package org.bouncycastle.pqc.math.linearalgebra;

import java.security.SecureRandom;

import org.bouncycastle.util.Arrays;

This class describes some operations with matrices over finite field GF(2) and is used in ecc and MQ-PKC (also has some specific methods and implementation)
/** * This class describes some operations with matrices over finite field GF(2) * and is used in ecc and MQ-PKC (also has some specific methods and * implementation) */
public class GF2Matrix extends Matrix {
For the matrix representation the array of type int[][] is used, thus one element of the array keeps 32 elements of the matrix (from one row and 32 columns)
/** * For the matrix representation the array of type int[][] is used, thus one * element of the array keeps 32 elements of the matrix (from one row and 32 * columns) */
private int[][] matrix;
the length of each array representing a row of this matrix, computed as (numColumns + 31) / 32
/** * the length of each array representing a row of this matrix, computed as * <tt>(numColumns + 31) / 32</tt> */
private int length;
Create the matrix from encoded form.
Params:
  • enc – the encoded matrix
/** * Create the matrix from encoded form. * * @param enc the encoded matrix */
public GF2Matrix(byte[] enc) { if (enc.length < 9) { throw new ArithmeticException( "given array is not an encoded matrix over GF(2)"); } numRows = LittleEndianConversions.OS2IP(enc, 0); numColumns = LittleEndianConversions.OS2IP(enc, 4); int n = ((numColumns + 7) >>> 3) * numRows; if ((numRows <= 0) || (n != (enc.length - 8))) { throw new ArithmeticException( "given array is not an encoded matrix over GF(2)"); } length = (numColumns + 31) >>> 5; matrix = new int[numRows][length]; // number of "full" integer int q = numColumns >> 5; // number of bits in non-full integer int r = numColumns & 0x1f; int count = 8; for (int i = 0; i < numRows; i++) { for (int j = 0; j < q; j++, count += 4) { matrix[i][j] = LittleEndianConversions.OS2IP(enc, count); } for (int j = 0; j < r; j += 8) { matrix[i][q] ^= (enc[count++] & 0xff) << j; } } }
Create the matrix with the contents of the given array. The matrix is not copied. Unused coefficients are masked out.
Params:
  • numColumns – the number of columns
  • matrix – the element array
/** * Create the matrix with the contents of the given array. The matrix is not * copied. Unused coefficients are masked out. * * @param numColumns the number of columns * @param matrix the element array */
public GF2Matrix(int numColumns, int[][] matrix) { if (matrix[0].length != (numColumns + 31) >> 5) { throw new ArithmeticException( "Int array does not match given number of columns."); } this.numColumns = numColumns; numRows = matrix.length; length = matrix[0].length; int rest = numColumns & 0x1f; int bitMask; if (rest == 0) { bitMask = 0xffffffff; } else { bitMask = (1 << rest) - 1; } for (int i = 0; i < numRows; i++) { matrix[i][length - 1] &= bitMask; } this.matrix = matrix; }
Create an nxn matrix of the given type.
Params:
  • n – the number of rows (and columns)
  • typeOfMatrix – the martix type (see Matrix for predefined constants)
/** * Create an nxn matrix of the given type. * * @param n the number of rows (and columns) * @param typeOfMatrix the martix type (see {@link Matrix} for predefined * constants) */
public GF2Matrix(int n, char typeOfMatrix) { this(n, typeOfMatrix, new java.security.SecureRandom()); }
Create an nxn matrix of the given type.
Params:
  • n – the matrix size
  • typeOfMatrix – the matrix type
  • sr – the source of randomness
/** * Create an nxn matrix of the given type. * * @param n the matrix size * @param typeOfMatrix the matrix type * @param sr the source of randomness */
public GF2Matrix(int n, char typeOfMatrix, SecureRandom sr) { if (n <= 0) { throw new ArithmeticException("Size of matrix is non-positive."); } switch (typeOfMatrix) { case Matrix.MATRIX_TYPE_ZERO: assignZeroMatrix(n, n); break; case Matrix.MATRIX_TYPE_UNIT: assignUnitMatrix(n); break; case Matrix.MATRIX_TYPE_RANDOM_LT: assignRandomLowerTriangularMatrix(n, sr); break; case Matrix.MATRIX_TYPE_RANDOM_UT: assignRandomUpperTriangularMatrix(n, sr); break; case Matrix.MATRIX_TYPE_RANDOM_REGULAR: assignRandomRegularMatrix(n, sr); break; default: throw new ArithmeticException("Unknown matrix type."); } }
Copy constructor.
