package org.bouncycastle.pqc.math.linearalgebra;

import java.math.BigInteger;
import java.security.SecureRandom;

import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.util.BigIntegers;

Class of number-theory related functions for use with integers represented as int's or BigInteger objects.
/** * Class of number-theory related functions for use with integers represented as * <tt>int</tt>'s or <tt>BigInteger</tt> objects. */
public final class IntegerFunctions { private static final BigInteger ZERO = BigInteger.valueOf(0); private static final BigInteger ONE = BigInteger.valueOf(1); private static final BigInteger TWO = BigInteger.valueOf(2); private static final BigInteger FOUR = BigInteger.valueOf(4); private static final int[] SMALL_PRIMES = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41}; private static final long SMALL_PRIME_PRODUCT = 3L * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41; private static SecureRandom sr = null; // the jacobi function uses this lookup table private static final int[] jacobiTable = {0, 1, 0, -1, 0, -1, 0, 1}; private IntegerFunctions() { // empty }
Computes the value of the Jacobi symbol (A|B). The following properties hold for the Jacobi symbol which makes it a very efficient way to evaluate the Legendre symbol

(A|B) = 0 IF gcd(A,B) > 1
(-1|B) = 1 IF n = 1 (mod 1)
(-1|B) = -1 IF n = 3 (mod 4)
(A|B) (C|B) = (AC|B)
(A|B) (A|C) = (A|CB)
(A|B) = (C|B) IF A = C (mod B)
(2|B) = 1 IF N = 1 OR 7 (mod 8)
(2|B) = 1 IF N = 3 OR 5 (mod 8)

Params:
  • A – integer value
  • B – integer value
Returns:value of the jacobi symbol (A|B)
/** * Computes the value of the Jacobi symbol (A|B). The following properties * hold for the Jacobi symbol which makes it a very efficient way to * evaluate the Legendre symbol * <p> * (A|B) = 0 IF gcd(A,B) &gt; 1<br> * (-1|B) = 1 IF n = 1 (mod 1)<br> * (-1|B) = -1 IF n = 3 (mod 4)<br> * (A|B) (C|B) = (AC|B)<br> * (A|B) (A|C) = (A|CB)<br> * (A|B) = (C|B) IF A = C (mod B)<br> * (2|B) = 1 IF N = 1 OR 7 (mod 8)<br> * (2|B) = 1 IF N = 3 OR 5 (mod 8) * * @param A integer value * @param B integer value * @return value of the jacobi symbol (A|B) */
public static int jacobi(BigInteger A, BigInteger B) { BigInteger a, b, v; long k = 1; k = 1; // test trivial cases if (B.equals(ZERO)) { a = A.abs(); return a.equals(ONE) ? 1 : 0; } if (!A.testBit(0) && !B.testBit(0)) { return 0; } a = A; b = B; if (b.signum() == -1) { // b < 0 b = b.negate(); // b = -b if (a.signum() == -1) { k = -1; } } v = ZERO; while (!b.testBit(0)) { v = v.add(ONE); // v = v + 1 b = b.divide(TWO); // b = b/2 } if (v.testBit(0)) { k = k * jacobiTable[a.intValue() & 7]; } if (a.signum() < 0) { // a < 0 if (b.testBit(1)) { k = -k; // k = -k } a = a.negate(); // a = -a } // main loop while (a.signum() != 0) { v = ZERO; while (!a.testBit(0)) { // a is even v = v.add(ONE); a = a.divide(TWO); } if (v.testBit(0)) { k = k * jacobiTable[b.intValue() & 7]; } if (a.compareTo(b) < 0) { // a < b // swap and correct intermediate result BigInteger x = a; a = b; b = x; if (a.testBit(1) && b.testBit(1)) { k = -k; } } a = a.subtract(b); } return b.equals(ONE) ? (int)k : 0; }
Computes the square root of a BigInteger modulo a prime employing the Shanks-Tonelli algorithm.
Params:
  • a – value out of which we extract the square root
  • p – prime modulus that determines the underlying field
Throws:
Returns:a number b such that b2 = a (mod p) if a is a quadratic residue modulo p.
