package org.bouncycastle.pqc.math.linearalgebra;
This class represents polynomial rings GF(2^m)[X]/p(X) for
m<32. If p(X) is irreducible, the polynomial ring
is in fact an extension field of GF(2^m).
/**
* This class represents polynomial rings <tt>GF(2^m)[X]/p(X)</tt> for
* <tt>m<32</tt>. If <tt>p(X)</tt> is irreducible, the polynomial ring
* is in fact an extension field of <tt>GF(2^m)</tt>.
*/
public class PolynomialRingGF2m
{
the finite field this polynomial ring is defined over
/**
* the finite field this polynomial ring is defined over
*/
private GF2mField field;
the reduction polynomial
/**
* the reduction polynomial
*/
private PolynomialGF2mSmallM p;
the squaring matrix for this polynomial ring (given as the array of its
row vectors)
/**
* the squaring matrix for this polynomial ring (given as the array of its
* row vectors)
*/
protected PolynomialGF2mSmallM[] sqMatrix;
the matrix for computing square roots in this polynomial ring (given as
the array of its row vectors). This matrix is computed as the inverse of
the squaring matrix.
/**
* the matrix for computing square roots in this polynomial ring (given as
* the array of its row vectors). This matrix is computed as the inverse of
* the squaring matrix.
*/
protected PolynomialGF2mSmallM[] sqRootMatrix;
Constructor.
Params: - field – the finite field
- p – the reduction polynomial
/**
* Constructor.
*
* @param field the finite field
* @param p the reduction polynomial
*/
public PolynomialRingGF2m(GF2mField field, PolynomialGF2mSmallM p)
{
this.field = field;
this.p = p;
computeSquaringMatrix();
computeSquareRootMatrix();
}
Returns: the squaring matrix for this polynomial ring
/**
* @return the squaring matrix for this polynomial ring
*/
public PolynomialGF2mSmallM[] getSquaringMatrix()
{
return sqMatrix;
}
Returns: the matrix for computing square roots for this polynomial ring
/**
* @return the matrix for computing square roots for this polynomial ring
*/
public PolynomialGF2mSmallM[] getSquareRootMatrix()
{
return sqRootMatrix;
}
Compute the squaring matrix for this polynomial ring, using the base
field and the reduction polynomial.
/**
* Compute the squaring matrix for this polynomial ring, using the base
* field and the reduction polynomial.
*/
private void computeSquaringMatrix()
{
int numColumns = p.getDegree();
sqMatrix = new PolynomialGF2mSmallM[numColumns];
for (int i = 0; i < numColumns >> 1; i++)
{
int[] monomCoeffs = new int[(i << 1) + 1];
monomCoeffs[i << 1] = 1;
sqMatrix[i] = new PolynomialGF2mSmallM(field, monomCoeffs);
}
for (int i = numColumns >> 1; i < numColumns; i++)
{
int[] monomCoeffs = new int[(i << 1) + 1];
monomCoeffs[i << 1] = 1;
PolynomialGF2mSmallM monomial = new PolynomialGF2mSmallM(field,
monomCoeffs);
sqMatrix[i] = monomial.mod(p);
}
}
Compute the matrix for computing square roots in this polynomial ring by
inverting the squaring matrix.
/**
* Compute the matrix for computing square roots in this polynomial ring by
* inverting the squaring matrix.
*/
private void computeSquareRootMatrix()
{
int numColumns = p.getDegree();
// clone squaring matrix
PolynomialGF2mSmallM[] tmpMatrix = new PolynomialGF2mSmallM[numColumns];
for (int i = numColumns - 1; i >= 0; i--)
{
tmpMatrix[i] = new PolynomialGF2mSmallM(sqMatrix[i]);
}
// initialize square root matrix as unit matrix
sqRootMatrix = new PolynomialGF2mSmallM[numColumns];
for (int i = numColumns - 1; i >= 0; i--)
{
sqRootMatrix[i] = new PolynomialGF2mSmallM(field, i);
}
// simultaneously compute Gaussian reduction of squaring matrix and unit
// matrix
for (int i = 0; i < numColumns; i++)
{
// if diagonal element is zero
if (tmpMatrix[i].getCoefficient(i) == 0)
{
boolean foundNonZero = false;
// find a non-zero element in the same row
for (int j = i + 1; j < numColumns; j++)
{
if (tmpMatrix[j].getCoefficient(i) != 0)
{
// found it, swap columns ...
foundNonZero = true;
swapColumns(tmpMatrix, i, j);
swapColumns(sqRootMatrix, i, j);
// ... and quit searching
j = numColumns;
continue;
}
}
// if no non-zero element was found
if (!foundNonZero)
{
// the matrix is not invertible
throw new ArithmeticException(
"Squaring matrix is not invertible.");
}
}
// normalize i-th column
int coef = tmpMatrix[i].getCoefficient(i);
int invCoef = field.inverse(coef);
tmpMatrix[i].multThisWithElement(invCoef);
sqRootMatrix[i].multThisWithElement(invCoef);
// normalize all other columns
for (int j = 0; j < numColumns; j++)
{
if (j != i)
{
coef = tmpMatrix[j].getCoefficient(i);
if (coef != 0)
{
PolynomialGF2mSmallM tmpSqColumn = tmpMatrix[i]
.multWithElement(coef);
PolynomialGF2mSmallM tmpInvColumn = sqRootMatrix[i]
.multWithElement(coef);
tmpMatrix[j].addToThis(tmpSqColumn);
sqRootMatrix[j].addToThis(tmpInvColumn);
}
}
}
}
}
private static void swapColumns(PolynomialGF2mSmallM[] matrix, int first,
int second)
{
PolynomialGF2mSmallM tmp = matrix[first];
matrix[first] = matrix[second];
matrix[second] = tmp;
}
}