Params:
/** * Copy constructor. * * @param a another {@link GF2Matrix} */
public GF2Matrix(GF2Matrix a) { numColumns = a.getNumColumns(); numRows = a.getNumRows(); length = a.length; matrix = new int[a.matrix.length][]; for (int i = 0; i < matrix.length; i++) { matrix[i] = IntUtils.clone(a.matrix[i]); } }
create the mxn zero matrix
/** * create the mxn zero matrix */
private GF2Matrix(int m, int n) { if ((n <= 0) || (m <= 0)) { throw new ArithmeticException("size of matrix is non-positive"); } assignZeroMatrix(m, n); }
Create the mxn zero matrix.
Params:
  • m – number of rows
  • n – number of columns
/** * Create the mxn zero matrix. * * @param m number of rows * @param n number of columns */
private void assignZeroMatrix(int m, int n) { numRows = m; numColumns = n; length = (n + 31) >>> 5; matrix = new int[numRows][length]; for (int i = 0; i < numRows; i++) { for (int j = 0; j < length; j++) { matrix[i][j] = 0; } } }
Create the mxn unit matrix.
Params:
  • n – number of rows (and columns)
/** * Create the mxn unit matrix. * * @param n number of rows (and columns) */
private void assignUnitMatrix(int n) { numRows = n; numColumns = n; length = (n + 31) >>> 5; matrix = new int[numRows][length]; for (int i = 0; i < numRows; i++) { for (int j = 0; j < length; j++) { matrix[i][j] = 0; } } for (int i = 0; i < numRows; i++) { int rest = i & 0x1f; matrix[i][i >>> 5] = 1 << rest; } }
Create a nxn random lower triangular matrix.
Params:
  • n – number of rows (and columns)
  • sr – source of randomness
/** * Create a nxn random lower triangular matrix. * * @param n number of rows (and columns) * @param sr source of randomness */
private void assignRandomLowerTriangularMatrix(int n, SecureRandom sr) { numRows = n; numColumns = n; length = (n + 31) >>> 5; matrix = new int[numRows][length]; for (int i = 0; i < numRows; i++) { int q = i >>> 5; int r = i & 0x1f; int s = 31 - r; r = 1 << r; for (int j = 0; j < q; j++) { matrix[i][j] = sr.nextInt(); } matrix[i][q] = (sr.nextInt() >>> s) | r; for (int j = q + 1; j < length; j++) { matrix[i][j] = 0; } } }
Create a nxn random upper triangular matrix.
Params:
  • n – number of rows (and columns)
  • sr – source of randomness
/** * Create a nxn random upper triangular matrix. * * @param n number of rows (and columns) * @param sr source of randomness */
private void assignRandomUpperTriangularMatrix(int n, SecureRandom sr) { numRows = n; numColumns = n; length = (n + 31) >>> 5; matrix = new int[numRows][length]; int rest = n & 0x1f; int help; if (rest == 0) { help = 0xffffffff; } else { help = (1 << rest) - 1; } for (int i = 0; i < numRows; i++) { int q = i >>> 5; int r = i & 0x1f; int s = r; r = 1 << r; for (int j = 0; j < q; j++) { matrix[i][j] = 0; } matrix[i][q] = (sr.nextInt() << s) | r; for (int j = q + 1; j < length; j++) { matrix[i][j] = sr.nextInt(); } matrix[i][length - 1] &= help; } }
Create an nxn random regular matrix.