/** * Computes the square root of a BigInteger modulo a prime employing the * Shanks-Tonelli algorithm. * * @param a value out of which we extract the square root * @param p prime modulus that determines the underlying field * @return a number <tt>b</tt> such that b<sup>2</sup> = a (mod p) if * <tt>a</tt> is a quadratic residue modulo <tt>p</tt>. * @throws IllegalArgumentException if <tt>a</tt> is a quadratic non-residue modulo <tt>p</tt> */
public static BigInteger ressol(BigInteger a, BigInteger p) throws IllegalArgumentException { BigInteger v = null; if (a.compareTo(ZERO) < 0) { a = a.add(p); } if (a.equals(ZERO)) { return ZERO; } if (p.equals(TWO)) { return a; } // p = 3 mod 4 if (p.testBit(0) && p.testBit(1)) { if (jacobi(a, p) == 1) { // a quadr. residue mod p v = p.add(ONE); // v = p+1 v = v.shiftRight(2); // v = v/4 return a.modPow(v, p); // return a^v mod p // return --> a^((p+1)/4) mod p } throw new IllegalArgumentException("No quadratic residue: " + a + ", " + p); } long t = 0; // initialization // compute k and s, where p = 2^s (2k+1) +1 BigInteger k = p.subtract(ONE); // k = p-1 long s = 0; while (!k.testBit(0)) { // while k is even s++; // s = s+1 k = k.shiftRight(1); // k = k/2 } k = k.subtract(ONE); // k = k - 1 k = k.shiftRight(1); // k = k/2 // initial values BigInteger r = a.modPow(k, p); // r = a^k mod p BigInteger n = r.multiply(r).remainder(p); // n = r^2 % p n = n.multiply(a).remainder(p); // n = n * a % p r = r.multiply(a).remainder(p); // r = r * a %p if (n.equals(ONE)) { return r; } // non-quadratic residue BigInteger z = TWO; // z = 2 while (jacobi(z, p) == 1) { // while z quadratic residue z = z.add(ONE); // z = z + 1 } v = k; v = v.multiply(TWO); // v = 2k v = v.add(ONE); // v = 2k + 1 BigInteger c = z.modPow(v, p); // c = z^v mod p // iteration while (n.compareTo(ONE) == 1) { // n > 1 k = n; // k = n t = s; // t = s s = 0; while (!k.equals(ONE)) { // k != 1 k = k.multiply(k).mod(p); // k = k^2 % p s++; // s = s + 1 } t -= s; // t = t - s if (t == 0) { throw new IllegalArgumentException("No quadratic residue: " + a + ", " + p); } v = ONE; for (long i = 0; i < t - 1; i++) { v = v.shiftLeft(1); // v = 1 * 2^(t - 1) } c = c.modPow(v, p); // c = c^v mod p r = r.multiply(c).remainder(p); // r = r * c % p c = c.multiply(c).remainder(p); // c = c^2 % p n = n.multiply(c).mod(p); // n = n * c % p } return r; }
Computes the greatest common divisor of the two specified integers
Params:
  • u – - first integer
  • v – - second integer
Returns:gcd(a, b)
/** * Computes the greatest common divisor of the two specified integers * * @param u - first integer * @param v - second integer * @return gcd(a, b) */
public static int gcd(int u, int v) { return BigInteger.valueOf(u).gcd(BigInteger.valueOf(v)).intValue(); }
Extended euclidian algorithm (computes gcd and representation).
Params:
  • a – the first integer
  • b – the second integer
Returns:(g,u,v), where g = gcd(abs(a),abs(b)) = ua + vb
/** * Extended euclidian algorithm (computes gcd and representation). * * @param a the first integer * @param b the second integer * @return <tt>(g,u,v)</tt>, where <tt>g = gcd(abs(a),abs(b)) = ua + vb</tt> */
public static int[] extGCD(int a, int b) { BigInteger ba = BigInteger.valueOf(a); BigInteger bb = BigInteger.valueOf(b); BigInteger[] bresult = extgcd(ba, bb); int[] result = new int[3]; result[0] = bresult[0].intValue(); result[1] = bresult[1].intValue(); result[2] = bresult[2].intValue(); return result; } public static BigInteger divideAndRound(BigInteger a, BigInteger b) { if (a.signum() < 0) { return divideAndRound(a.negate(), b).negate(); } if (b.signum() < 0) { return divideAndRound(a, b.negate()).negate(); } return a.shiftLeft(1).add(b).divide(b.shiftLeft(1)); } public static BigInteger[] divideAndRound(BigInteger[] a, BigInteger b) { BigInteger[] out = new BigInteger[a.length]; for (int i = 0; i < a.length; i++) { out[i] = divideAndRound(a[i], b); } return out; }
Compute the smallest integer that is greater than or equal to the logarithm to the base 2 of the given BigInteger.
Params:
  • a – the integer
Returns:ceil[log(a)]
/** * Compute the smallest integer that is greater than or equal to the * logarithm to the base 2 of the given BigInteger. * * @param a the integer * @return ceil[log(a)] */
public static int ceilLog(BigInteger a) { int result = 0; BigInteger p = ONE; while (p.compareTo(a) < 0) { result++; p = p.shiftLeft(1); } return result; }
Compute the smallest integer that is greater than or equal to the logarithm to the base 2 of the given integer.
Params:
  • a – the integer
Returns:ceil[log(a)]
/** * Compute the smallest integer that is greater than or equal to the * logarithm to the base 2 of the given integer. * * @param a the integer * @return ceil[log(a)] */
public static int ceilLog(int a) { int log = 0; int i = 1; while (i < a) { i <<= 1; log++; } return log; }
Compute ceil(log_256 n), the number of bytes needed to encode the integer n.
