/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.linear;

import java.io.Serializable;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;

Implementation of a diagonal matrix.
Since:3.1.1
/** * Implementation of a diagonal matrix. * * @since 3.1.1 */
public class DiagonalMatrix extends AbstractRealMatrix implements Serializable {
Serializable version identifier.
/** Serializable version identifier. */
private static final long serialVersionUID = 20121229L;
Entries of the diagonal.
/** Entries of the diagonal. */
private final double[] data;
Creates a matrix with the supplied dimension.
Params:
  • dimension – Number of rows and columns in the new matrix.
Throws:
/** * Creates a matrix with the supplied dimension. * * @param dimension Number of rows and columns in the new matrix. * @throws NotStrictlyPositiveException if the dimension is * not positive. */
public DiagonalMatrix(final int dimension) throws NotStrictlyPositiveException { super(dimension, dimension); data = new double[dimension]; }
Creates a matrix using the input array as the underlying data.
The input array is copied, not referenced.
Params:
  • d – Data for the new matrix.
/** * Creates a matrix using the input array as the underlying data. * <br/> * The input array is copied, not referenced. * * @param d Data for the new matrix. */
public DiagonalMatrix(final double[] d) { this(d, true); }
Creates a matrix using the input array as the underlying data.
If an array is created specially in order to be embedded in a this instance and not used directly, the copyArray may be set to false. This will prevent the copying and improve performance as no new array will be built and no data will be copied.
Params:
  • d – Data for new matrix.
  • copyArray – if true, the input array will be copied, otherwise it will be referenced.
Throws:
/** * Creates a matrix using the input array as the underlying data. * <br/> * If an array is created specially in order to be embedded in a * this instance and not used directly, the {@code copyArray} may be * set to {@code false}. * This will prevent the copying and improve performance as no new * array will be built and no data will be copied. * * @param d Data for new matrix. * @param copyArray if {@code true}, the input array will be copied, * otherwise it will be referenced. * @exception NullArgumentException if d is null */
public DiagonalMatrix(final double[] d, final boolean copyArray) throws NullArgumentException { MathUtils.checkNotNull(d); data = copyArray ? d.clone() : d; }
{@inheritDoc}
Throws:
/** * {@inheritDoc} * * @throws DimensionMismatchException if the requested dimensions are not equal. */
@Override public RealMatrix createMatrix(final int rowDimension, final int columnDimension) throws NotStrictlyPositiveException, DimensionMismatchException { if (rowDimension != columnDimension) { throw new DimensionMismatchException(rowDimension, columnDimension); } return new DiagonalMatrix(rowDimension); }
{@inheritDoc}
/** {@inheritDoc} */
@Override public RealMatrix copy() { return new DiagonalMatrix(data); }
Compute the sum of this and m.
Params:
  • m – Matrix to be added.
Throws:
Returns:this + m.
/** * Compute the sum of {@code this} and {@code m}. * * @param m Matrix to be added. * @return {@code this + m}. * @throws MatrixDimensionMismatchException if {@code m} is not the same * size as {@code this}. */
public DiagonalMatrix add(final DiagonalMatrix m) throws MatrixDimensionMismatchException { // Safety check. MatrixUtils.checkAdditionCompatible(this, m); final int dim = getRowDimension(); final double[] outData = new double[dim]; for (int i = 0; i < dim; i++) { outData[i] = data[i] + m.data[i]; } return new DiagonalMatrix(outData, false); }
Returns this minus m.
Params:
  • m – Matrix to be subtracted.
Throws:
Returns:this - m
/** * Returns {@code this} minus {@code m}. * * @param m Matrix to be subtracted. * @return {@code this - m} * @throws MatrixDimensionMismatchException if {@code m} is not the same * size as {@code this}. */
public DiagonalMatrix subtract(final DiagonalMatrix m) throws MatrixDimensionMismatchException { MatrixUtils.checkSubtractionCompatible(this, m); final int dim = getRowDimension(); final double[] outData = new double[dim]; for (int i = 0; i < dim; i++) { outData[i] = data[i] - m.data[i]; } return new DiagonalMatrix(outData, false); }
Returns the result of postmultiplying this by m.
Params:
  • m – matrix to postmultiply by
Throws:
Returns:this * m
/** * Returns the result of postmultiplying {@code this} by {@code m}. * * @param m matrix to postmultiply by * @return {@code this * m} * @throws DimensionMismatchException if * {@code columnDimension(this) != rowDimension(m)} */
public DiagonalMatrix multiply(final DiagonalMatrix m) throws DimensionMismatchException { MatrixUtils.checkMultiplicationCompatible(this, m); final int dim = getRowDimension(); final double[] outData = new double[dim]; for (int i = 0; i < dim; i++) { outData[i] = data[i] * m.data[i]; } return new DiagonalMatrix(outData, false); }
Returns the result of postmultiplying this by m.
Params:
  • m – matrix to postmultiply by
Throws:
Returns:this * m
/** * Returns the result of postmultiplying {@code this} by {@code m}. * * @param m matrix to postmultiply by * @return {@code this * m} * @throws DimensionMismatchException if * {@code columnDimension(this) != rowDimension(m)} */
@Override public RealMatrix multiply(final RealMatrix m) throws DimensionMismatchException { if (m instanceof DiagonalMatrix) { return multiply((DiagonalMatrix) m); } else { MatrixUtils.checkMultiplicationCompatible(this, m); final int nRows = m.getRowDimension(); final int nCols = m.getColumnDimension(); final double[][] product = new double[nRows][nCols]; for (int r = 0; r < nRows; r++) { for (int c = 0; c < nCols; c++) { product[r][c] = data[r] * m.getEntry(r, c); } } return new Array2DRowRealMatrix(product, false); } }
{@inheritDoc}
/** {@inheritDoc} */
@Override public double[][] getData() { final int dim = getRowDimension(); final double[][] out = new double[dim][dim]; for (int i = 0; i < dim; i++) { out[i][i] = data[i]; } return out; }
Gets a reference to the underlying data array.
Returns:1-dimensional array of entries.
/** * Gets a reference to the underlying data array. * * @return 1-dimensional array of entries. */
public double[] getDataRef() { return data; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public double getEntry(final int row, final int column) throws OutOfRangeException { MatrixUtils.checkMatrixIndex(this, row, column); return row == column ? data[row] : 0; }
{@inheritDoc}
Throws:
/** {@inheritDoc} * @throws NumberIsTooLargeException if {@code row != column} and value is non-zero. */
@Override public void setEntry(final int row, final int column, final double value) throws OutOfRangeException, NumberIsTooLargeException { if (row == column) { MatrixUtils.checkRowIndex(this, row); data[row] = value; } else { ensureZero(value); } }
{@inheritDoc}
Throws:
/** {@inheritDoc} * @throws NumberIsTooLargeException if {@code row != column} and increment is non-zero. */
@Override public void addToEntry(final int row, final int column, final double increment) throws OutOfRangeException, NumberIsTooLargeException { if (row == column) { MatrixUtils.checkRowIndex(this, row); data[row] += increment; } else { ensureZero(increment); } }
{@inheritDoc}
/** {@inheritDoc} */
@Override public void multiplyEntry(final int row, final int column, final double factor) throws OutOfRangeException { // we don't care about non-diagonal elements for multiplication if (row == column) { MatrixUtils.checkRowIndex(this, row); data[row] *= factor; } }
{@inheritDoc}
/** {@inheritDoc} */
@Override public int getRowDimension() { return data.length; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public int getColumnDimension() { return data.length; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public double[] operate(final double[] v) throws DimensionMismatchException { return multiply(new DiagonalMatrix(v, false)).getDataRef(); }
{@inheritDoc}
/** {@inheritDoc} */
@Override public double[] preMultiply(final double[] v) throws DimensionMismatchException { return operate(v); }
{@inheritDoc}
/** {@inheritDoc} */
@Override public RealVector preMultiply(final RealVector v) throws DimensionMismatchException { final double[] vectorData; if (v instanceof ArrayRealVector) { vectorData = ((ArrayRealVector) v).getDataRef(); } else { vectorData = v.toArray(); } return MatrixUtils.createRealVector(preMultiply(vectorData)); }
Ensure a value is zero.
Params:
  • value – value to check
Throws:
/** Ensure a value is zero. * @param value value to check * @exception NumberIsTooLargeException if value is not zero */
private void ensureZero(final double value) throws NumberIsTooLargeException { if (!Precision.equals(0.0, value, 1)) { throw new NumberIsTooLargeException(FastMath.abs(value), 0, true); } }
Computes the inverse of this diagonal matrix.

