/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting;

import java.util.Collection;

import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;

Base class that contains common code for fitting parametric univariate real functions y = f(pi;x), where x is the independent variable and the pi are the parameters.
A fitter will find the optimal values of the parameters by fitting the curve so it remains very close to a set of N observed points (xk, yk), 0 <= k < N.
An algorithm usually performs the fit by finding the parameter values that minimizes the objective function

 ∑yk - f(xk)2,
which is actually a least-squares problem. This class contains boilerplate code for calling the fit(Collection<WeightedObservedPoint>) method for obtaining the parameters. The problem setup, such as the choice of optimization algorithm for fitting a specific function is delegated to subclasses.
Since:3.3
/** * Base class that contains common code for fitting parametric univariate * real functions <code>y = f(p<sub>i</sub>;x)</code>, where {@code x} is * the independent variable and the <code>p<sub>i</sub></code> are the * <em>parameters</em>. * <br/> * A fitter will find the optimal values of the parameters by * <em>fitting</em> the curve so it remains very close to a set of * {@code N} observed points <code>(x<sub>k</sub>, y<sub>k</sub>)</code>, * {@code 0 <= k < N}. * <br/> * An algorithm usually performs the fit by finding the parameter * values that minimizes the objective function * <pre><code> * &sum;y<sub>k</sub> - f(x<sub>k</sub>)<sup>2</sup>, * </code></pre> * which is actually a least-squares problem. * This class contains boilerplate code for calling the * {@link #fit(Collection)} method for obtaining the parameters. * The problem setup, such as the choice of optimization algorithm * for fitting a specific function is delegated to subclasses. * * @since 3.3 */
public abstract class AbstractCurveFitter {
Fits a curve. This method computes the coefficients of the curve that best fit the sample of observed points.
Params:
  • points – Observations.
Returns:the fitted parameters.
/** * Fits a curve. * This method computes the coefficients of the curve that best * fit the sample of observed points. * * @param points Observations. * @return the fitted parameters. */
public double[] fit(Collection<WeightedObservedPoint> points) { // Perform the fit. return getOptimizer().optimize(getProblem(points)).getPoint().toArray(); }
Creates an optimizer set up to fit the appropriate curve.

The default implementation uses a Levenberg-Marquardt optimizer.

Returns:the optimizer to use for fitting the curve to the given points.
/** * Creates an optimizer set up to fit the appropriate curve. * <p> * The default implementation uses a {@link LevenbergMarquardtOptimizer * Levenberg-Marquardt} optimizer. * </p> * @return the optimizer to use for fitting the curve to the * given {@code points}. */
protected LeastSquaresOptimizer getOptimizer() { return new LevenbergMarquardtOptimizer(); }
Creates a least squares problem corresponding to the appropriate curve.
Params:
  • points – Sample points.
Returns:the least squares problem to use for fitting the curve to the given points.
/** * Creates a least squares problem corresponding to the appropriate curve. * * @param points Sample points. * @return the least squares problem to use for fitting the curve to the * given {@code points}. */
protected abstract LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> points);
Vector function for computing function theoretical values.
/** * Vector function for computing function theoretical values. */
protected static class TheoreticalValuesFunction {
Function to fit.
/** Function to fit. */
private final ParametricUnivariateFunction f;
Observations.
/** Observations. */
private final double[] points;
Params:
  • f – function to fit.
  • observations – Observations.
/** * @param f function to fit. * @param observations Observations. */
public TheoreticalValuesFunction(final ParametricUnivariateFunction f, final Collection<WeightedObservedPoint> observations) { this.f = f; final int len = observations.size(); this.points = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { this.points[i++] = obs.getX(); } }
Returns:the model function values.
/** * @return the model function values. */
public MultivariateVectorFunction getModelFunction() { return new MultivariateVectorFunction() {
{@inheritDoc}
/** {@inheritDoc} */
public double[] value(double[] p) { final int len = points.length; final double[] values = new double[len]; for (int i = 0; i < len; i++) { values[i] = f.value(points[i], p); } return values; } }; }
Returns:the model function Jacobian.
/** * @return the model function Jacobian. */
public MultivariateMatrixFunction getModelFunctionJacobian() { return new MultivariateMatrixFunction() {
{@inheritDoc}
/** {@inheritDoc} */
public double[][] value(double[] p) { final int len = points.length; final double[][] jacobian = new double[len][]; for (int i = 0; i < len; i++) { jacobian[i] = f.gradient(points[i], p); } return jacobian; } }; } } }