package org.bouncycastle.pqc.math.ntru.polynomial;

import java.math.BigDecimal;

A polynomial with BigDecimal coefficients. Some methods (like add) change the polynomial, others (like mult) do not but return the result as a new polynomial.
/** * A polynomial with {@link BigDecimal} coefficients. * Some methods (like <code>add</code>) change the polynomial, others (like <code>mult</code>) do * not but return the result as a new polynomial. */
public class BigDecimalPolynomial { private static final BigDecimal ZERO = new BigDecimal("0"); private static final BigDecimal ONE_HALF = new BigDecimal("0.5"); BigDecimal[] coeffs;
Constructs a new polynomial with N coefficients initialized to 0.
Params:
  • N – the number of coefficients
/** * Constructs a new polynomial with <code>N</code> coefficients initialized to 0. * * @param N the number of coefficients */
BigDecimalPolynomial(int N) { coeffs = new BigDecimal[N]; for (int i = 0; i < N; i++) { coeffs[i] = ZERO; } }
Constructs a new polynomial with a given set of coefficients.
Params:
  • coeffs – the coefficients
/** * Constructs a new polynomial with a given set of coefficients. * * @param coeffs the coefficients */
BigDecimalPolynomial(BigDecimal[] coeffs) { this.coeffs = coeffs; }
Constructs a BigDecimalPolynomial from a BigIntPolynomial. The two polynomials are independent of each other.
Params:
  • p – the original polynomial
/** * Constructs a <code>BigDecimalPolynomial</code> from a <code>BigIntPolynomial</code>. The two polynomials are independent of each other. * * @param p the original polynomial */
public BigDecimalPolynomial(BigIntPolynomial p) { int N = p.coeffs.length; coeffs = new BigDecimal[N]; for (int i = 0; i < N; i++) { coeffs[i] = new BigDecimal(p.coeffs[i]); } }
Divides all coefficients by 2.
/** * Divides all coefficients by 2. */
public void halve() { for (int i = 0; i < coeffs.length; i++) { coeffs[i] = coeffs[i].multiply(ONE_HALF); } }
Multiplies the polynomial by another. Does not change this polynomial but returns the result as a new polynomial.
Params:
  • poly2 – the polynomial to multiply by
Returns:a new polynomial
/** * Multiplies the polynomial by another. Does not change this polynomial * but returns the result as a new polynomial. * * @param poly2 the polynomial to multiply by * @return a new polynomial */
public BigDecimalPolynomial mult(BigIntPolynomial poly2) { return mult(new BigDecimalPolynomial(poly2)); }
Multiplies the polynomial by another, taking the indices mod N. Does not change this polynomial but returns the result as a new polynomial.
Params:
  • poly2 – the polynomial to multiply by
Returns:a new polynomial
/** * Multiplies the polynomial by another, taking the indices mod N. Does not * change this polynomial but returns the result as a new polynomial. * * @param poly2 the polynomial to multiply by * @return a new polynomial */
public BigDecimalPolynomial mult(BigDecimalPolynomial poly2) { int N = coeffs.length; if (poly2.coeffs.length != N) { throw new IllegalArgumentException("Number of coefficients must be the same"); } BigDecimalPolynomial c = multRecursive(poly2); if (c.coeffs.length > N) { for (int k = N; k < c.coeffs.length; k++) { c.coeffs[k - N] = c.coeffs[k - N].add(c.coeffs[k]); } c.coeffs = copyOf(c.coeffs, N); } return c; }
Karazuba multiplication
/** * Karazuba multiplication */