Params:
  • n – number of rows (and columns)
  • sr – source of randomness
/** * Create an nxn random regular matrix. * * @param n number of rows (and columns) * @param sr source of randomness */
private void assignRandomRegularMatrix(int n, SecureRandom sr) { numRows = n; numColumns = n; length = (n + 31) >>> 5; matrix = new int[numRows][length]; GF2Matrix lm = new GF2Matrix(n, Matrix.MATRIX_TYPE_RANDOM_LT, sr); GF2Matrix um = new GF2Matrix(n, Matrix.MATRIX_TYPE_RANDOM_UT, sr); GF2Matrix rm = (GF2Matrix)lm.rightMultiply(um); Permutation perm = new Permutation(n, sr); int[] p = perm.getVector(); for (int i = 0; i < n; i++) { System.arraycopy(rm.matrix[i], 0, matrix[p[i]], 0, length); } }
Create a nxn random regular matrix and its inverse.
Params:
  • n – number of rows (and columns)
  • sr – source of randomness
Returns:the created random regular matrix and its inverse
/** * Create a nxn random regular matrix and its inverse. * * @param n number of rows (and columns) * @param sr source of randomness * @return the created random regular matrix and its inverse */
public static GF2Matrix[] createRandomRegularMatrixAndItsInverse(int n, SecureRandom sr) { GF2Matrix[] result = new GF2Matrix[2]; // ------------------------------------ // First part: create regular matrix // ------------------------------------ // ------ int length = (n + 31) >> 5; GF2Matrix lm = new GF2Matrix(n, Matrix.MATRIX_TYPE_RANDOM_LT, sr); GF2Matrix um = new GF2Matrix(n, Matrix.MATRIX_TYPE_RANDOM_UT, sr); GF2Matrix rm = (GF2Matrix)lm.rightMultiply(um); Permutation p = new Permutation(n, sr); int[] pVec = p.getVector(); int[][] matrix = new int[n][length]; for (int i = 0; i < n; i++) { System.arraycopy(rm.matrix[pVec[i]], 0, matrix[i], 0, length); } result[0] = new GF2Matrix(n, matrix); // ------------------------------------ // Second part: create inverse matrix // ------------------------------------ // inverse to lm GF2Matrix invLm = new GF2Matrix(n, Matrix.MATRIX_TYPE_UNIT); for (int i = 0; i < n; i++) { int rest = i & 0x1f; int q = i >>> 5; int r = 1 << rest; for (int j = i + 1; j < n; j++) { int b = (lm.matrix[j][q]) & r; if (b != 0) { for (int k = 0; k <= q; k++) { invLm.matrix[j][k] ^= invLm.matrix[i][k]; } } } } // inverse to um GF2Matrix invUm = new GF2Matrix(n, Matrix.MATRIX_TYPE_UNIT); for (int i = n - 1; i >= 0; i--) { int rest = i & 0x1f; int q = i >>> 5; int r = 1 << rest; for (int j = i - 1; j >= 0; j--) { int b = (um.matrix[j][q]) & r; if (b != 0) { for (int k = q; k < length; k++) { invUm.matrix[j][k] ^= invUm.matrix[i][k]; } } } } // inverse matrix result[1] = (GF2Matrix)invUm.rightMultiply(invLm.rightMultiply(p)); return result; }
Returns:the array keeping the matrix elements
/** * @return the array keeping the matrix elements */
public int[][] getIntArray() { return matrix; }
Returns:the length of each array representing a row of this matrix
/** * @return the length of each array representing a row of this matrix */
public int getLength() { return length; }
Return the row of this matrix with the given index.
Params:
  • index – the index
Returns:the row of this matrix with the given index
/** * Return the row of this matrix with the given index. * * @param index the index * @return the row of this matrix with the given index */
public int[] getRow(int index) { return matrix[index]; }
Returns encoded matrix, i.e., this matrix in byte array form
Returns:the encoded matrix
/** * Returns encoded matrix, i.e., this matrix in byte array form * * @return the encoded matrix */
public byte[] getEncoded() { int n = (numColumns + 7) >>> 3; n *= numRows; n += 8; byte[] enc = new byte[n]; LittleEndianConversions.I2OSP(numRows, enc, 0); LittleEndianConversions.I2OSP(numColumns, enc, 4); // number of "full" integer int q = numColumns >>> 5; // number of bits in non-full integer int r = numColumns & 0x1f; int count = 8; for (int i = 0; i < numRows; i++) { for (int j = 0; j < q; j++, count += 4) { LittleEndianConversions.I2OSP(matrix[i][j], enc, count); } for (int j = 0; j < r; j += 8) { enc[count++] = (byte)((matrix[i][q] >>> j) & 0xff); } } return enc; }
Returns the percentage of the number of "ones" in this matrix.
