/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.ode.sampling.AbstractFieldStepInterpolator;
import org.apache.commons.math3.util.MathArrays;

This class represents an interpolator over the last step during an ODE integration for Runge-Kutta and embedded Runge-Kutta integrators.
Type parameters:
  • <T> – the type of the field elements
See Also:
Since:3.6
/** This class represents an interpolator over the last step during an * ODE integration for Runge-Kutta and embedded Runge-Kutta integrators. * * @see RungeKuttaFieldIntegrator * @see EmbeddedRungeKuttaFieldIntegrator * * @param <T> the type of the field elements * @since 3.6 */
abstract class RungeKuttaFieldStepInterpolator<T extends RealFieldElement<T>> extends AbstractFieldStepInterpolator<T> {
Field to which the time and state vector elements belong.
/** Field to which the time and state vector elements belong. */
private final Field<T> field;
Slopes at the intermediate points.
/** Slopes at the intermediate points. */
private final T[][] yDotK;
Simple constructor.
Params:
  • field – field to which the time and state vector elements belong
  • forward – integration direction indicator
  • yDotK – slopes at the intermediate points
  • globalPreviousState – start of the global step
  • globalCurrentState – end of the global step
  • softPreviousState – start of the restricted step
  • softCurrentState – end of the restricted step
  • mapper – equations mapper for the all equations
/** Simple constructor. * @param field field to which the time and state vector elements belong * @param forward integration direction indicator * @param yDotK slopes at the intermediate points * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param softPreviousState start of the restricted step * @param softCurrentState end of the restricted step * @param mapper equations mapper for the all equations */
protected RungeKuttaFieldStepInterpolator(final Field<T> field, final boolean forward, final T[][] yDotK, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldODEStateAndDerivative<T> softPreviousState, final FieldODEStateAndDerivative<T> softCurrentState, final FieldEquationsMapper<T> mapper) { super(forward, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper); this.field = field; this.yDotK = MathArrays.buildArray(field, yDotK.length, -1); for (int i = 0; i < yDotK.length; ++i) { this.yDotK[i] = yDotK[i].clone(); } }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected RungeKuttaFieldStepInterpolator<T> create(boolean newForward, FieldODEStateAndDerivative<T> newGlobalPreviousState, FieldODEStateAndDerivative<T> newGlobalCurrentState, FieldODEStateAndDerivative<T> newSoftPreviousState, FieldODEStateAndDerivative<T> newSoftCurrentState, FieldEquationsMapper<T> newMapper) { return create(field, newForward, yDotK, newGlobalPreviousState, newGlobalCurrentState, newSoftPreviousState, newSoftCurrentState, newMapper); }
Create a new instance.
Params:
  • newField – field to which the time and state vector elements belong
  • newForward – integration direction indicator
  • newYDotK – slopes at the intermediate points
  • newGlobalPreviousState – start of the global step
  • newGlobalCurrentState – end of the global step
  • newSoftPreviousState – start of the restricted step
  • newSoftCurrentState – end of the restricted step
  • newMapper – equations mapper for the all equations
Returns:a new instance
/** Create a new instance. * @param newField field to which the time and state vector elements belong * @param newForward integration direction indicator * @param newYDotK slopes at the intermediate points * @param newGlobalPreviousState start of the global step * @param newGlobalCurrentState end of the global step * @param newSoftPreviousState start of the restricted step * @param newSoftCurrentState end of the restricted step * @param newMapper equations mapper for the all equations * @return a new instance */
protected abstract RungeKuttaFieldStepInterpolator<T> create(Field<T> newField, boolean newForward, T[][] newYDotK, FieldODEStateAndDerivative<T> newGlobalPreviousState, FieldODEStateAndDerivative<T> newGlobalCurrentState, FieldODEStateAndDerivative<T> newSoftPreviousState, FieldODEStateAndDerivative<T> newSoftCurrentState, FieldEquationsMapper<T> newMapper);
Compute a state by linear combination added to previous state.
Params:
  • coefficients – coefficients to apply to the method staged derivatives
Returns:combined state
/** Compute a state by linear combination added to previous state. * @param coefficients coefficients to apply to the method staged derivatives * @return combined state */
protected final T[] previousStateLinearCombination(final T ... coefficients) { return combine(getPreviousState().getState(), coefficients); }
Compute a state by linear combination added to current state.
Params:
  • coefficients – coefficients to apply to the method staged derivatives
Returns:combined state
/** Compute a state by linear combination added to current state. * @param coefficients coefficients to apply to the method staged derivatives * @return combined state */
protected T[] currentStateLinearCombination(final T ... coefficients) { return combine(getCurrentState().getState(), coefficients); }
Compute a state derivative by linear combination.
Params:
  • coefficients – coefficients to apply to the method staged derivatives
Returns:combined state
/** Compute a state derivative by linear combination. * @param coefficients coefficients to apply to the method staged derivatives * @return combined state */
protected T[] derivativeLinearCombination(final T ... coefficients) { return combine(MathArrays.buildArray(field, yDotK[0].length), coefficients); }
Linearly combine arrays.
Params:
  • a – array to add to
  • coefficients – coefficients to apply to the method staged derivatives
Returns:a itself, as a convenience for fluent API
/** Linearly combine arrays. * @param a array to add to * @param coefficients coefficients to apply to the method staged derivatives * @return a itself, as a convenience for fluent API */
private T[] combine(final T[] a, final T ... coefficients) { for (int i = 0; i < a.length; ++i) { for (int k = 0; k < coefficients.length; ++k) { a[i] = a[i].add(coefficients[k].multiply(yDotK[k][i])); } } return a; } }