private BigDecimalPolynomial multRecursive(BigDecimalPolynomial poly2) { BigDecimal[] a = coeffs; BigDecimal[] b = poly2.coeffs; int n = poly2.coeffs.length; if (n <= 1) { BigDecimal[] c = coeffs.clone(); for (int i = 0; i < coeffs.length; i++) { c[i] = c[i].multiply(poly2.coeffs[0]); } return new BigDecimalPolynomial(c); } else { int n1 = n / 2; BigDecimalPolynomial a1 = new BigDecimalPolynomial(copyOf(a, n1)); BigDecimalPolynomial a2 = new BigDecimalPolynomial(copyOfRange(a, n1, n)); BigDecimalPolynomial b1 = new BigDecimalPolynomial(copyOf(b, n1)); BigDecimalPolynomial b2 = new BigDecimalPolynomial(copyOfRange(b, n1, n)); BigDecimalPolynomial A = (BigDecimalPolynomial)a1.clone(); A.add(a2); BigDecimalPolynomial B = (BigDecimalPolynomial)b1.clone(); B.add(b2); BigDecimalPolynomial c1 = a1.multRecursive(b1); BigDecimalPolynomial c2 = a2.multRecursive(b2); BigDecimalPolynomial c3 = A.multRecursive(B); c3.sub(c1); c3.sub(c2); BigDecimalPolynomial c = new BigDecimalPolynomial(2 * n - 1); for (int i = 0; i < c1.coeffs.length; i++) { c.coeffs[i] = c1.coeffs[i]; } for (int i = 0; i < c3.coeffs.length; i++) { c.coeffs[n1 + i] = c.coeffs[n1 + i].add(c3.coeffs[i]); } for (int i = 0; i < c2.coeffs.length; i++) { c.coeffs[2 * n1 + i] = c.coeffs[2 * n1 + i].add(c2.coeffs[i]); } return c; } }
Adds another polynomial which can have a different number of coefficients.
Params:
  • b – another polynomial
/** * Adds another polynomial which can have a different number of coefficients. * * @param b another polynomial */
public void add(BigDecimalPolynomial b) { if (b.coeffs.length > coeffs.length) { int N = coeffs.length; coeffs = copyOf(coeffs, b.coeffs.length); for (int i = N; i < coeffs.length; i++) { coeffs[i] = ZERO; } } for (int i = 0; i < b.coeffs.length; i++) { coeffs[i] = coeffs[i].add(b.coeffs[i]); } }
Subtracts another polynomial which can have a different number of coefficients.
Params:
  • b –
/** * Subtracts another polynomial which can have a different number of coefficients. * * @param b */
void sub(BigDecimalPolynomial b) { if (b.coeffs.length > coeffs.length) { int N = coeffs.length; coeffs = copyOf(coeffs, b.coeffs.length); for (int i = N; i < coeffs.length; i++) { coeffs[i] = ZERO; } } for (int i = 0; i < b.coeffs.length; i++) { coeffs[i] = coeffs[i].subtract(b.coeffs[i]); } }
Rounds all coefficients to the nearest integer.
Returns:a new polynomial with BigInteger coefficients
/** * Rounds all coefficients to the nearest integer. * * @return a new polynomial with <code>BigInteger</code> coefficients */
public BigIntPolynomial round() { int N = coeffs.length; BigIntPolynomial p = new BigIntPolynomial(N); for (int i = 0; i < N; i++) { p.coeffs[i] = coeffs[i].setScale(0, BigDecimal.ROUND_HALF_EVEN).toBigInteger(); } return p; }
Makes a copy of the polynomial that is independent of the original.
/** * Makes a copy of the polynomial that is independent of the original. */
public Object clone() { return new BigDecimalPolynomial(coeffs.clone()); } private BigDecimal[] copyOf(BigDecimal[] a, int length) { BigDecimal[] tmp = new BigDecimal[length]; System.arraycopy(a, 0, tmp, 0, a.length < length ? a.length : length); return tmp; } private BigDecimal[] copyOfRange(BigDecimal[] a, int from, int to) { int newLength = to - from; BigDecimal[] tmp = new BigDecimal[to - from]; System.arraycopy(a, from, tmp, 0, (a.length - from) < newLength ? (a.length - from) : newLength); return tmp; } public BigDecimal[] getCoeffs() { BigDecimal[] tmp = new BigDecimal[coeffs.length]; System.arraycopy(coeffs, 0, tmp, 0, coeffs.length); return tmp; } }