/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

import org.apache.commons.math3.analysis.function.Gaussian;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.util.FastMath;

Fits points to a Gaussian function.
The initial guess values must be passed in the following order:
  • Normalization
  • Mean
  • Sigma
The optimal values will be returned in the same order.

Usage example:

  WeightedObservedPoints obs = new WeightedObservedPoints();
  obs.add(4.0254623,  531026.0);
  obs.add(4.03128248, 984167.0);
  obs.add(4.03839603, 1887233.0);
  obs.add(4.04421621, 2687152.0);
  obs.add(4.05132976, 3461228.0);
  obs.add(4.05326982, 3580526.0);
  obs.add(4.05779662, 3439750.0);
  obs.add(4.0636168,  2877648.0);
  obs.add(4.06943698, 2175960.0);
  obs.add(4.07525716, 1447024.0);
  obs.add(4.08237071, 717104.0);
  obs.add(4.08366408, 620014.0);
  double[] parameters = GaussianCurveFitter.create().fit(obs.toList());
Since:3.3
/** * Fits points to a {@link * org.apache.commons.math3.analysis.function.Gaussian.Parametric Gaussian} * function. * <br/> * The {@link #withStartPoint(double[]) initial guess values} must be passed * in the following order: * <ul> * <li>Normalization</li> * <li>Mean</li> * <li>Sigma</li> * </ul> * The optimal values will be returned in the same order. * * <p> * Usage example: * <pre> * WeightedObservedPoints obs = new WeightedObservedPoints(); * obs.add(4.0254623, 531026.0); * obs.add(4.03128248, 984167.0); * obs.add(4.03839603, 1887233.0); * obs.add(4.04421621, 2687152.0); * obs.add(4.05132976, 3461228.0); * obs.add(4.05326982, 3580526.0); * obs.add(4.05779662, 3439750.0); * obs.add(4.0636168, 2877648.0); * obs.add(4.06943698, 2175960.0); * obs.add(4.07525716, 1447024.0); * obs.add(4.08237071, 717104.0); * obs.add(4.08366408, 620014.0); * double[] parameters = GaussianCurveFitter.create().fit(obs.toList()); * </pre> * * @since 3.3 */
public class GaussianCurveFitter extends AbstractCurveFitter {
Parametric function to be fitted.
/** Parametric function to be fitted. */
private static final Gaussian.Parametric FUNCTION = new Gaussian.Parametric() {
{@inheritDoc}
/** {@inheritDoc} */
@Override public double value(double x, double ... p) { double v = Double.POSITIVE_INFINITY; try { v = super.value(x, p); } catch (NotStrictlyPositiveException e) { // NOPMD // Do nothing. } return v; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public double[] gradient(double x, double ... p) { double[] v = { Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY }; try { v = super.gradient(x, p); } catch (NotStrictlyPositiveException e) { // NOPMD // Do nothing. } return v; } };
Initial guess.
/** Initial guess. */
private final double[] initialGuess;
Maximum number of iterations of the optimization algorithm.
/** Maximum number of iterations of the optimization algorithm. */
private final int maxIter;
Contructor used by the factory methods.
Params:
  • initialGuess – Initial guess. If set to null, the initial guess will be estimated using the ParameterGuesser.
  • maxIter – Maximum number of iterations of the optimization algorithm.
/** * Contructor used by the factory methods. * * @param initialGuess Initial guess. If set to {@code null}, the initial guess * will be estimated using the {@link ParameterGuesser}. * @param maxIter Maximum number of iterations of the optimization algorithm. */
private GaussianCurveFitter(double[] initialGuess, int maxIter) { this.initialGuess = initialGuess; this.maxIter = maxIter; }
Creates a default curve fitter. The initial guess for the parameters will be ParameterGuesser computed automatically, and the maximum number of iterations of the optimization algorithm is set to Integer.MAX_VALUE.
See Also:
Returns:a curve fitter.
/** * Creates a default curve fitter. * The initial guess for the parameters will be {@link ParameterGuesser} * computed automatically, and the maximum number of iterations of the * optimization algorithm is set to {@link Integer#MAX_VALUE}. * * @return a curve fitter. * * @see #withStartPoint(double[]) * @see #withMaxIterations(int) */
public static GaussianCurveFitter create() { return new GaussianCurveFitter(null, Integer.MAX_VALUE); }
Configure the start point (initial guess).