Params:
  • n – the integer
Returns:the number of bytes needed to encode n
/** * Compute <tt>ceil(log_256 n)</tt>, the number of bytes needed to encode * the integer <tt>n</tt>. * * @param n the integer * @return the number of bytes needed to encode <tt>n</tt> */
public static int ceilLog256(int n) { if (n == 0) { return 1; } int m; if (n < 0) { m = -n; } else { m = n; } int d = 0; while (m > 0) { d++; m >>>= 8; } return d; }
Compute ceil(log_256 n), the number of bytes needed to encode the long integer n.
Params:
  • n – the long integer
Returns:the number of bytes needed to encode n
/** * Compute <tt>ceil(log_256 n)</tt>, the number of bytes needed to encode * the long integer <tt>n</tt>. * * @param n the long integer * @return the number of bytes needed to encode <tt>n</tt> */
public static int ceilLog256(long n) { if (n == 0) { return 1; } long m; if (n < 0) { m = -n; } else { m = n; } int d = 0; while (m > 0) { d++; m >>>= 8; } return d; }
Compute the integer part of the logarithm to the base 2 of the given integer.
Params:
  • a – the integer
Returns:floor[log(a)]
/** * Compute the integer part of the logarithm to the base 2 of the given * integer. * * @param a the integer * @return floor[log(a)] */
public static int floorLog(BigInteger a) { int result = -1; BigInteger p = ONE; while (p.compareTo(a) <= 0) { result++; p = p.shiftLeft(1); } return result; }
Compute the integer part of the logarithm to the base 2 of the given integer.
Params:
  • a – the integer
Returns:floor[log(a)]
/** * Compute the integer part of the logarithm to the base 2 of the given * integer. * * @param a the integer * @return floor[log(a)] */
public static int floorLog(int a) { int h = 0; if (a <= 0) { return -1; } int p = a >>> 1; while (p > 0) { h++; p >>>= 1; } return h; }
Compute the largest h with 2^h | a if a!=0.
Params:
  • a – an integer
Returns:the largest h with 2^h | a if a!=0, 0 otherwise
/** * Compute the largest <tt>h</tt> with <tt>2^h | a</tt> if <tt>a!=0</tt>. * * @param a an integer * @return the largest <tt>h</tt> with <tt>2^h | a</tt> if <tt>a!=0</tt>, * <tt>0</tt> otherwise */
public static int maxPower(int a) { int h = 0; if (a != 0) { int p = 1; while ((a & p) == 0) { h++; p <<= 1; } } return h; }
Params:
  • a – an integer
Returns:the number of ones in the binary representation of an integer a
/** * @param a an integer * @return the number of ones in the binary representation of an integer * <tt>a</tt> */
public static int bitCount(int a) { int h = 0; while (a != 0) { h += a & 1; a >>>= 1; } return h; }
determines the order of g modulo p, p prime and 1 < g < p. This algorithm is only efficient for small p (see X9.62-1998, p. 68).
Params:
  • g – an integer with 1 < g < p
  • p – a prime
Returns:the order k of g (that is k is the smallest integer with gk = 1 mod p
/** * determines the order of g modulo p, p prime and 1 &lt; g &lt; p. This algorithm * is only efficient for small p (see X9.62-1998, p. 68). * * @param g an integer with 1 &lt; g &lt; p * @param p a prime * @return the order k of g (that is k is the smallest integer with * g<sup>k</sup> = 1 mod p */
public static int order(int g, int p) { int b, j; b = g % p; // Reduce g mod p first. j = 1; // Check whether g == 0 mod p (avoiding endless loop). if (b == 0) { throw new IllegalArgumentException(g + " is not an element of Z/(" + p + "Z)^*; it is not meaningful to compute its order."); } // Compute the order of g mod p: while (b != 1) { b *= g; b %= p; if (b < 0) { b += p; } j++; } return j; }
Reduces an integer into a given interval
Params:
  • n – - the integer
  • begin – - left bound of the interval
  • end – - right bound of the interval
Returns:n reduced into [begin,end]
/** * Reduces an integer into a given interval * * @param n - the integer * @param begin - left bound of the interval * @param end - right bound of the interval * @return <tt>n</tt> reduced into <tt>[begin,end]</tt> */
public static BigInteger reduceInto(BigInteger n, BigInteger begin, BigInteger end) { return n.subtract(begin).mod(end.subtract(begin)).add(begin); }
Compute ae.
Params:
  • a – the base
  • e – the exponent
Returns:ae
/** * Compute <tt>a<sup>e</sup></tt>. * * @param a the base * @param e the exponent * @return <tt>a<sup>e</sup></tt> */
public static int pow(int a, int e) { int result = 1; while (e > 0) { if ((e & 1) == 1) { result *= a; } a *= a; e >>>= 1; } return result; }
Compute ae.
Params:
  • a – the base
  • e – the exponent
Returns:ae
/** * Compute <tt>a<sup>e</sup></tt>. * * @param a the base * @param e the exponent * @return <tt>a<sup>e</sup></tt> */
public static long pow(long a, int e) { long result = 1; while (e > 0) { if ((e & 1) == 1) { result *= a; } a *= a; e >>>= 1; } return result; }
Compute ae mod n.