Returns:the Hamming weight of this matrix (as a ratio).
/** * Returns the percentage of the number of "ones" in this matrix. * * @return the Hamming weight of this matrix (as a ratio). */
public double getHammingWeight() { double counter = 0.0; double elementCounter = 0.0; int rest = numColumns & 0x1f; int d; if (rest == 0) { d = length; } else { d = length - 1; } for (int i = 0; i < numRows; i++) { for (int j = 0; j < d; j++) { int a = matrix[i][j]; for (int k = 0; k < 32; k++) { int b = (a >>> k) & 1; counter = counter + b; elementCounter = elementCounter + 1; } } int a = matrix[i][length - 1]; for (int k = 0; k < rest; k++) { int b = (a >>> k) & 1; counter = counter + b; elementCounter = elementCounter + 1; } } return counter / elementCounter; }
Check if this is the zero matrix (i.e., all entries are zero).
Returns:true if this is the zero matrix
/** * Check if this is the zero matrix (i.e., all entries are zero). * * @return <tt>true</tt> if this is the zero matrix */
public boolean isZero() { for (int i = 0; i < numRows; i++) { for (int j = 0; j < length; j++) { if (matrix[i][j] != 0) { return false; } } } return true; }
Get the quadratic submatrix of this matrix consisting of the leftmost numRows columns.
Returns:the (numRows x numRows) submatrix
/** * Get the quadratic submatrix of this matrix consisting of the leftmost * <tt>numRows</tt> columns. * * @return the <tt>(numRows x numRows)</tt> submatrix */
public GF2Matrix getLeftSubMatrix() { if (numColumns <= numRows) { throw new ArithmeticException("empty submatrix"); } int length = (numRows + 31) >> 5; int[][] result = new int[numRows][length]; int bitMask = (1 << (numRows & 0x1f)) - 1; if (bitMask == 0) { bitMask = -1; } for (int i = numRows - 1; i >= 0; i--) { System.arraycopy(matrix[i], 0, result[i], 0, length); result[i][length - 1] &= bitMask; } return new GF2Matrix(numRows, result); }
Compute the full form matrix (this | Id) from this matrix in left compact form, where Id is the k x k identity matrix and k is the number of rows of this matrix.
Returns:(this | Id)
/** * Compute the full form matrix <tt>(this | Id)</tt> from this matrix in * left compact form, where <tt>Id</tt> is the <tt>k x k</tt> identity * matrix and <tt>k</tt> is the number of rows of this matrix. * * @return <tt>(this | Id)</tt> */
public GF2Matrix extendLeftCompactForm() { int newNumColumns = numColumns + numRows; GF2Matrix result = new GF2Matrix(numRows, newNumColumns); int ind = numRows - 1 + numColumns; for (int i = numRows - 1; i >= 0; i--, ind--) { // copy this matrix to first columns System.arraycopy(matrix[i], 0, result.matrix[i], 0, length); // store the identity in last columns result.matrix[i][ind >> 5] |= 1 << (ind & 0x1f); } return result; }
Get the submatrix of this matrix consisting of the rightmost numColumns-numRows columns.
