package org.bouncycastle.pqc.math.linearalgebra;

import java.security.SecureRandom;

This class describes decoding operations of an irreducible binary Goppa code. A check matrix H of the Goppa code and an irreducible Goppa polynomial are used the operations are worked over a finite field GF(2^m)
See Also:
/** * This class describes decoding operations of an irreducible binary Goppa code. * A check matrix H of the Goppa code and an irreducible Goppa polynomial are * used the operations are worked over a finite field GF(2^m) * * @see GF2mField * @see PolynomialGF2mSmallM */
public final class GoppaCode {
Default constructor (private).
/** * Default constructor (private). */
private GoppaCode() { // empty }
This class is a container for two instances of GF2Matrix and one instance of Permutation. It is used to hold the systematic form S*H*P = (Id|M) of the check matrix H as returned by GoppaCode.computeSystematicForm(GF2Matrix, SecureRandom).
See Also:
/** * This class is a container for two instances of {@link GF2Matrix} and one * instance of {@link Permutation}. It is used to hold the systematic form * <tt>S*H*P = (Id|M)</tt> of the check matrix <tt>H</tt> as returned by * {@link GoppaCode#computeSystematicForm(GF2Matrix, SecureRandom)}. * * @see GF2Matrix * @see Permutation */
public static class MaMaPe { private GF2Matrix s, h; private Permutation p;
Construct a new MaMaPe container with the given parameters.
Params:
  • s – the first matrix
  • h – the second matrix
  • p – the permutation
/** * Construct a new {@link MaMaPe} container with the given parameters. * * @param s the first matrix * @param h the second matrix * @param p the permutation */
public MaMaPe(GF2Matrix s, GF2Matrix h, Permutation p) { this.s = s; this.h = h; this.p = p; }
Returns:the first matrix
/** * @return the first matrix */
public GF2Matrix getFirstMatrix() { return s; }
Returns:the second matrix
/** * @return the second matrix */
public GF2Matrix getSecondMatrix() { return h; }
Returns:the permutation
/** * @return the permutation */
public Permutation getPermutation() { return p; } }
This class is a container for an instance of GF2Matrix and one int[]. It is used to hold a generator matrix and the set of indices such that the submatrix of the generator matrix consisting of the specified columns is the identity.
See Also:
/** * This class is a container for an instance of {@link GF2Matrix} and one * int[]. It is used to hold a generator matrix and the set of indices such * that the submatrix of the generator matrix consisting of the specified * columns is the identity. * * @see GF2Matrix * @see Permutation */
public static class MatrixSet { private GF2Matrix g; private int[] setJ;
Construct a new MatrixSet container with the given parameters.
Params:
  • g – the generator matrix
  • setJ – the set of indices such that the submatrix of the generator matrix consisting of the specified columns is the identity
/** * Construct a new {@link MatrixSet} container with the given * parameters. * * @param g the generator matrix * @param setJ the set of indices such that the submatrix of the * generator matrix consisting of the specified columns * is the identity */
public MatrixSet(GF2Matrix g, int[] setJ) { this.g = g; this.setJ = setJ; }
Returns:the generator matrix
/** * @return the generator matrix */
public GF2Matrix getG() { return g; }
Returns:the set of indices such that the submatrix of the generator matrix consisting of the specified columns is the identity
/** * @return the set of indices such that the submatrix of the generator * matrix consisting of the specified columns is the identity */
public int[] getSetJ() { return setJ; } }
Construct the check matrix of a Goppa code in canonical form from the irreducible Goppa polynomial over the finite field GF(2m).
Params:
  • field – the finite field
  • gp – the irreducible Goppa polynomial
/** * Construct the check matrix of a Goppa code in canonical form from the * irreducible Goppa polynomial over the finite field * <tt>GF(2<sup>m</sup>)</tt>. * * @param field the finite field * @param gp the irreducible Goppa polynomial */
public static GF2Matrix createCanonicalCheckMatrix(GF2mField field, PolynomialGF2mSmallM gp) { int m = field.getDegree(); int n = 1 << m; int t = gp.getDegree(); /* create matrix H over GF(2^m) */ int[][] hArray = new int[t][n]; // create matrix YZ int[][] yz = new int[t][n]; for (int j = 0; j < n; j++) { // here j is used as index and as element of field GF(2^m) yz[0][j] = field.inverse(gp.evaluateAt(j)); } for (int i = 1; i < t; i++) { for (int j = 0; j < n; j++) { // here j is used as index and as element of field GF(2^m) yz[i][j] = field.mult(yz[i - 1][j], j); } } // create matrix H = XYZ for (int i = 0; i < t; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k <= i; k++) { hArray[i][j] = field.add(hArray[i][j], field.mult(yz[k][j], gp.getCoefficient(t + k - i))); } } } /* convert to matrix over GF(2) */ int[][] result = new int[t * m][(n + 31) >>> 5]; for (int j = 0; j < n; j++) { int q = j >>> 5; int r = 1 << (j & 0x1f); for (int i = 0; i < t; i++) { int e = hArray[i][j]; for (int u = 0; u < m; u++) { int b = (e >>> u) & 1; if (b != 0) { int ind = (i + 1) * m - u - 1; result[ind][q] ^= r; } } } } return new GF2Matrix(n, result); }
Given a check matrix H, compute matrices S, M, and a random permutation P such that S*H*P = (Id|M). Return S^-1, M, and P as MaMaPe. The matrix (Id | M) is called the systematic form of H.