Params:
  • a – the base
  • e – the exponent
  • n – the modulus
Returns:ae mod n
/** * Compute <tt>a<sup>e</sup> mod n</tt>. * * @param a the base * @param e the exponent * @param n the modulus * @return <tt>a<sup>e</sup> mod n</tt> */
public static int modPow(int a, int e, int n) { if (n <= 0 || (n * n) > Integer.MAX_VALUE || e < 0) { return 0; } int result = 1; a = (a % n + n) % n; while (e > 0) { if ((e & 1) == 1) { result = (result * a) % n; } a = (a * a) % n; e >>>= 1; } return result; }
Extended euclidian algorithm (computes gcd and representation).
Params:
  • a – - the first integer
  • b – - the second integer
Returns:(d,u,v), where d = gcd(a,b) = ua + vb
/** * Extended euclidian algorithm (computes gcd and representation). * * @param a - the first integer * @param b - the second integer * @return <tt>(d,u,v)</tt>, where <tt>d = gcd(a,b) = ua + vb</tt> */
public static BigInteger[] extgcd(BigInteger a, BigInteger b) { BigInteger u = ONE; BigInteger v = ZERO; BigInteger d = a; if (b.signum() != 0) { BigInteger v1 = ZERO; BigInteger v3 = b; while (v3.signum() != 0) { BigInteger[] tmp = d.divideAndRemainder(v3); BigInteger q = tmp[0]; BigInteger t3 = tmp[1]; BigInteger t1 = u.subtract(q.multiply(v1)); u = v1; d = v3; v1 = t1; v3 = t3; } v = d.subtract(a.multiply(u)).divide(b); } return new BigInteger[]{d, u, v}; }
Computation of the least common multiple of a set of BigIntegers.
Params:
  • numbers – - the set of numbers
Returns:the lcm(numbers)
/** * Computation of the least common multiple of a set of BigIntegers. * * @param numbers - the set of numbers * @return the lcm(numbers) */
public static BigInteger leastCommonMultiple(BigInteger[] numbers) { int n = numbers.length; BigInteger result = numbers[0]; for (int i = 1; i < n; i++) { BigInteger gcd = result.gcd(numbers[i]); result = result.multiply(numbers[i]).divide(gcd); } return result; }
Returns a long integer whose value is (a mod m). This method differs from % in that it always returns a non-negative integer.
Params:
  • a – value on which the modulo operation has to be performed.
  • m – the modulus.
Returns:a mod m
/** * Returns a long integer whose value is <tt>(a mod m</tt>). This method * differs from <tt>%</tt> in that it always returns a <i>non-negative</i> * integer. * * @param a value on which the modulo operation has to be performed. * @param m the modulus. * @return <tt>a mod m</tt> */
public static long mod(long a, long m) { long result = a % m; if (result < 0) { result += m; } return result; }
Computes the modular inverse of an integer a
Params:
  • a – - the integer to invert
  • mod – - the modulus
Returns:a-1 mod n
/** * Computes the modular inverse of an integer a * * @param a - the integer to invert * @param mod - the modulus * @return <tt>a<sup>-1</sup> mod n</tt> */
public static int modInverse(int a, int mod) { return BigInteger.valueOf(a).modInverse(BigInteger.valueOf(mod)) .intValue(); }
Computes the modular inverse of an integer a
Params:
  • a – - the integer to invert
  • mod – - the modulus
Returns:a-1 mod n
/** * Computes the modular inverse of an integer a * * @param a - the integer to invert * @param mod - the modulus * @return <tt>a<sup>-1</sup> mod n</tt> */
public static long modInverse(long a, long mod) { return BigInteger.valueOf(a).modInverse(BigInteger.valueOf(mod)) .longValue(); }
Tests whether an integer a is power of another integer p.
Params:
  • a – - the first integer
  • p – - the second integer
Returns:n if a = p^n or -1 otherwise
/** * Tests whether an integer <tt>a</tt> is power of another integer * <tt>p</tt>. * * @param a - the first integer * @param p - the second integer * @return n if a = p^n or -1 otherwise */
public static int isPower(int a, int p) { if (a <= 0) { return -1; } int n = 0; int d = a; while (d > 1) { if (d % p != 0) { return -1; } d /= p; n++; } return n; }
Find and return the least non-trivial divisor of an integer a.
Params:
  • a – - the integer
Returns:divisor p >1 or 1 if a = -1,0,1
/** * Find and return the least non-trivial divisor of an integer <tt>a</tt>. * * @param a - the integer * @return divisor p &gt;1 or 1 if a = -1,0,1 */
public static int leastDiv(int a) { if (a < 0) { a = -a; } if (a == 0) { return 1; } if ((a & 1) == 0) { return 2; } int p = 3; while (p <= (a / p)) { if ((a % p) == 0) { return p; } p += 2; } return a; }
Miller-Rabin-Test, determines wether the given integer is probably prime or composite. This method returns true if the given integer is prime with probability 1 - 2-20.