Returns:the (numRows x (numColumns-numRows)) submatrix
/** * Get the submatrix of this matrix consisting of the rightmost * <tt>numColumns-numRows</tt> columns. * * @return the <tt>(numRows x (numColumns-numRows))</tt> submatrix */
public GF2Matrix getRightSubMatrix() { if (numColumns <= numRows) { throw new ArithmeticException("empty submatrix"); } int q = numRows >> 5; int r = numRows & 0x1f; GF2Matrix result = new GF2Matrix(numRows, numColumns - numRows); for (int i = numRows - 1; i >= 0; i--) { // if words have to be shifted if (r != 0) { int ind = q; // process all but last word for (int j = 0; j < result.length - 1; j++) { // shift to correct position result.matrix[i][j] = (matrix[i][ind++] >>> r) | (matrix[i][ind] << (32 - r)); } // process last word result.matrix[i][result.length - 1] = matrix[i][ind++] >>> r; if (ind < length) { result.matrix[i][result.length - 1] |= matrix[i][ind] << (32 - r); } } else { // no shifting necessary System.arraycopy(matrix[i], q, result.matrix[i], 0, result.length); } } return result; }
Compute the full form matrix (Id | this) from this matrix in right compact form, where Id is the k x k identity matrix and k is the number of rows of this matrix.
Returns:(Id | this)
/** * Compute the full form matrix <tt>(Id | this)</tt> from this matrix in * right compact form, where <tt>Id</tt> is the <tt>k x k</tt> identity * matrix and <tt>k</tt> is the number of rows of this matrix. * * @return <tt>(Id | this)</tt> */
public GF2Matrix extendRightCompactForm() { GF2Matrix result = new GF2Matrix(numRows, numRows + numColumns); int q = numRows >> 5; int r = numRows & 0x1f; for (int i = numRows - 1; i >= 0; i--) { // store the identity in first columns result.matrix[i][i >> 5] |= 1 << (i & 0x1f); // copy this matrix to last columns // if words have to be shifted if (r != 0) { int ind = q; // process all but last word for (int j = 0; j < length - 1; j++) { // obtain matrix word int mw = matrix[i][j]; // shift to correct position result.matrix[i][ind++] |= mw << r; result.matrix[i][ind] |= mw >>> (32 - r); } // process last word int mw = matrix[i][length - 1]; result.matrix[i][ind++] |= mw << r; if (ind < result.length) { result.matrix[i][ind] |= mw >>> (32 - r); } } else { // no shifting necessary System.arraycopy(matrix[i], 0, result.matrix[i], q, length); } } return result; }
Compute the transpose of this matrix.
Returns:(this)T
/** * Compute the transpose of this matrix. * * @return <tt>(this)<sup>T</sup></tt> */
public Matrix computeTranspose() { int[][] result = new int[numColumns][(numRows + 31) >>> 5]; for (int i = 0; i < numRows; i++) { for (int j = 0; j < numColumns; j++) { int qs = j >>> 5; int rs = j & 0x1f; int b = (matrix[i][qs] >>> rs) & 1; int qt = i >>> 5; int rt = i & 0x1f; if (b == 1) { result[j][qt] |= 1 << rt; } } } return new GF2Matrix(numRows, result); }
Compute the inverse of this matrix.
Throws:
Returns:the inverse of this matrix (newly created).
/** * Compute the inverse of this matrix. * * @return the inverse of this matrix (newly created). * @throws ArithmeticException if this matrix is not invertible. */
public Matrix computeInverse() { if (numRows != numColumns) { throw new ArithmeticException("Matrix is not invertible."); } // clone this matrix int[][] tmpMatrix = new int[numRows][length]; for (int i = numRows - 1; i >= 0; i--) { tmpMatrix[i] = IntUtils.clone(matrix[i]); } // initialize inverse matrix as unit matrix int[][] invMatrix = new int[numRows][length]; for (int i = numRows - 1; i >= 0; i--) { int q = i >> 5; int r = i & 0x1f; invMatrix[i][q] = 1 << r; } // simultaneously compute Gaussian reduction of tmpMatrix and unit // matrix for (int i = 0; i < numRows; i++) { // i = q * 32 + (i mod 32) int q = i >> 5; int bitMask = 1 << (i & 0x1f); // if diagonal element is zero if ((tmpMatrix[i][q] & bitMask) == 0) { boolean foundNonZero = false; // find a non-zero element in the same column for (int j = i + 1; j < numRows; j++) { if ((tmpMatrix[j][q] & bitMask) != 0) { // found it, swap rows ... foundNonZero = true; swapRows(tmpMatrix, i, j); swapRows(invMatrix, i, j); // ... and quit searching j = numRows; continue; } } // if no non-zero element was found ... if (!foundNonZero) { // ... the matrix is not invertible throw new ArithmeticException("Matrix is not invertible."); } } // normalize all but i-th row for (int j = numRows - 1; j >= 0; j--) { if ((j != i) && ((tmpMatrix[j][q] & bitMask) != 0)) { addToRow(tmpMatrix[i], tmpMatrix[j], q); addToRow(invMatrix[i], invMatrix[j], 0); } } } return new GF2Matrix(numColumns, invMatrix); }
Compute the product of a permutation matrix (which is generated from an n-permutation) and this matrix.
