits += signifRounded; /* * If signifRounded == 2^53, we'd need to set all of the significand * bits to zero and add 1 to the exponent. This is exactly the behavior * we get from just adding signifRounded to bits directly. If the * exponent is Double.MAX_EXPONENT, we round up (correctly) to * Double.POSITIVE_INFINITY. */ bits |= signum & DoubleConsts.SIGN_BIT_MASK; return Double.longBitsToDouble(bits); }
Returns a copy of the input array stripped of any leading zero bytes.
/** * Returns a copy of the input array stripped of any leading zero bytes. */
private static int[] stripLeadingZeroInts(int val[]) { int vlen = val.length; int keep; // Find first nonzero byte for (keep = 0; keep < vlen && val[keep] == 0; keep++) ; return java.util.Arrays.copyOfRange(val, keep, vlen); }
Returns the input array stripped of any leading zero bytes. Since the source is trusted the copying may be skipped.
/** * Returns the input array stripped of any leading zero bytes. * Since the source is trusted the copying may be skipped. */
private static int[] trustedStripLeadingZeroInts(int val[]) { int vlen = val.length; int keep; // Find first nonzero byte for (keep = 0; keep < vlen && val[keep] == 0; keep++) ; return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen); }
Returns a copy of the input array stripped of any leading zero bytes.
/** * Returns a copy of the input array stripped of any leading zero bytes. */
private static int[] stripLeadingZeroBytes(byte a[], int off, int len) { int indexBound = off + len; int keep; // Find first nonzero byte for (keep = off; keep < indexBound && a[keep] == 0; keep++) ; // Allocate new array and copy relevant part of input array int intLength = ((indexBound - keep) + 3) >>> 2; int[] result = new int[intLength]; int b = indexBound - 1; for (int i = intLength-1; i >= 0; i--) { result[i] = a[b--] & 0xff; int bytesRemaining = b - keep + 1; int bytesToTransfer = Math.min(3, bytesRemaining); for (int j=8; j <= (bytesToTransfer << 3); j += 8) result[i] |= ((a[b--] & 0xff) << j); } return result; }
Takes an array a representing a negative 2's-complement number and returns the minimal (no leading zero bytes) unsigned whose value is -a.
/** * Takes an array a representing a negative 2's-complement number and * returns the minimal (no leading zero bytes) unsigned whose value is -a. */
private static int[] makePositive(byte a[], int off, int len) { int keep, k; int indexBound = off + len; // Find first non-sign (0xff) byte of input for (keep=off; keep < indexBound && a[keep] == -1; keep++) ; /* Allocate output array. If all non-sign bytes are 0x00, we must * allocate space for one extra output byte. */ for (k=keep; k < indexBound && a[k] == 0; k++) ; int extraByte = (k == indexBound) ? 1 : 0; int intLength = ((indexBound - keep + extraByte) + 3) >>> 2; int result[] = new int[intLength]; /* Copy one's complement of input into output, leaving extra * byte (if it exists) == 0x00 */ int b = indexBound - 1; for (int i = intLength-1; i >= 0; i--) { result[i] = a[b--] & 0xff; int numBytesToTransfer = Math.min(3, b-keep+1); if (numBytesToTransfer < 0) numBytesToTransfer = 0; for (int j=8; j <= 8*numBytesToTransfer; j += 8) result[i] |= ((a[b--] & 0xff) << j); // Mask indicates which bits must be complemented int mask = -1 >>> (8*(3-numBytesToTransfer)); result[i] = ~result[i] & mask; } // Add one to one's complement to generate two's complement for (int i=result.length-1; i >= 0; i--) { result[i] = (int)((result[i] & LONG_MASK) + 1); if (result[i] != 0) break; } return result; }
Takes an array a representing a negative 2's-complement number and returns the minimal (no leading zero ints) unsigned whose value is -a.