Params:
  • n – the integer to test for primality
Returns:true if the given integer is prime with probability 2-100, false otherwise
/** * Miller-Rabin-Test, determines wether the given integer is probably prime * or composite. This method returns <tt>true</tt> if the given integer is * prime with probability <tt>1 - 2<sup>-20</sup></tt>. * * @param n the integer to test for primality * @return <tt>true</tt> if the given integer is prime with probability * 2<sup>-100</sup>, <tt>false</tt> otherwise */
public static boolean isPrime(int n) { if (n < 2) { return false; } if (n == 2) { return true; } if ((n & 1) == 0) { return false; } if (n < 42) { for (int i = 0; i < SMALL_PRIMES.length; i++) { if (n == SMALL_PRIMES[i]) { return true; } } } if ((n % 3 == 0) || (n % 5 == 0) || (n % 7 == 0) || (n % 11 == 0) || (n % 13 == 0) || (n % 17 == 0) || (n % 19 == 0) || (n % 23 == 0) || (n % 29 == 0) || (n % 31 == 0) || (n % 37 == 0) || (n % 41 == 0)) { return false; } return BigInteger.valueOf(n).isProbablePrime(20); }
Short trial-division test to find out whether a number is not prime. This test is usually used before a Miller-Rabin primality test.
Params:
  • candidate – the number to test
Returns:true if the number has no factor of the tested primes, false if the number is definitely composite
/** * Short trial-division test to find out whether a number is not prime. This * test is usually used before a Miller-Rabin primality test. * * @param candidate the number to test * @return <tt>true</tt> if the number has no factor of the tested primes, * <tt>false</tt> if the number is definitely composite */
public static boolean passesSmallPrimeTest(BigInteger candidate) { final int[] smallPrime = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499}; for (int i = 0; i < smallPrime.length; i++) { if (candidate.mod(BigInteger.valueOf(smallPrime[i])).equals( ZERO)) { return false; } } return true; }
Returns the largest prime smaller than the given integer
Params:
  • n – - upper bound
Returns:the largest prime smaller than n, or 1 if n <= 2
/** * Returns the largest prime smaller than the given integer * * @param n - upper bound * @return the largest prime smaller than <tt>n</tt>, or <tt>1</tt> if * <tt>n &lt;= 2</tt> */
public static int nextSmallerPrime(int n) { if (n <= 2) { return 1; } if (n == 3) { return 2; } if ((n & 1) == 0) { n--; } else { n -= 2; } while (n > 3 && !isPrime(n)) { n -= 2; } return n; }
Compute the next probable prime greater than n with the specified certainty.
Params:
  • n – a integer number
  • certainty – the certainty that the generated number is prime
Returns:the next prime greater than n
/** * Compute the next probable prime greater than <tt>n</tt> with the * specified certainty. * * @param n a integer number * @param certainty the certainty that the generated number is prime * @return the next prime greater than <tt>n</tt> */
public static BigInteger nextProbablePrime(BigInteger n, int certainty) { if (n.signum() < 0 || n.signum() == 0 || n.equals(ONE)) { return TWO; } BigInteger result = n.add(ONE); // Ensure an odd number if (!result.testBit(0)) { result = result.add(ONE); } while (true) { // Do cheap "pre-test" if applicable if (result.bitLength() > 6) { long r = result.remainder( BigInteger.valueOf(SMALL_PRIME_PRODUCT)).longValue(); if ((r % 3 == 0) || (r % 5 == 0) || (r % 7 == 0) || (r % 11 == 0) || (r % 13 == 0) || (r % 17 == 0) || (r % 19 == 0) || (r % 23 == 0) || (r % 29 == 0) || (r % 31 == 0) || (r % 37 == 0) || (r % 41 == 0)) { result = result.add(TWO); continue; // Candidate is composite; try another } } // All candidates of bitLength 2 and 3 are prime by this point if (result.bitLength() < 4) { return result; } // The expensive test if (result.isProbablePrime(certainty)) { return result; } result = result.add(TWO); } }
Compute the next probable prime greater than n with the default certainty (20).
Params:
  • n – a integer number
Returns:the next prime greater than n
/** * Compute the next probable prime greater than <tt>n</tt> with the default * certainty (20). * * @param n a integer number * @return the next prime greater than <tt>n</tt> */
public static BigInteger nextProbablePrime(BigInteger n) { return nextProbablePrime(n, 20); }
Computes the next prime greater than n.