Params:
  • newStart – new start point (initial guess)
Returns:a new instance.
/** * Configure the start point (initial guess). * @param newStart new start point (initial guess) * @return a new instance. */
public GaussianCurveFitter withStartPoint(double[] newStart) { return new GaussianCurveFitter(newStart.clone(), maxIter); }
Configure the maximum number of iterations.
Params:
  • newMaxIter – maximum number of iterations
Returns:a new instance.
/** * Configure the maximum number of iterations. * @param newMaxIter maximum number of iterations * @return a new instance. */
public GaussianCurveFitter withMaxIterations(int newMaxIter) { return new GaussianCurveFitter(initialGuess, newMaxIter); }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); final double[] startPoint = initialGuess != null ? initialGuess : // Compute estimation. new ParameterGuesser(observations).guess(); // Return a new least squares problem set up to fit a Gaussian curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(startPoint). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); }
Guesses the parameters norm, mean, and sigma of a Parametric based on the specified observed points.
/** * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma} * of a {@link org.apache.commons.math3.analysis.function.Gaussian.Parametric} * based on the specified observed points. */
public static class ParameterGuesser {
Normalization factor.
/** Normalization factor. */
private final double norm;
Mean.
/** Mean. */
private final double mean;
Standard deviation.
/** Standard deviation. */
private final double sigma;
Constructs instance with the specified observed points.
Params:
  • observations – Observed points from which to guess the parameters of the Gaussian.
Throws:
/** * Constructs instance with the specified observed points. * * @param observations Observed points from which to guess the * parameters of the Gaussian. * @throws NullArgumentException if {@code observations} is * {@code null}. * @throws NumberIsTooSmallException if there are less than 3 * observations. */
public ParameterGuesser(Collection<WeightedObservedPoint> observations) { if (observations == null) { throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY); } if (observations.size() < 3) { throw new NumberIsTooSmallException(observations.size(), 3, true); } final List<WeightedObservedPoint> sorted = sortObservations(observations); final double[] params = basicGuess(sorted.toArray(new WeightedObservedPoint[0])); norm = params[0]; mean = params[1]; sigma = params[2]; }
Gets an estimation of the parameters.
Returns:the guessed parameters, in the following order:
  • Normalization factor
  • Mean
  • Standard deviation
/** * Gets an estimation of the parameters. * * @return the guessed parameters, in the following order: * <ul> * <li>Normalization factor</li> * <li>Mean</li> * <li>Standard deviation</li> * </ul> */
public double[] guess() { return new double[] { norm, mean, sigma }; }
Sort the observations.
Params:
  • unsorted – Input observations.
Returns:the input observations, sorted.
/** * Sort the observations. * * @param unsorted Input observations. * @return the input observations, sorted. */
private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) { final List<WeightedObservedPoint> observations = new ArrayList<WeightedObservedPoint>(unsorted); final Comparator<WeightedObservedPoint> cmp = new Comparator<WeightedObservedPoint>() {
{@inheritDoc}
/** {@inheritDoc} */
public int compare(WeightedObservedPoint p1, WeightedObservedPoint p2) { if (p1 == null && p2 == null) { return 0; } if (p1 == null) { return -1; } if (p2 == null) { return 1; } final int cmpX = Double.compare(p1.getX(), p2.getX()); if (cmpX < 0) { return -1; } if (cmpX > 0) { return 1; } final int cmpY = Double.compare(p1.getY(), p2.getY()); if (cmpY < 0) { return -1; } if (cmpY > 0) { return 1; } final int cmpW = Double.compare(p1.getWeight(), p2.getWeight()); if (cmpW < 0) { return -1; } if (cmpW > 0) { return 1; } return 0; } }; Collections.sort(observations, cmp); return observations; }
Guesses the parameters based on the specified observed points.
Params:
  • points – Observed points, sorted.
Returns:the guessed parameters (normalization factor, mean and sigma).
/** * Guesses the parameters based on the specified observed points. * * @param points Observed points, sorted. * @return the guessed parameters (normalization factor, mean and * sigma). */
private double[] basicGuess(WeightedObservedPoint[] points) { final int maxYIdx = findMaxY(points); final double n = points[maxYIdx].getY(); final double m = points[maxYIdx].getX(); double fwhmApprox; try { final double halfY = n + ((m - n) / 2); final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY); final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY); fwhmApprox = fwhmX2 - fwhmX1; } catch (OutOfRangeException e) { // TODO: Exceptions should not be used for flow control. fwhmApprox = points[points.length - 1].getX() - points[0].getX(); } final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2))); return new double[] { n, m, s }; }
Finds index of point in specified points with the largest Y.