Params:
  • p – the permutation
Returns:GF2Matrix P*this
/** * Compute the product of a permutation matrix (which is generated from an * n-permutation) and this matrix. * * @param p the permutation * @return {@link GF2Matrix} <tt>P*this</tt> */
public Matrix leftMultiply(Permutation p) { int[] pVec = p.getVector(); if (pVec.length != numRows) { throw new ArithmeticException("length mismatch"); } int[][] result = new int[numRows][]; for (int i = numRows - 1; i >= 0; i--) { result[i] = IntUtils.clone(matrix[pVec[i]]); } return new GF2Matrix(numRows, result); }
compute product a row vector and this matrix
Params:
  • vec – a vector over GF(2)
Returns:Vector product a*matrix
/** * compute product a row vector and this matrix * * @param vec a vector over GF(2) * @return Vector product a*matrix */
public Vector leftMultiply(Vector vec) { if (!(vec instanceof GF2Vector)) { throw new ArithmeticException("vector is not defined over GF(2)"); } if (vec.length != numRows) { throw new ArithmeticException("length mismatch"); } int[] v = ((GF2Vector)vec).getVecArray(); int[] res = new int[length]; int q = numRows >> 5; int r = 1 << (numRows & 0x1f); // compute scalar products with full words of vector int row = 0; for (int i = 0; i < q; i++) { int bitMask = 1; do { int b = v[i] & bitMask; if (b != 0) { for (int j = 0; j < length; j++) { res[j] ^= matrix[row][j]; } } row++; bitMask <<= 1; } while (bitMask != 0); } // compute scalar products with last word of vector int bitMask = 1; while (bitMask != r) { int b = v[q] & bitMask; if (b != 0) { for (int j = 0; j < length; j++) { res[j] ^= matrix[row][j]; } } row++; bitMask <<= 1; } return new GF2Vector(res, numColumns); }
Compute the product of the matrix (this | Id) and a column vector, where Id is a (numRows x numRows) unit matrix.
Params:
  • vec – the vector over GF(2)
Returns:(this | Id)*vector
/** * Compute the product of the matrix <tt>(this | Id)</tt> and a column * vector, where <tt>Id</tt> is a <tt>(numRows x numRows)</tt> unit * matrix. * * @param vec the vector over GF(2) * @return <tt>(this | Id)*vector</tt> */
public Vector leftMultiplyLeftCompactForm(Vector vec) { if (!(vec instanceof GF2Vector)) { throw new ArithmeticException("vector is not defined over GF(2)"); } if (vec.length != numRows) { throw new ArithmeticException("length mismatch"); } int[] v = ((GF2Vector)vec).getVecArray(); int[] res = new int[(numRows + numColumns + 31) >>> 5]; // process full words of vector int words = numRows >>> 5; int row = 0; for (int i = 0; i < words; i++) { int bitMask = 1; do { int b = v[i] & bitMask; if (b != 0) { // compute scalar product part for (int j = 0; j < length; j++) { res[j] ^= matrix[row][j]; } // set last bit int q = (numColumns + row) >>> 5; int r = (numColumns + row) & 0x1f; res[q] |= 1 << r; } row++; bitMask <<= 1; } while (bitMask != 0); } // process last word of vector int rem = 1 << (numRows & 0x1f); int bitMask = 1; while (bitMask != rem) { int b = v[words] & bitMask; if (b != 0) { // compute scalar product part for (int j = 0; j < length; j++) { res[j] ^= matrix[row][j]; } // set last bit int q = (numColumns + row) >>> 5; int r = (numColumns + row) & 0x1f; res[q] |= 1 << r; } row++; bitMask <<= 1; } return new GF2Vector(res, numRows + numColumns); }
Compute the product of this matrix and a matrix A over GF(2).