Params:
  • n – a integer number
Returns:the next prime greater than n
/** * Computes the next prime greater than n. * * @param n a integer number * @return the next prime greater than n */
public static BigInteger nextPrime(long n) { long i; boolean found = false; long result = 0; if (n <= 1) { return BigInteger.valueOf(2); } if (n == 2) { return BigInteger.valueOf(3); } for (i = n + 1 + (n & 1); (i <= n << 1) && !found; i += 2) { for (long j = 3; (j <= i >> 1) && !found; j += 2) { if (i % j == 0) { found = true; } } if (found) { found = false; } else { result = i; found = true; } } return BigInteger.valueOf(result); }
Computes the binomial coefficient (n|t) ("n over t"). Formula:
  • if n !=0 and t != 0 then (n|t) = Mult(i=1, t): (n-(i-1))/i
  • if t = 0 then (n|t) = 1
  • if n = 0 and t > 0 then (n|t) = 0
Params:
  • n – - the "upper" integer
  • t – - the "lower" integer
Returns:the binomialcoefficient "n over t" as BigInteger
/** * Computes the binomial coefficient (n|t) ("n over t"). Formula: * <ul> * <li>if n !=0 and t != 0 then (n|t) = Mult(i=1, t): (n-(i-1))/i</li> * <li>if t = 0 then (n|t) = 1</li> * <li>if n = 0 and t &gt; 0 then (n|t) = 0</li> * </ul> * * @param n - the "upper" integer * @param t - the "lower" integer * @return the binomialcoefficient "n over t" as BigInteger */
public static BigInteger binomial(int n, int t) { BigInteger result = ONE; if (n == 0) { if (t == 0) { return result; } return ZERO; } // the property (n|t) = (n|n-t) be used to reduce numbers of operations if (t > (n >>> 1)) { t = n - t; } for (int i = 1; i <= t; i++) { result = (result.multiply(BigInteger.valueOf(n - (i - 1)))) .divide(BigInteger.valueOf(i)); } return result; } public static BigInteger randomize(BigInteger upperBound) { if (sr == null) { sr = CryptoServicesRegistrar.getSecureRandom(); } return randomize(upperBound, sr); } public static BigInteger randomize(BigInteger upperBound, SecureRandom prng) { int blen = upperBound.bitLength(); BigInteger randomNum = BigInteger.valueOf(0); if (prng == null) { prng = sr != null ? sr : CryptoServicesRegistrar.getSecureRandom(); } for (int i = 0; i < 20; i++) { randomNum = BigIntegers.createRandomBigInteger(blen, prng); if (randomNum.compareTo(upperBound) < 0) { return randomNum; } } return randomNum.mod(upperBound); }
Extract the truncated square root of a BigInteger.
Params:
  • a – - value out of which we extract the square root
Returns:the truncated square root of a
/** * Extract the truncated square root of a BigInteger. * * @param a - value out of which we extract the square root * @return the truncated square root of <tt>a</tt> */
public static BigInteger squareRoot(BigInteger a) { int bl; BigInteger result, remainder, b; if (a.compareTo(ZERO) < 0) { throw new ArithmeticException( "cannot extract root of negative number" + a + "."); } bl = a.bitLength(); result = ZERO; remainder = ZERO; // if the bit length is odd then extra step if ((bl & 1) != 0) { result = result.add(ONE); bl--; } while (bl > 0) { remainder = remainder.multiply(FOUR); remainder = remainder.add(BigInteger.valueOf((a.testBit(--bl) ? 2 : 0) + (a.testBit(--bl) ? 1 : 0))); b = result.multiply(FOUR).add(ONE); result = result.multiply(TWO); if (remainder.compareTo(b) != -1) { result = result.add(ONE); remainder = remainder.subtract(b); } } return result; }
Takes an approximation of the root from an integer base, using newton's algorithm
Params:
  • base – the base to take the root from
  • root – the root, for example 2 for a square root
/** * Takes an approximation of the root from an integer base, using newton's * algorithm * * @param base the base to take the root from * @param root the root, for example 2 for a square root */
public static float intRoot(int base, int root) { float gNew = base / root; float gOld = 0; int counter = 0; while (Math.abs(gOld - gNew) > 0.0001) { float gPow = floatPow(gNew, root); while (Float.isInfinite(gPow)) { gNew = (gNew + gOld) / 2; gPow = floatPow(gNew, root); } counter += 1; gOld = gNew; gNew = gOld - (gPow - base) / (root * floatPow(gOld, root - 1)); } return gNew; }
int power of a base float, only use for small ints
Params:
  • f – base float
  • i – power to be raised to.
Returns:int power i of f
/** * int power of a base float, only use for small ints * * @param f base float * @param i power to be raised to. * @return int power i of f */
public static float floatPow(float f, int i) { float g = 1; for (; i > 0; i--) { g *= f; } return g; }
calculate the logarithm to the base 2.
Params:
  • x – any double value
Returns:log_2(x)
Deprecated:use MathFunctions.log(double) instead
/** * calculate the logarithm to the base 2. * * @param x any double value * @return log_2(x) * @deprecated use MathFunctions.log(double) instead */
public static double log(double x) { if (x > 0 && x < 1) { double d = 1 / x; double result = -log(d); return result; } int tmp = 0; double tmp2 = 1; double d = x; while (d > 2) { d = d / 2; tmp += 1; tmp2 *= 2; } double rem = x / tmp2; rem = logBKM(rem); return tmp + rem; }
calculate the logarithm to the base 2.