Note: this method will use a singularity threshold of 0, use inverse(double) if a different threshold is needed.

Throws:
Returns:the inverse of m
Since:3.3
/** * Computes the inverse of this diagonal matrix. * <p> * Note: this method will use a singularity threshold of 0, * use {@link #inverse(double)} if a different threshold is needed. * * @return the inverse of {@code m} * @throws SingularMatrixException if the matrix is singular * @since 3.3 */
public DiagonalMatrix inverse() throws SingularMatrixException { return inverse(0); }
Computes the inverse of this diagonal matrix.
Params:
  • threshold – Singularity threshold.
Throws:
Returns:the inverse of m
Since:3.3
/** * Computes the inverse of this diagonal matrix. * * @param threshold Singularity threshold. * @return the inverse of {@code m} * @throws SingularMatrixException if the matrix is singular * @since 3.3 */
public DiagonalMatrix inverse(double threshold) throws SingularMatrixException { if (isSingular(threshold)) { throw new SingularMatrixException(); } final double[] result = new double[data.length]; for (int i = 0; i < data.length; i++) { result[i] = 1.0 / data[i]; } return new DiagonalMatrix(result, false); }
Returns whether this diagonal matrix is singular, i.e. any diagonal entry is equal to 0 within the given threshold.
Params:
  • threshold – Singularity threshold.
Returns:true if the matrix is singular, false otherwise
Since:3.3
/** Returns whether this diagonal matrix is singular, i.e. any diagonal entry * is equal to {@code 0} within the given threshold. * * @param threshold Singularity threshold. * @return {@code true} if the matrix is singular, {@code false} otherwise * @since 3.3 */
public boolean isSingular(double threshold) { for (int i = 0; i < data.length; i++) { if (Precision.equals(data[i], 0.0, threshold)) { return true; } } return false; } }