Params:
  • mat – a matrix A over GF(2)
Returns:matrix product this*matrixA
/** * Compute the product of this matrix and a matrix A over GF(2). * * @param mat a matrix A over GF(2) * @return matrix product <tt>this*matrixA</tt> */
public Matrix rightMultiply(Matrix mat) { if (!(mat instanceof GF2Matrix)) { throw new ArithmeticException("matrix is not defined over GF(2)"); } if (mat.numRows != numColumns) { throw new ArithmeticException("length mismatch"); } GF2Matrix a = (GF2Matrix)mat; GF2Matrix result = new GF2Matrix(numRows, mat.numColumns); int d; int rest = numColumns & 0x1f; if (rest == 0) { d = length; } else { d = length - 1; } for (int i = 0; i < numRows; i++) { int count = 0; for (int j = 0; j < d; j++) { int e = matrix[i][j]; for (int h = 0; h < 32; h++) { int b = e & (1 << h); if (b != 0) { for (int g = 0; g < a.length; g++) { result.matrix[i][g] ^= a.matrix[count][g]; } } count++; } } int e = matrix[i][length - 1]; for (int h = 0; h < rest; h++) { int b = e & (1 << h); if (b != 0) { for (int g = 0; g < a.length; g++) { result.matrix[i][g] ^= a.matrix[count][g]; } } count++; } } return result; }
Compute the product of this matrix and a permutation matrix which is generated from an n-permutation.
Params:
  • p – the permutation
Returns:GF2Matrix this*P
/** * Compute the product of this matrix and a permutation matrix which is * generated from an n-permutation. * * @param p the permutation * @return {@link GF2Matrix} <tt>this*P</tt> */
public Matrix rightMultiply(Permutation p) { int[] pVec = p.getVector(); if (pVec.length != numColumns) { throw new ArithmeticException("length mismatch"); } GF2Matrix result = new GF2Matrix(numRows, numColumns); for (int i = numColumns - 1; i >= 0; i--) { int q = i >>> 5; int r = i & 0x1f; int pq = pVec[i] >>> 5; int pr = pVec[i] & 0x1f; for (int j = numRows - 1; j >= 0; j--) { result.matrix[j][q] |= ((matrix[j][pq] >>> pr) & 1) << r; } } return result; }
Compute the product of this matrix and the given column vector.
Params:
  • vec – the vector over GF(2)
Returns:this*vector
/** * Compute the product of this matrix and the given column vector. * * @param vec the vector over GF(2) * @return <tt>this*vector</tt> */
public Vector rightMultiply(Vector vec) { if (!(vec instanceof GF2Vector)) { throw new ArithmeticException("vector is not defined over GF(2)"); } if (vec.length != numColumns) { throw new ArithmeticException("length mismatch"); } int[] v = ((GF2Vector)vec).getVecArray(); int[] res = new int[(numRows + 31) >>> 5]; for (int i = 0; i < numRows; i++) { // compute full word scalar products int help = 0; for (int j = 0; j < length; j++) { help ^= matrix[i][j] & v[j]; } // compute single word scalar product int bitValue = 0; for (int j = 0; j < 32; j++) { bitValue ^= (help >>> j) & 1; } // set result bit if (bitValue == 1) { res[i >>> 5] |= 1 << (i & 0x1f); } } return new GF2Vector(res, numRows); }
Compute the product of the matrix (Id | this) and a column vector, where Id is a (numRows x numRows) unit matrix.
