package org.bouncycastle.pqc.crypto.mceliece;
import java.math.BigInteger;
import org.bouncycastle.pqc.math.linearalgebra.BigIntUtils;
import org.bouncycastle.pqc.math.linearalgebra.GF2Vector;
import org.bouncycastle.pqc.math.linearalgebra.IntegerFunctions;
Provides methods for CCA2-Secure Conversions of McEliece PKCS
/**
* Provides methods for CCA2-Secure Conversions of McEliece PKCS
*/
final class Conversions
{
private static final BigInteger ZERO = BigInteger.valueOf(0);
private static final BigInteger ONE = BigInteger.valueOf(1);
Default constructor (private).
/**
* Default constructor (private).
*/
private Conversions()
{
}
Encode a number between 0 and (n|t) (binomial coefficient) into a binary
vector of length n with weight t. The number is given as a byte array.
Only the first s bits are used, where s = floor[log(n|t)].
Params: - n – integer
- t – integer
- m – the message as a byte array
Returns: the encoded message as GF2Vector
/**
* Encode a number between 0 and (n|t) (binomial coefficient) into a binary
* vector of length n with weight t. The number is given as a byte array.
* Only the first s bits are used, where s = floor[log(n|t)].
*
* @param n integer
* @param t integer
* @param m the message as a byte array
* @return the encoded message as {@link GF2Vector}
*/
public static GF2Vector encode(final int n, final int t, final byte[] m)
{
if (n < t)
{
throw new IllegalArgumentException("n < t");
}
// compute the binomial c = (n|t)
BigInteger c = IntegerFunctions.binomial(n, t);
// get the number encoded in m
BigInteger i = new BigInteger(1, m);
// compare
if (i.compareTo(c) >= 0)
{
throw new IllegalArgumentException("Encoded number too large.");
}
GF2Vector result = new GF2Vector(n);
int nn = n;
int tt = t;
for (int j = 0; j < n; j++)
{
c = c.multiply(BigInteger.valueOf(nn - tt)).divide(
BigInteger.valueOf(nn));
nn--;
if (c.compareTo(i) <= 0)
{
result.setBit(j);
i = i.subtract(c);
tt--;
if (nn == tt)
{
c = ONE;
}
else
{
c = (c.multiply(BigInteger.valueOf(tt + 1)))
.divide(BigInteger.valueOf(nn - tt));
}
}
}
return result;
}
Decode a binary vector of length n and weight t into a number between 0
and (n|t) (binomial coefficient). The result is given as a byte array of
length floor[(s+7)/8], where s = floor[log(n|t)].
Params: - n – integer
- t – integer
- vec – the binary vector
Returns: the decoded vector as a byte array
/**
* Decode a binary vector of length n and weight t into a number between 0
* and (n|t) (binomial coefficient). The result is given as a byte array of
* length floor[(s+7)/8], where s = floor[log(n|t)].
*
* @param n integer
* @param t integer
* @param vec the binary vector
* @return the decoded vector as a byte array
*/
public static byte[] decode(int n, int t, GF2Vector vec)
{
if ((vec.getLength() != n) || (vec.getHammingWeight() != t))
{
throw new IllegalArgumentException(
"vector has wrong length or hamming weight");
}
int[] vecArray = vec.getVecArray();
BigInteger bc = IntegerFunctions.binomial(n, t);
BigInteger d = ZERO;
int nn = n;
int tt = t;
for (int i = 0; i < n; i++)
{
bc = bc.multiply(BigInteger.valueOf(nn - tt)).divide(
BigInteger.valueOf(nn));
nn--;
int q = i >> 5;
int e = vecArray[q] & (1 << (i & 0x1f));
if (e != 0)
{
d = d.add(bc);
tt--;
if (nn == tt)
{
bc = ONE;
}
else
{
bc = bc.multiply(BigInteger.valueOf(tt + 1)).divide(
BigInteger.valueOf(nn - tt));
}
}
}
return BigIntUtils.toMinimalByteArray(d);
}
Compute a message representative of a message given as a vector of length
n bit and of hamming weight t. The result is a
byte array of length (s+7)/8, where
s = floor[log(n|t)].
Params: - n – integer
- t – integer
- m – the message vector as a byte array
Returns: a message representative for m
/**
* Compute a message representative of a message given as a vector of length
* <tt>n</tt> bit and of hamming weight <tt>t</tt>. The result is a
* byte array of length <tt>(s+7)/8</tt>, where
* <tt>s = floor[log(n|t)]</tt>.
*
* @param n integer
* @param t integer
* @param m the message vector as a byte array
* @return a message representative for <tt>m</tt>
*/
public static byte[] signConversion(int n, int t, byte[] m)
{
if (n < t)
{
throw new IllegalArgumentException("n < t");
}
BigInteger bc = IntegerFunctions.binomial(n, t);
// finds s = floor[log(binomial(n,t))]
int s = bc.bitLength() - 1;
// s = sq*8 + sr;
int sq = s >> 3;
int sr = s & 7;
if (sr == 0)
{
sq--;
sr = 8;
}
// n = nq*8+nr;
int nq = n >> 3;
int nr = n & 7;
if (nr == 0)
{
nq--;
nr = 8;
}
// take s bit from m
byte[] data = new byte[nq + 1];
if (m.length < data.length)
{
System.arraycopy(m, 0, data, 0, m.length);
for (int i = m.length; i < data.length; i++)
{
data[i] = 0;
}
}
else
{
System.arraycopy(m, 0, data, 0, nq);
int h = (1 << nr) - 1;
data[nq] = (byte)(h & m[nq]);
}
BigInteger d = ZERO;
int nn = n;
int tt = t;
for (int i = 0; i < n; i++)
{
bc = (bc.multiply(new BigInteger(Integer.toString(nn - tt))))
.divide(new BigInteger(Integer.toString(nn)));
nn--;
int q = i >>> 3;
int r = i & 7;
r = 1 << r;
byte e = (byte)(r & data[q]);
if (e != 0)
{
d = d.add(bc);
tt--;
if (nn == tt)
{
bc = ONE;
}
else
{
bc = (bc
.multiply(new BigInteger(Integer.toString(tt + 1))))
.divide(new BigInteger(Integer.toString(nn - tt)));
}
}
}
byte[] result = new byte[sq + 1];
byte[] help = d.toByteArray();
if (help.length < result.length)
{
System.arraycopy(help, 0, result, 0, help.length);
for (int i = help.length; i < result.length; i++)
{
result[i] = 0;
}
}
else
{
System.arraycopy(help, 0, result, 0, sq);
result[sq] = (byte)(((1 << sr) - 1) & help[sq]);
}
return result;
}
}