/** * Takes an array a representing a negative 2's-complement number and * returns the minimal (no leading zero ints) unsigned whose value is -a. */
private static int[] makePositive(int a[]) { int keep, j; // Find first non-sign (0xffffffff) int of input for (keep=0; keep < a.length && a[keep] == -1; keep++) ; /* Allocate output array. If all non-sign ints are 0x00, we must * allocate space for one extra output int. */ for (j=keep; j < a.length && a[j] == 0; j++) ; int extraInt = (j == a.length ? 1 : 0); int result[] = new int[a.length - keep + extraInt]; /* Copy one's complement of input into output, leaving extra * int (if it exists) == 0x00 */ for (int i = keep; i < a.length; i++) result[i - keep + extraInt] = ~a[i]; // Add one to one's complement to generate two's complement for (int i=result.length-1; ++result[i] == 0; i--) ; return result; } /* * The following two arrays are used for fast String conversions. Both * are indexed by radix. The first is the number of digits of the given * radix that can fit in a Java long without "going negative", i.e., the * highest integer n such that radix**n < 2**63. The second is the * "long radix" that tears each number into "long digits", each of which * consists of the number of digits in the corresponding element in * digitsPerLong (longRadix[i] = i**digitPerLong[i]). Both arrays have * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not * used. */ private static int digitsPerLong[] = {0, 0, 62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12}; private static BigInteger longRadix[] = {null, null, valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL), valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL), valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L), valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L), valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L), valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL), valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L), valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L), valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L), valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L), valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L), valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L), valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL), valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L), valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L), valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L), valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L), valueOf(0x41c21cb8e1000000L)}; /* * These two arrays are the integer analogue of above. */ private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11, 11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5}; private static int intRadix[] = {0, 0, 0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800, 0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61, 0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f, 0x10000000, 0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d, 0x6c20a40, 0x8d2d931, 0xb640000, 0xe8d4a51, 0x1269ae40, 0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41, 0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400 }; /** * These routines provide access to the two's complement representation * of BigIntegers. */
Returns the length of the two's complement representation in ints, including space for at least one sign bit.
/** * Returns the length of the two's complement representation in ints, * including space for at least one sign bit. */
private int intLength() { return (bitLength() >>> 5) + 1; } /* Returns sign bit */ private int signBit() { return signum < 0 ? 1 : 0; } /* Returns an int of sign bits */ private int signInt() { return signum < 0 ? -1 : 0; }
Returns the specified int of the little-endian two's complement representation (int 0 is the least significant). The int number can be arbitrarily high (values are logically preceded by infinitely many sign ints).
/** * Returns the specified int of the little-endian two's complement * representation (int 0 is the least significant). The int number can * be arbitrarily high (values are logically preceded by infinitely many * sign ints). */
private int getInt(int n) { if (n < 0) return 0; if (n >= mag.length) return signInt(); int magInt = mag[mag.length-n-1]; return (signum >= 0 ? magInt : (n <= firstNonzeroIntNum() ? -magInt : ~magInt)); }
Returns the index of the int that contains the first nonzero int in the little-endian binary representation of the magnitude (int 0 is the least significant). If the magnitude is zero, return value is undefined.

Note: never used for a BigInteger with a magnitude of zero.

See Also:
  • #getInt.
/** * Returns the index of the int that contains the first nonzero int in the * little-endian binary representation of the magnitude (int 0 is the * least significant). If the magnitude is zero, return value is undefined. * * <p>Note: never used for a BigInteger with a magnitude of zero. * @see #getInt. */
private int firstNonzeroIntNum() { int fn = firstNonzeroIntNumPlusTwo - 2; if (fn == -2) { // firstNonzeroIntNum not initialized yet // Search for the first nonzero int int i; int mlen = mag.length; for (i = mlen - 1; i >= 0 && mag[i] == 0; i--) ; fn = mlen - i - 1; firstNonzeroIntNumPlusTwo = fn + 2; // offset by two to initialize } return fn; }
use serialVersionUID from JDK 1.1. for interoperability
/** use serialVersionUID from JDK 1.1. for interoperability */
private static final long serialVersionUID = -8287574255936472291L;
Serializable fields for BigInteger.