Params:
  • vec – the vector over GF(2)
Returns:(Id | this)*vector
/** * Compute the product of the matrix <tt>(Id | this)</tt> and a column * vector, where <tt>Id</tt> is a <tt>(numRows x numRows)</tt> unit * matrix. * * @param vec the vector over GF(2) * @return <tt>(Id | this)*vector</tt> */
public Vector rightMultiplyRightCompactForm(Vector vec) { if (!(vec instanceof GF2Vector)) { throw new ArithmeticException("vector is not defined over GF(2)"); } if (vec.length != numColumns + numRows) { throw new ArithmeticException("length mismatch"); } int[] v = ((GF2Vector)vec).getVecArray(); int[] res = new int[(numRows + 31) >>> 5]; int q = numRows >> 5; int r = numRows & 0x1f; // for all rows for (int i = 0; i < numRows; i++) { // get vector bit int help = (v[i >> 5] >>> (i & 0x1f)) & 1; // compute full word scalar products int vInd = q; // if words have to be shifted if (r != 0) { int vw = 0; // process all but last word for (int j = 0; j < length - 1; j++) { // shift to correct position vw = (v[vInd++] >>> r) | (v[vInd] << (32 - r)); help ^= matrix[i][j] & vw; } // process last word vw = v[vInd++] >>> r; if (vInd < v.length) { vw |= v[vInd] << (32 - r); } help ^= matrix[i][length - 1] & vw; } else { // no shifting necessary for (int j = 0; j < length; j++) { help ^= matrix[i][j] & v[vInd++]; } } // compute single word scalar product int bitValue = 0; for (int j = 0; j < 32; j++) { bitValue ^= help & 1; help >>>= 1; } // set result bit if (bitValue == 1) { res[i >> 5] |= 1 << (i & 0x1f); } } return new GF2Vector(res, numRows); }
Compare this matrix with another object.
Params:
  • other – another object
Returns:the result of the comparison
/** * Compare this matrix with another object. * * @param other another object * @return the result of the comparison */
public boolean equals(Object other) { if (!(other instanceof GF2Matrix)) { return false; } GF2Matrix otherMatrix = (GF2Matrix)other; if ((numRows != otherMatrix.numRows) || (numColumns != otherMatrix.numColumns) || (length != otherMatrix.length)) { return false; } for (int i = 0; i < numRows; i++) { if (!IntUtils.equals(matrix[i], otherMatrix.matrix[i])) { return false; } } return true; }
Returns:the hash code of this matrix
/** * @return the hash code of this matrix */
public int hashCode() { int hash = (numRows * 31 + numColumns) * 31 + length; for (int i = 0; i < numRows; i++) { hash = hash * 31 + Arrays.hashCode(matrix[i]); } return hash; }
Returns:a human readable form of the matrix
/** * @return a human readable form of the matrix */
public String toString() { int rest = numColumns & 0x1f; int d; if (rest == 0) { d = length; } else { d = length - 1; } StringBuffer buf = new StringBuffer(); for (int i = 0; i < numRows; i++) { buf.append(i + ": "); for (int j = 0; j < d; j++) { int a = matrix[i][j]; for (int k = 0; k < 32; k++) { int b = (a >>> k) & 1; if (b == 0) { buf.append('0'); } else { buf.append('1'); } } buf.append(' '); } int a = matrix[i][length - 1]; for (int k = 0; k < rest; k++) { int b = (a >>> k) & 1; if (b == 0) { buf.append('0'); } else { buf.append('1'); } } buf.append('\n'); } return buf.toString(); }
Swap two rows of the given matrix.
Params:
  • matrix – the matrix
  • first – the index of the first row
  • second – the index of the second row
/** * Swap two rows of the given matrix. * * @param matrix the matrix * @param first the index of the first row * @param second the index of the second row */
private static void swapRows(int[][] matrix, int first, int second) { int[] tmp = matrix[first]; matrix[first] = matrix[second]; matrix[second] = tmp; }
Partially add one row to another.
Params:
  • fromRow – the addend
  • toRow – the row to add to
  • startIndex – the array index to start from
/** * Partially add one row to another. * * @param fromRow the addend * @param toRow the row to add to * @param startIndex the array index to start from */
private static void addToRow(int[] fromRow, int[] toRow, int startIndex) { for (int i = toRow.length - 1; i >= startIndex; i--) { toRow[i] = fromRow[i] ^ toRow[i]; } } }