Params:
  • h – the check matrix
  • sr – a source of randomness
Returns:the tuple (S^-1, M, P)
/** * Given a check matrix <tt>H</tt>, compute matrices <tt>S</tt>, * <tt>M</tt>, and a random permutation <tt>P</tt> such that * <tt>S*H*P = (Id|M)</tt>. Return <tt>S^-1</tt>, <tt>M</tt>, and * <tt>P</tt> as {@link MaMaPe}. The matrix <tt>(Id | M)</tt> is called * the systematic form of H. * * @param h the check matrix * @param sr a source of randomness * @return the tuple <tt>(S^-1, M, P)</tt> */
public static MaMaPe computeSystematicForm(GF2Matrix h, SecureRandom sr) { int n = h.getNumColumns(); GF2Matrix hp, sInv; GF2Matrix s = null; Permutation p; boolean found = false; do { p = new Permutation(n, sr); hp = (GF2Matrix)h.rightMultiply(p); sInv = hp.getLeftSubMatrix(); try { found = true; s = (GF2Matrix)sInv.computeInverse(); } catch (ArithmeticException ae) { found = false; } } while (!found); GF2Matrix shp = (GF2Matrix)s.rightMultiply(hp); GF2Matrix m = shp.getRightSubMatrix(); return new MaMaPe(sInv, m, p); }
Find an error vector e over GF(2) from an input syndrome s over GF(2m).
Params:
  • syndVec – the syndrome
  • field – the finite field
  • gp – the irreducible Goppa polynomial
  • sqRootMatrix – the matrix for computing square roots in (GF(2m))t
Returns:the error vector
/** * Find an error vector <tt>e</tt> over <tt>GF(2)</tt> from an input * syndrome <tt>s</tt> over <tt>GF(2<sup>m</sup>)</tt>. * * @param syndVec the syndrome * @param field the finite field * @param gp the irreducible Goppa polynomial * @param sqRootMatrix the matrix for computing square roots in * <tt>(GF(2<sup>m</sup>))<sup>t</sup></tt> * @return the error vector */
public static GF2Vector syndromeDecode(GF2Vector syndVec, GF2mField field, PolynomialGF2mSmallM gp, PolynomialGF2mSmallM[] sqRootMatrix) { int n = 1 << field.getDegree(); // the error vector GF2Vector errors = new GF2Vector(n); // if the syndrome vector is zero, the error vector is also zero if (!syndVec.isZero()) { // convert syndrome vector to polynomial over GF(2^m) PolynomialGF2mSmallM syndrome = new PolynomialGF2mSmallM(syndVec .toExtensionFieldVector(field)); // compute T = syndrome^-1 mod gp PolynomialGF2mSmallM t = syndrome.modInverse(gp); // compute tau = sqRoot(T + X) mod gp PolynomialGF2mSmallM tau = t.addMonomial(1); tau = tau.modSquareRootMatrix(sqRootMatrix); // compute polynomials a and b satisfying a + b*tau = 0 mod gp PolynomialGF2mSmallM[] ab = tau.modPolynomialToFracton(gp); // compute the polynomial a^2 + X*b^2 PolynomialGF2mSmallM a2 = ab[0].multiply(ab[0]); PolynomialGF2mSmallM b2 = ab[1].multiply(ab[1]); PolynomialGF2mSmallM xb2 = b2.multWithMonomial(1); PolynomialGF2mSmallM a2plusXb2 = a2.add(xb2); // normalize a^2 + X*b^2 to obtain the error locator polynomial int headCoeff = a2plusXb2.getHeadCoefficient(); int invHeadCoeff = field.inverse(headCoeff); PolynomialGF2mSmallM elp = a2plusXb2.multWithElement(invHeadCoeff); // for all elements i of GF(2^m) for (int i = 0; i < n; i++) { // evaluate the error locator polynomial at i int z = elp.evaluateAt(i); // if polynomial evaluates to zero if (z == 0) { // set the i-th coefficient of the error vector errors.setBit(i); } } } return errors; } }