@serialFieldsignum int signum of this BigInteger
@serialFieldmagnitude byte[] magnitude array of this BigInteger
@serialFieldbitCount int appears in the serialized form for backward compatibility
@serialFieldbitLength int appears in the serialized form for backward compatibility
@serialFieldfirstNonzeroByteNum int appears in the serialized form for backward compatibility
@serialFieldlowestSetBit int appears in the serialized form for backward compatibility
/** * Serializable fields for BigInteger. * * @serialField signum int * signum of this BigInteger * @serialField magnitude byte[] * magnitude array of this BigInteger * @serialField bitCount int * appears in the serialized form for backward compatibility * @serialField bitLength int * appears in the serialized form for backward compatibility * @serialField firstNonzeroByteNum int * appears in the serialized form for backward compatibility * @serialField lowestSetBit int * appears in the serialized form for backward compatibility */
private static final ObjectStreamField[] serialPersistentFields = { new ObjectStreamField("signum", Integer.TYPE), new ObjectStreamField("magnitude", byte[].class), new ObjectStreamField("bitCount", Integer.TYPE), new ObjectStreamField("bitLength", Integer.TYPE), new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE), new ObjectStreamField("lowestSetBit", Integer.TYPE) };
Reconstitute the BigInteger instance from a stream (that is, deserialize it). The magnitude is read in as an array of bytes for historical reasons, but it is converted to an array of ints and the byte array is discarded. Note: The current convention is to initialize the cache fields, bitCountPlusOne, bitLengthPlusOne and lowestSetBitPlusTwo, to 0 rather than some other marker value. Therefore, no explicit action to set these fields needs to be taken in readObject because those fields already have a 0 value by default since defaultReadObject is not being used.
/** * Reconstitute the {@code BigInteger} instance from a stream (that is, * deserialize it). The magnitude is read in as an array of bytes * for historical reasons, but it is converted to an array of ints * and the byte array is discarded. * Note: * The current convention is to initialize the cache fields, bitCountPlusOne, * bitLengthPlusOne and lowestSetBitPlusTwo, to 0 rather than some other * marker value. Therefore, no explicit action to set these fields needs to * be taken in readObject because those fields already have a 0 value by * default since defaultReadObject is not being used. */
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // prepare to read the alternate persistent fields ObjectInputStream.GetField fields = s.readFields(); // Read the alternate persistent fields that we care about int sign = fields.get("signum", -2); byte[] magnitude = (byte[])fields.get("magnitude", null); // Validate signum if (sign < -1 || sign > 1) { String message = "BigInteger: Invalid signum value"; if (fields.defaulted("signum")) message = "BigInteger: Signum not present in stream"; throw new java.io.StreamCorruptedException(message); } int[] mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length); if ((mag.length == 0) != (sign == 0)) { String message = "BigInteger: signum-magnitude mismatch"; if (fields.defaulted("magnitude")) message = "BigInteger: Magnitude not present in stream"; throw new java.io.StreamCorruptedException(message); } // Commit final fields via Unsafe UnsafeHolder.putSign(this, sign); // Calculate mag field from magnitude and discard magnitude UnsafeHolder.putMag(this, mag); if (mag.length >= MAX_MAG_LENGTH) { try { checkRange(); } catch (ArithmeticException e) { throw new java.io.StreamCorruptedException("BigInteger: Out of the supported range"); } } } // Support for resetting final fields while deserializing private static class UnsafeHolder { private static final jdk.internal.misc.Unsafe unsafe = jdk.internal.misc.Unsafe.getUnsafe(); private static final long signumOffset = unsafe.objectFieldOffset(BigInteger.class, "signum"); private static final long magOffset = unsafe.objectFieldOffset(BigInteger.class, "mag"); static void putSign(BigInteger bi, int sign) { unsafe.putInt(bi, signumOffset, sign); } static void putMag(BigInteger bi, int[] magnitude) { unsafe.putObject(bi, magOffset, magnitude); } }
Save the BigInteger instance to a stream. The magnitude of a BigInteger is serialized as a byte array for historical reasons. To maintain compatibility with older implementations, the integers -1, -1, -2, and -2 are written as the values of the obsolete fields bitCount, bitLength, lowestSetBit, and firstNonzeroByteNum, respectively. These values are compatible with older implementations, but will be ignored by current implementations.
