package org.bouncycastle.pqc.crypto.mceliece;
import org.bouncycastle.pqc.math.linearalgebra.GF2Matrix;
import org.bouncycastle.pqc.math.linearalgebra.GF2mField;
import org.bouncycastle.pqc.math.linearalgebra.GoppaCode;
import org.bouncycastle.pqc.math.linearalgebra.Permutation;
import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM;
import org.bouncycastle.pqc.math.linearalgebra.PolynomialRingGF2m;
public class McEliecePrivateKeyParameters
extends McElieceKeyParameters
{
// the OID of the algorithm
private String oid;
// the length of the code
private int n;
// the dimension of the code, where <tt>k >= n - mt</tt>
private int k;
// the underlying finite field
private GF2mField field;
// the irreducible Goppa polynomial
private PolynomialGF2mSmallM goppaPoly;
// a k x k random binary non-singular matrix
private GF2Matrix sInv;
// the permutation used to generate the systematic check matrix
private Permutation p1;
// the permutation used to compute the public generator matrix
private Permutation p2;
// the canonical check matrix of the code
private GF2Matrix h;
// the matrix used to compute square roots in <tt>(GF(2^m))^t</tt>
private PolynomialGF2mSmallM[] qInv;
Constructor.
Params: - n – the length of the code
- k – the dimension of the code
- field – the field polynomial defining the finite field
GF(2m)
- gp – the irreducible Goppa polynomial
- p1 – the permutation used to generate the systematic check
matrix
- p2 – the permutation used to compute the public generator
matrix
- sInv – the matrix S-1
/**
* Constructor.
*
* @param n the length of the code
* @param k the dimension of the code
* @param field the field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param gp the irreducible Goppa polynomial
* @param p1 the permutation used to generate the systematic check
* matrix
* @param p2 the permutation used to compute the public generator
* matrix
* @param sInv the matrix <tt>S<sup>-1</sup></tt>
*/
public McEliecePrivateKeyParameters(int n, int k, GF2mField field,
PolynomialGF2mSmallM gp, Permutation p1, Permutation p2, GF2Matrix sInv)
{
super(true, null);
this.k = k;
this.n = n;
this.field = field;
this.goppaPoly = gp;
this.sInv = sInv;
this.p1 = p1;
this.p2 = p2;
this.h = GoppaCode.createCanonicalCheckMatrix(field, gp);
PolynomialRingGF2m ring = new PolynomialRingGF2m(field, gp);
// matrix used to compute square roots in (GF(2^m))^t
this.qInv = ring.getSquareRootMatrix();
}
Constructor.
Params: - n – the length of the code
- k – the dimension of the code
- encField – the encoded field polynomial defining the finite field
GF(2m)
- encGoppaPoly – the encoded irreducible Goppa polynomial
- encSInv – the encoded matrix S-1
- encP1 – the encoded permutation used to generate the systematic
check matrix
- encP2 – the encoded permutation used to compute the public
generator matrix
- encH – the encoded canonical check matrix
- encQInv – the encoded matrix used to compute square roots in
(GF(2m))t
/**
* Constructor.
*
* @param n the length of the code
* @param k the dimension of the code
* @param encField the encoded field polynomial defining the finite field
* <tt>GF(2<sup>m</sup>)</tt>
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encSInv the encoded matrix <tt>S<sup>-1</sup></tt>
* @param encP1 the encoded permutation used to generate the systematic
* check matrix
* @param encP2 the encoded permutation used to compute the public
* generator matrix
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
*/
public McEliecePrivateKeyParameters(int n, int k, byte[] encField,
byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
byte[] encH, byte[][] encQInv)
{
super(true, null);
this.n = n;
this.k = k;
field = new GF2mField(encField);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
sInv = new GF2Matrix(encSInv);
p1 = new Permutation(encP1);
p2 = new Permutation(encP2);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
Returns: the length of the code
/**
* @return the length of the code
*/
public int getN()
{
return n;
}
Returns: the dimension of the code
/**
* @return the dimension of the code
*/
public int getK()
{
return k;
}
Returns: the finite field GF(2m)
/**
* @return the finite field <tt>GF(2<sup>m</sup>)</tt>
*/
public GF2mField getField()
{
return field;
}
Returns: the irreducible Goppa polynomial
/**
* @return the irreducible Goppa polynomial
*/
public PolynomialGF2mSmallM getGoppaPoly()
{
return goppaPoly;
}
Returns: the k x k random binary non-singular matrix S^-1
/**
* @return the k x k random binary non-singular matrix S^-1
*/
public GF2Matrix getSInv()
{
return sInv;
}
Returns: the permutation used to generate the systematic check matrix
/**
* @return the permutation used to generate the systematic check matrix
*/
public Permutation getP1()
{
return p1;
}
Returns: the permutation used to compute the public generator matrix
/**
* @return the permutation used to compute the public generator matrix
*/
public Permutation getP2()
{
return p2;
}
Returns: the canonical check matrix H
/**
* @return the canonical check matrix H
*/
public GF2Matrix getH()
{
return h;
}
Returns: the matrix used to compute square roots in
(GF(2m))t
/**
* @return the matrix used to compute square roots in
* <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt>
*/
public PolynomialGF2mSmallM[] getQInv()
{
return qInv;
}
}