Params:
  • x – any long value >=1
Returns:log_2(x)
Deprecated:use MathFunctions.log(long) instead
/** * calculate the logarithm to the base 2. * * @param x any long value &gt;=1 * @return log_2(x) * @deprecated use MathFunctions.log(long) instead */
public static double log(long x) { int tmp = floorLog(BigInteger.valueOf(x)); long tmp2 = 1 << tmp; double rem = (double)x / (double)tmp2; rem = logBKM(rem); return tmp + rem; }
BKM Algorithm to calculate logarithms to the base 2.
Params:
  • arg – a double value with 1<= arg<= 4.768462058
Returns:log_2(arg)
Deprecated:use MathFunctions.logBKM(double) instead
/** * BKM Algorithm to calculate logarithms to the base 2. * * @param arg a double value with 1<= arg<= 4.768462058 * @return log_2(arg) * @deprecated use MathFunctions.logBKM(double) instead */
private static double logBKM(double arg) { double ae[] = // A_e[k] = log_2 (1 + 0.5^k) { 1.0000000000000000000000000000000000000000000000000000000000000000000000000000, 0.5849625007211561814537389439478165087598144076924810604557526545410982276485, 0.3219280948873623478703194294893901758648313930245806120547563958159347765589, 0.1699250014423123629074778878956330175196288153849621209115053090821964552970, 0.0874628412503394082540660108104043540112672823448206881266090643866965081686, 0.0443941193584534376531019906736094674630459333742491317685543002674288465967, 0.0223678130284545082671320837460849094932677948156179815932199216587899627785, 0.0112272554232541203378805844158839407281095943600297940811823651462712311786, 0.0056245491938781069198591026740666017211096815383520359072957784732489771013, 0.0028150156070540381547362547502839489729507927389771959487826944878598909400, 0.0014081943928083889066101665016890524233311715793462235597709051792834906001, 0.0007042690112466432585379340422201964456668872087249334581924550139514213168, 0.0003521774803010272377989609925281744988670304302127133979341729842842377649, 0.0001760994864425060348637509459678580940163670081839283659942864068257522373, 0.0000880524301221769086378699983597183301490534085738474534831071719854721939, 0.0000440268868273167176441087067175806394819146645511899503059774914593663365, 0.0000220136113603404964890728830697555571275493801909791504158295359319433723, 0.0000110068476674814423006223021573490183469930819844945565597452748333526464, 0.0000055034343306486037230640321058826431606183125807276574241540303833251704, 0.0000027517197895612831123023958331509538486493412831626219340570294203116559, 0.0000013758605508411382010566802834037147561973553922354232704569052932922954, 0.0000006879304394358496786728937442939160483304056131990916985043387874690617, 0.0000003439652607217645360118314743718005315334062644619363447395987584138324, 0.0000001719826406118446361936972479533123619972434705828085978955697643547921, 0.0000000859913228686632156462565208266682841603921494181830811515318381744650, 0.0000000429956620750168703982940244684787907148132725669106053076409624949917, 0.0000000214978311976797556164155504126645192380395989504741781512309853438587, 0.0000000107489156388827085092095702361647949603617203979413516082280717515504, 0.0000000053744578294520620044408178949217773318785601260677517784797554422804, 0.0000000026872289172287079490026152352638891824761667284401180026908031182361, 0.0000000013436144592400232123622589569799954658536700992739887706412976115422, 0.0000000006718072297764289157920422846078078155859484240808550018085324187007, 0.0000000003359036149273187853169587152657145221968468364663464125722491530858, 0.0000000001679518074734354745159899223037458278711244127245990591908996412262, 0.0000000000839759037391617577226571237484864917411614198675604731728132152582, 0.0000000000419879518701918839775296677020135040214077417929807824842667285938, 0.0000000000209939759352486932678195559552767641474249812845414125580747434389, 0.0000000000104969879676625344536740142096218372850561859495065136990936290929, 0.0000000000052484939838408141817781356260462777942148580518406975851213868092, 0.0000000000026242469919227938296243586262369156865545638305682553644113887909, 0.0000000000013121234959619935994960031017850191710121890821178731821983105443, 0.0000000000006560617479811459709189576337295395590603644549624717910616347038, 0.0000000000003280308739906102782522178545328259781415615142931952662153623493, 0.0000000000001640154369953144623242936888032768768777422997704541618141646683, 0.0000000000000820077184976595619616930350508356401599552034612281802599177300, 0.0000000000000410038592488303636807330652208397742314215159774270270147020117, 0.0000000000000205019296244153275153381695384157073687186580546938331088730952, 0.0000000000000102509648122077001764119940017243502120046885379813510430378661, 0.0000000000000051254824061038591928917243090559919209628584150482483994782302, 0.0000000000000025627412030519318726172939815845367496027046030028595094737777, 0.0000000000000012813706015259665053515049475574143952543145124550608158430592, 