/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode.nonstiff;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldExpandableODE;
import org.apache.commons.math3.ode.FieldODEState;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;
This class implements the common part of all embedded Runge-Kutta
integrators for Ordinary Differential Equations.
These methods are embedded explicit Runge-Kutta methods with two
sets of coefficients allowing to estimate the error, their Butcher
arrays are as follows :
0 |
c2 | a21
c3 | a31 a32
... | ...
cs | as1 as2 ... ass-1
|--------------------------
| b1 b2 ... bs-1 bs
| b'1 b'2 ... b's-1 b's
In fact, we rather use the array defined by ej = bj - b'j to
compute directly the error rather than computing two estimates and
then comparing them.
Some methods are qualified as fsal (first same as last)
methods. This means the last evaluation of the derivatives in one
step is the same as the first in the next step. Then, this
evaluation can be reused from one step to the next one and the cost
of such a method is really s-1 evaluations despite the method still
has s stages. This behaviour is true only for successful steps, if
the step is rejected after the error estimation phase, no
evaluation is saved. For an fsal method, we have cs = 1 and
asi = bi for all i.
Type parameters: - <T> – the type of the field elements
Since: 3.6
/**
* This class implements the common part of all embedded Runge-Kutta
* integrators for Ordinary Differential Equations.
*
* <p>These methods are embedded explicit Runge-Kutta methods with two
* sets of coefficients allowing to estimate the error, their Butcher
* arrays are as follows :
* <pre>
* 0 |
* c2 | a21
* c3 | a31 a32
* ... | ...
* cs | as1 as2 ... ass-1
* |--------------------------
* | b1 b2 ... bs-1 bs
* | b'1 b'2 ... b's-1 b's
* </pre>
* </p>
*
* <p>In fact, we rather use the array defined by ej = bj - b'j to
* compute directly the error rather than computing two estimates and
* then comparing them.</p>
*
* <p>Some methods are qualified as <i>fsal</i> (first same as last)
* methods. This means the last evaluation of the derivatives in one
* step is the same as the first in the next step. Then, this
* evaluation can be reused from one step to the next one and the cost
* of such a method is really s-1 evaluations despite the method still
* has s stages. This behaviour is true only for successful steps, if
* the step is rejected after the error estimation phase, no
* evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
* asi = bi for all i.</p>
*
* @param <T> the type of the field elements
* @since 3.6
*/
public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
extends AdaptiveStepsizeFieldIntegrator<T>
implements FieldButcherArrayProvider<T> {
Index of the pre-computed derivative for fsal methods. /** Index of the pre-computed derivative for <i>fsal</i> methods. */
private final int fsal;
Time steps from Butcher array (without the first zero). /** Time steps from Butcher array (without the first zero). */
private final T[] c;
Internal weights from Butcher array (without the first empty row). /** Internal weights from Butcher array (without the first empty row). */
private final T[][] a;
External weights for the high order method from Butcher array. /** External weights for the high order method from Butcher array. */
private final T[] b;
Stepsize control exponent. /** Stepsize control exponent. */
private final T exp;
Safety factor for stepsize control. /** Safety factor for stepsize control. */
private T safety;
Minimal reduction factor for stepsize control. /** Minimal reduction factor for stepsize control. */
private T minReduction;
Maximal growth factor for stepsize control. /** Maximal growth factor for stepsize control. */
private T maxGrowth;
Build a Runge-Kutta integrator with the given Butcher array.
Params: - field – field to which the time and state vector elements belong
- name – name of the method
- fsal – index of the pre-computed derivative for fsal methods
or -1 if method is not fsal
- minStep – minimal step (sign is irrelevant, regardless of
integration direction, forward or backward), the last step can
be smaller than this
- maxStep – maximal step (sign is irrelevant, regardless of
integration direction, forward or backward), the last step can
be smaller than this
- scalAbsoluteTolerance – allowed absolute error
- scalRelativeTolerance – allowed relative error
/** Build a Runge-Kutta integrator with the given Butcher array.
* @param field field to which the time and state vector elements belong
* @param name name of the method
* @param fsal index of the pre-computed derivative for <i>fsal</i> methods
* or -1 if method is not <i>fsal</i>
* @param minStep minimal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param maxStep maximal step (sign is irrelevant, regardless of
* integration direction, forward or backward), the last step can
* be smaller than this
* @param scalAbsoluteTolerance allowed absolute error
* @param scalRelativeTolerance allowed relative error
*/
protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
final double minStep, final double maxStep,
final double scalAbsoluteTolerance,
final double scalRelativeTolerance) {
super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
this.fsal = fsal;
this.c = getC();
this.a = getA();
this.b = getB();
exp = field.getOne().divide(-getOrder());
// set the default values of the algorithm control parameters
setSafety(field.getZero().add(0.9));
setMinReduction(field.getZero().add(0.2));
setMaxGrowth(field.getZero().add(10.0));
}
Build a Runge-Kutta integrator with the given Butcher array.
