/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.analysis.function;

import java.util.Arrays;

import org.apache.commons.math3.analysis.FunctionUtils;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

Gaussian function.
Since:3.0
/** * <a href="http://en.wikipedia.org/wiki/Gaussian_function"> * Gaussian</a> function. * * @since 3.0 */
public class Gaussian implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
Mean.
/** Mean. */
private final double mean;
Inverse of the standard deviation.
/** Inverse of the standard deviation. */
private final double is;
Inverse of twice the square of the standard deviation.
/** Inverse of twice the square of the standard deviation. */
private final double i2s2;
Normalization factor.
/** Normalization factor. */
private final double norm;
Gaussian with given normalization factor, mean and standard deviation.
Params:
  • norm – Normalization factor.
  • mean – Mean.
  • sigma – Standard deviation.
Throws:
/** * Gaussian with given normalization factor, mean and standard deviation. * * @param norm Normalization factor. * @param mean Mean. * @param sigma Standard deviation. * @throws NotStrictlyPositiveException if {@code sigma <= 0}. */
public Gaussian(double norm, double mean, double sigma) throws NotStrictlyPositiveException { if (sigma <= 0) { throw new NotStrictlyPositiveException(sigma); } this.norm = norm; this.mean = mean; this.is = 1 / sigma; this.i2s2 = 0.5 * is * is; }
Normalized gaussian with given mean and standard deviation.
Params:
  • mean – Mean.
  • sigma – Standard deviation.
Throws:
/** * Normalized gaussian with given mean and standard deviation. * * @param mean Mean. * @param sigma Standard deviation. * @throws NotStrictlyPositiveException if {@code sigma <= 0}. */
public Gaussian(double mean, double sigma) throws NotStrictlyPositiveException { this(1 / (sigma * FastMath.sqrt(2 * Math.PI)), mean, sigma); }
Normalized gaussian with zero mean and unit standard deviation.
/** * Normalized gaussian with zero mean and unit standard deviation. */
public Gaussian() { this(0, 1); }
{@inheritDoc}
/** {@inheritDoc} */
public double value(double x) { return value(x - mean, norm, i2s2); }
{@inheritDoc}
Deprecated:as of 3.1, replaced by value(DerivativeStructure)
/** {@inheritDoc} * @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)} */
@Deprecated public UnivariateFunction derivative() { return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative(); }
Parametric function where the input array contains the parameters of the Gaussian, ordered as follows:
  • Norm
  • Mean
  • Standard deviation
/** * Parametric function where the input array contains the parameters of * the Gaussian, ordered as follows: * <ul> * <li>Norm</li> * <li>Mean</li> * <li>Standard deviation</li> * </ul> */
public static class Parametric implements ParametricUnivariateFunction {
Computes the value of the Gaussian at x.
Params:
  • x – Value for which the function must be computed.
  • param – Values of norm, mean and standard deviation.
Throws:
Returns:the value of the function.
/** * Computes the value of the Gaussian at {@code x}. * * @param x Value for which the function must be computed. * @param param Values of norm, mean and standard deviation. * @return the value of the function. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. * @throws NotStrictlyPositiveException if {@code param[2]} is negative. */
public double value(double x, double ... param) throws NullArgumentException, DimensionMismatchException, NotStrictlyPositiveException { validateParameters(param); final double diff = x - param[1]; final double i2s2 = 1 / (2 * param[2] * param[2]); return Gaussian.value(diff, param[0], i2s2); }
Computes the value of the gradient at x. The components of the gradient vector are the partial derivatives of the function with respect to each of the parameters (norm, mean and standard deviation).
Params:
  • x – Value at which the gradient must be computed.
  • param – Values of norm, mean and standard deviation.
Throws:
Returns:the gradient vector at x.
/** * Computes the value of the gradient at {@code x}. * The components of the gradient vector are the partial * derivatives of the function with respect to each of the * <em>parameters</em> (norm, mean and standard deviation). * * @param x Value at which the gradient must be computed. * @param param Values of norm, mean and standard deviation. * @return the gradient vector at {@code x}. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. * @throws NotStrictlyPositiveException if {@code param[2]} is negative. */
public double[] gradient(double x, double ... param) throws NullArgumentException, DimensionMismatchException, NotStrictlyPositiveException { validateParameters(param); final double norm = param[0]; final double diff = x - param[1]; final double sigma = param[2]; final double i2s2 = 1 / (2 * sigma * sigma); final double n = Gaussian.value(diff, 1, i2s2); final double m = norm * n * 2 * i2s2 * diff; final double s = m * diff / sigma; return new double[] { n, m, s }; }
Validates parameters to ensure they are appropriate for the evaluation of the value(double, double[]) and gradient(double, double[]) methods.
Params:
  • param – Values of norm, mean and standard deviation.
Throws:
/** * Validates parameters to ensure they are appropriate for the evaluation of * the {@link #value(double,double[])} and {@link #gradient(double,double[])} * methods. * * @param param Values of norm, mean and standard deviation. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. * @throws NotStrictlyPositiveException if {@code param[2]} is negative. */
private void validateParameters(double[] param) throws NullArgumentException, DimensionMismatchException, NotStrictlyPositiveException { if (param == null) { throw new NullArgumentException(); } if (param.length != 3) { throw new DimensionMismatchException(param.length, 3); } if (param[2] <= 0) { throw new NotStrictlyPositiveException(param[2]); } } }
Params:
  • xMinusMean – x - mean.
  • norm – Normalization factor.
  • i2s2 – Inverse of twice the square of the standard deviation.
Returns:the value of the Gaussian at x.
/** * @param xMinusMean {@code x - mean}. * @param norm Normalization factor. * @param i2s2 Inverse of twice the square of the standard deviation. * @return the value of the Gaussian at {@code x}. */
private static double value(double xMinusMean, double norm, double i2s2) { return norm * FastMath.exp(-xMinusMean * xMinusMean * i2s2); }
{@inheritDoc}
Since:3.1
/** {@inheritDoc} * @since 3.1 */
public DerivativeStructure value(final DerivativeStructure t) throws DimensionMismatchException { final double u = is * (t.getValue() - mean); double[] f = new double[t.getOrder() + 1]; // the nth order derivative of the Gaussian has the form: // dn(g(x)/dxn = (norm / s^n) P_n(u) exp(-u^2/2) with u=(x-m)/s // where P_n(u) is a degree n polynomial with same parity as n // P_0(u) = 1, P_1(u) = -u, P_2(u) = u^2 - 1, P_3(u) = -u^3 + 3 u... // the general recurrence relation for P_n is: // P_n(u) = P_(n-1)'(u) - u P_(n-1)(u) // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array final double[] p = new double[f.length]; p[0] = 1; final double u2 = u * u; double coeff = norm * FastMath.exp(-0.5 * u2); if (coeff <= Precision.SAFE_MIN) { Arrays.fill(f, 0.0); } else { f[0] = coeff; for (int n = 1; n < f.length; ++n) { // update and evaluate polynomial P_n(x) double v = 0; p[n] = -p[n - 1]; for (int k = n; k >= 0; k -= 2) { v = v * u2 + p[k]; if (k > 2) { p[k - 2] = (k - 1) * p[k - 1] - p[k - 3]; } else if (k == 2) { p[0] = p[1]; } } if ((n & 0x1) == 1) { v *= u; } coeff *= is; f[n] = coeff * v; } } return t.compose(f); } }