Params:
  • points – Points to search.
Returns:the index in specified points array.
/** * Finds index of point in specified points with the largest Y. * * @param points Points to search. * @return the index in specified points array. */
private int findMaxY(WeightedObservedPoint[] points) { int maxYIdx = 0; for (int i = 1; i < points.length; i++) { if (points[i].getY() > points[maxYIdx].getY()) { maxYIdx = i; } } return maxYIdx; }
Interpolates using the specified points to determine X at the specified Y.
Params:
  • points – Points to use for interpolation.
  • startIdx – Index within points from which to start the search for interpolation bounds points.
  • idxStep – Index step for searching interpolation bounds points.
  • y – Y value for which X should be determined.
Throws:
Returns:the value of X for the specified Y.
/** * Interpolates using the specified points to determine X at the * specified Y. * * @param points Points to use for interpolation. * @param startIdx Index within points from which to start the search for * interpolation bounds points. * @param idxStep Index step for searching interpolation bounds points. * @param y Y value for which X should be determined. * @return the value of X for the specified Y. * @throws ZeroException if {@code idxStep} is 0. * @throws OutOfRangeException if specified {@code y} is not within the * range of the specified {@code points}. */
private double interpolateXAtY(WeightedObservedPoint[] points, int startIdx, int idxStep, double y) throws OutOfRangeException { if (idxStep == 0) { throw new ZeroException(); } final WeightedObservedPoint[] twoPoints = getInterpolationPointsForY(points, startIdx, idxStep, y); final WeightedObservedPoint p1 = twoPoints[0]; final WeightedObservedPoint p2 = twoPoints[1]; if (p1.getY() == y) { return p1.getX(); } if (p2.getY() == y) { return p2.getX(); } return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) / (p2.getY() - p1.getY())); }
Gets the two bounding interpolation points from the specified points suitable for determining X at the specified Y.
Params:
  • points – Points to use for interpolation.
  • startIdx – Index within points from which to start search for interpolation bounds points.
  • idxStep – Index step for search for interpolation bounds points.
  • y – Y value for which X should be determined.
Throws:
Returns:the array containing two points suitable for determining X at the specified Y.
/** * Gets the two bounding interpolation points from the specified points * suitable for determining X at the specified Y. * * @param points Points to use for interpolation. * @param startIdx Index within points from which to start search for * interpolation bounds points. * @param idxStep Index step for search for interpolation bounds points. * @param y Y value for which X should be determined. * @return the array containing two points suitable for determining X at * the specified Y. * @throws ZeroException if {@code idxStep} is 0. * @throws OutOfRangeException if specified {@code y} is not within the * range of the specified {@code points}. */
private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points, int startIdx, int idxStep, double y) throws OutOfRangeException { if (idxStep == 0) { throw new ZeroException(); } for (int i = startIdx; idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length; i += idxStep) { final WeightedObservedPoint p1 = points[i]; final WeightedObservedPoint p2 = points[i + idxStep]; if (isBetween(y, p1.getY(), p2.getY())) { if (idxStep < 0) { return new WeightedObservedPoint[] { p2, p1 }; } else { return new WeightedObservedPoint[] { p1, p2 }; } } } // Boundaries are replaced by dummy values because the raised // exception is caught and the message never displayed. // TODO: Exceptions should not be used for flow control. throw new OutOfRangeException(y, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY); }
Determines whether a value is between two other values.
Params:
  • value – Value to test whether it is between boundary1 and boundary2.
  • boundary1 – One end of the range.
  • boundary2 – Other end of the range.
Returns:true if value is between boundary1 and boundary2 (inclusive), false otherwise.
/** * Determines whether a value is between two other values. * * @param value Value to test whether it is between {@code boundary1} * and {@code boundary2}. * @param boundary1 One end of the range. * @param boundary2 Other end of the range. * @return {@code true} if {@code value} is between {@code boundary1} and * {@code boundary2} (inclusive), {@code false} otherwise. */
private boolean isBetween(double value, double boundary1, double boundary2) { return (value >= boundary1 && value <= boundary2) || (value >= boundary2 && value <= boundary1); } } }