0.0000000000000006406853007629833949364669629701200556369782295210193569318434, 0.0000000000000003203426503814917330334121037829290364330169106716787999052925, 0.0000000000000001601713251907458754080007074659337446341494733882570243497196, 0.0000000000000000800856625953729399268240176265844257044861248416330071223615, 0.0000000000000000400428312976864705191179247866966320469710511619971334577509, 0.0000000000000000200214156488432353984854413866994246781519154793320684126179, 0.0000000000000000100107078244216177339743404416874899847406043033792202127070, 0.0000000000000000050053539122108088756700751579281894640362199287591340285355, 0.0000000000000000025026769561054044400057638132352058574658089256646014899499, 0.0000000000000000012513384780527022205455634651853807110362316427807660551208, 0.0000000000000000006256692390263511104084521222346348012116229213309001913762, 0.0000000000000000003128346195131755552381436585278035120438976487697544916191, 0.0000000000000000001564173097565877776275512286165232838833090480508502328437, 0.0000000000000000000782086548782938888158954641464170239072244145219054734086, 0.0000000000000000000391043274391469444084776945327473574450334092075712154016, 0.0000000000000000000195521637195734722043713378812583900953755962557525252782, 0.0000000000000000000097760818597867361022187915943503728909029699365320287407, 0.0000000000000000000048880409298933680511176764606054809062553340323879609794, 0.0000000000000000000024440204649466840255609083961603140683286362962192177597, 0.0000000000000000000012220102324733420127809717395445504379645613448652614939, 0.0000000000000000000006110051162366710063906152551383735699323415812152114058, 0.0000000000000000000003055025581183355031953399739107113727036860315024588989, 0.0000000000000000000001527512790591677515976780735407368332862218276873443537, 0.0000000000000000000000763756395295838757988410584167137033767056170417508383, 0.0000000000000000000000381878197647919378994210346199431733717514843471513618, 0.0000000000000000000000190939098823959689497106436628681671067254111334889005, 0.0000000000000000000000095469549411979844748553534196582286585751228071408728, 0.0000000000000000000000047734774705989922374276846068851506055906657137209047, 0.0000000000000000000000023867387352994961187138442777065843718711089344045782, 0.0000000000000000000000011933693676497480593569226324192944532044984865894525, 0.0000000000000000000000005966846838248740296784614396011477934194852481410926, 0.0000000000000000000000002983423419124370148392307506484490384140516252814304, 0.0000000000000000000000001491711709562185074196153830361933046331030629430117, 0.0000000000000000000000000745855854781092537098076934460888486730708440475045, 0.0000000000000000000000000372927927390546268549038472050424734256652501673274, 0.0000000000000000000000000186463963695273134274519237230207489851150821191330, 0.0000000000000000000000000093231981847636567137259618916352525606281553180093, 0.0000000000000000000000000046615990923818283568629809533488457973317312233323, 0.0000000000000000000000000023307995461909141784314904785572277779202790023236, 0.0000000000000000000000000011653997730954570892157452397493151087737428485431, 0.0000000000000000000000000005826998865477285446078726199923328593402722606924, 0.0000000000000000000000000002913499432738642723039363100255852559084863397344, 0.0000000000000000000000000001456749716369321361519681550201473345138307215067, 0.0000000000000000000000000000728374858184660680759840775119123438968122488047, 0.0000000000000000000000000000364187429092330340379920387564158411083803465567, 0.0000000000000000000000000000182093714546165170189960193783228378441837282509, 0.0000000000000000000000000000091046857273082585094980096891901482445902524441, 0.0000000000000000000000000000045523428636541292547490048446022564529197237262, 0.0000000000000000000000000000022761714318270646273745024223029238091160103901}; int n = 53; double x = 1; double y = 0; double z; double s = 1; int k; for (k = 0; k < n; k++) { z = x + x * s; if (z <= arg) { x = z; y += ae[k]; } s *= 0.5; } return y; } public static boolean isIncreasing(int[] a) { for (int i = 1; i < a.length; i++) { if (a[i - 1] >= a[i]) { System.out.println("a[" + (i - 1) + "] = " + a[i - 1] + " >= " + a[i] + " = a[" + i + "]"); return false; } } return true; } public static byte[] integerToOctets(BigInteger val) { byte[] valBytes = val.abs().toByteArray(); // check whether the array includes a sign bit if ((val.bitLength() & 7) != 0) { return valBytes; } // get rid of the sign bit (first byte) byte[] tmp = new byte[val.bitLength() >> 3]; System.arraycopy(valBytes, 1, tmp, 0, tmp.length); return tmp; } public static BigInteger octetsToInteger(byte[] data, int offset, int length) { byte[] val = new byte[length + 1]; val[0] = 0; System.arraycopy(data, offset, val, 1, length); return new BigInteger(val); } public static BigInteger octetsToInteger(byte[] data) { return octetsToInteger(data, 0, data.length); } }