/** * Save the {@code BigInteger} instance to a stream. The magnitude of a * {@code BigInteger} is serialized as a byte array for historical reasons. * To maintain compatibility with older implementations, the integers * -1, -1, -2, and -2 are written as the values of the obsolete fields * {@code bitCount}, {@code bitLength}, {@code lowestSetBit}, and * {@code firstNonzeroByteNum}, respectively. These values are compatible * with older implementations, but will be ignored by current * implementations. */
private void writeObject(ObjectOutputStream s) throws IOException { // set the values of the Serializable fields ObjectOutputStream.PutField fields = s.putFields(); fields.put("signum", signum); fields.put("magnitude", magSerializedForm()); // The values written for cached fields are compatible with older // versions, but are ignored in readObject so don't otherwise matter. fields.put("bitCount", -1); fields.put("bitLength", -1); fields.put("lowestSetBit", -2); fields.put("firstNonzeroByteNum", -2); // save them s.writeFields(); }
Returns the mag array as an array of bytes.
/** * Returns the mag array as an array of bytes. */
private byte[] magSerializedForm() { int len = mag.length; int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0])); int byteLen = (bitLen + 7) >>> 3; byte[] result = new byte[byteLen]; for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0; i >= 0; i--) { if (bytesCopied == 4) { nextInt = mag[intIndex--]; bytesCopied = 1; } else { nextInt >>>= 8; bytesCopied++; } result[i] = (byte)nextInt; } return result; }
Converts this BigInteger to a long, checking for lost information. If the value of this BigInteger is out of the range of the long type, then an ArithmeticException is thrown.
Throws:
See Also:
Returns:this BigInteger converted to a long.
Since: 1.8
/** * Converts this {@code BigInteger} to a {@code long}, checking * for lost information. If the value of this {@code BigInteger} * is out of the range of the {@code long} type, then an * {@code ArithmeticException} is thrown. * * @return this {@code BigInteger} converted to a {@code long}. * @throws ArithmeticException if the value of {@code this} will * not exactly fit in a {@code long}. * @see BigInteger#longValue * @since 1.8 */
public long longValueExact() { if (mag.length <= 2 && bitLength() <= 63) return longValue(); else throw new ArithmeticException("BigInteger out of long range"); }
Converts this BigInteger to an int, checking for lost information. If the value of this BigInteger is out of the range of the int type, then an ArithmeticException is thrown.
Throws:
See Also:
Returns:this BigInteger converted to an int.
Since: 1.8
/** * Converts this {@code BigInteger} to an {@code int}, checking * for lost information. If the value of this {@code BigInteger} * is out of the range of the {@code int} type, then an * {@code ArithmeticException} is thrown. * * @return this {@code BigInteger} converted to an {@code int}. * @throws ArithmeticException if the value of {@code this} will * not exactly fit in an {@code int}. * @see BigInteger#intValue * @since 1.8 */
public int intValueExact() { if (mag.length <= 1 && bitLength() <= 31) return intValue(); else throw new ArithmeticException("BigInteger out of int range"); }
Converts this BigInteger to a short, checking for lost information. If the value of this BigInteger is out of the range of the short type, then an ArithmeticException is thrown.
Throws:
See Also:
Returns:this BigInteger converted to a short.
Since: 1.8
/** * Converts this {@code BigInteger} to a {@code short}, checking * for lost information. If the value of this {@code BigInteger} * is out of the range of the {@code short} type, then an * {@code ArithmeticException} is thrown. * * @return this {@code BigInteger} converted to a {@code short}. * @throws ArithmeticException if the value of {@code this} will * not exactly fit in a {@code short}. * @see BigInteger#shortValue * @since 1.8 */
public short shortValueExact() { if (mag.length <= 1 && bitLength() <= 31) { int value = intValue(); if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE) return shortValue(); } throw new ArithmeticException("BigInteger out of short range"); }
Converts this BigInteger to a byte, checking for lost information. If the value of this BigInteger is out of the range of the byte type, then an ArithmeticException is thrown.
Throws:
See Also:
Returns:this BigInteger converted to a byte.
Since: 1.8
/** * Converts this {@code BigInteger} to a {@code byte}, checking * for lost information. If the value of this {@code BigInteger} * is out of the range of the {@code byte} type, then an * {@code ArithmeticException} is thrown. * * @return this {@code BigInteger} converted to a {@code byte}. * @throws ArithmeticException if the value of {@code this} will * not exactly fit in a {@code byte}. * @see BigInteger#byteValue * @since 1.8 */
public byte byteValueExact() { if (mag.length <= 1 && bitLength() <= 31) { int value = intValue(); if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE) return byteValue(); } throw new ArithmeticException("BigInteger out of byte range"); } }