Params: - field – field to which the time and state vector elements belong
- name – name of the method
- fsal – index of the pre-computed derivative for fsal methods
or -1 if method is not fsal
- minStep – minimal step (must be positive even for backward
integration), the last step can be smaller than this
- maxStep – maximal step (must be positive even for backward
integration)
- vecAbsoluteTolerance – allowed absolute error
- vecRelativeTolerance – allowed relative error
/** Build a Runge-Kutta integrator with the given Butcher array.
* @param field field to which the time and state vector elements belong
* @param name name of the method
* @param fsal index of the pre-computed derivative for <i>fsal</i> methods
* or -1 if method is not <i>fsal</i>
* @param minStep minimal step (must be positive even for backward
* integration), the last step can be smaller than this
* @param maxStep maximal step (must be positive even for backward
* integration)
* @param vecAbsoluteTolerance allowed absolute error
* @param vecRelativeTolerance allowed relative error
*/
protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
final double minStep, final double maxStep,
final double[] vecAbsoluteTolerance,
final double[] vecRelativeTolerance) {
super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
this.fsal = fsal;
this.c = getC();
this.a = getA();
this.b = getB();
exp = field.getOne().divide(-getOrder());
// set the default values of the algorithm control parameters
setSafety(field.getZero().add(0.9));
setMinReduction(field.getZero().add(0.2));
setMaxGrowth(field.getZero().add(10.0));
}
Create a fraction.
Params: - p – numerator
- q – denominator
Returns: p/q computed in the instance field
/** Create a fraction.
* @param p numerator
* @param q denominator
* @return p/q computed in the instance field
*/
protected T fraction(final int p, final int q) {
return getField().getOne().multiply(p).divide(q);
}
Create a fraction.
Params: - p – numerator
- q – denominator
Returns: p/q computed in the instance field
/** Create a fraction.
* @param p numerator
* @param q denominator
* @return p/q computed in the instance field
*/
protected T fraction(final double p, final double q) {
return getField().getOne().multiply(p).divide(q);
}
Create an interpolator.
Params: - forward – integration direction indicator
- yDotK – slopes at the intermediate points
- globalPreviousState – start of the global step
- globalCurrentState – end of the global step
- mapper – equations mapper for the all equations
Returns: external weights for the high order method from Butcher array
/** Create an interpolator.
* @param forward integration direction indicator
* @param yDotK slopes at the intermediate points
* @param globalPreviousState start of the global step
* @param globalCurrentState end of the global step
* @param mapper equations mapper for the all equations
* @return external weights for the high order method from Butcher array
*/
protected abstract RungeKuttaFieldStepInterpolator<T> createInterpolator(boolean forward, T[][] yDotK,
final FieldODEStateAndDerivative<T> globalPreviousState,
final FieldODEStateAndDerivative<T> globalCurrentState,
FieldEquationsMapper<T> mapper);
Get the order of the method.
Returns: order of the method
/** Get the order of the method.
* @return order of the method
*/
public abstract int getOrder();
Get the safety factor for stepsize control.
Returns: safety factor
/** Get the safety factor for stepsize control.
* @return safety factor
*/
public T getSafety() {
return safety;
}
Set the safety factor for stepsize control.
Params: - safety – safety factor
/** Set the safety factor for stepsize control.
* @param safety safety factor
*/
public void setSafety(final T safety) {
this.safety = safety;
}
{@inheritDoc} /** {@inheritDoc} */
public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
final FieldODEState<T> initialState, final T finalTime)
throws NumberIsTooSmallException, DimensionMismatchException,
MaxCountExceededException, NoBracketingException {
sanityChecks(initialState, finalTime);
final T t0 = initialState.getTime();
final T[] y0 = equations.getMapper().mapState(initialState);
setStepStart(initIntegration(equations, t0, y0, finalTime));
final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
// create some internal working arrays
final int stages = c.length + 1;
T[] y = y0;
final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1);
final T[] yTmp = MathArrays.buildArray(getField(), y0.length);
// set up integration control objects
T hNew = getField().getZero();
boolean firstTime = true;
// main integration loop
setIsLastStep(false);
do {
// iterate over step size, ensuring local normalized error is smaller than 1
T error = getField().getZero().add(10);
while (error.subtract(1.0).getReal() >= 0) {
// first stage
y = equations.getMapper().mapState(getStepStart());
yDotK[0] = equations.getMapper().mapDerivative(getStepStart());
if (firstTime) {
final T[] scale = MathArrays.buildArray(getField(), mainSetDimension);
if (vecAbsoluteTolerance == null) {
for (int i = 0; i < scale.length; ++i) {
scale[i] = y[i].abs().multiply(scalRelativeTolerance).add(scalAbsoluteTolerance);
}
} else {
for (int i = 0; i < scale.length; ++i) {
scale[i] = y[i].abs().multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
}
}
hNew = initializeStep(forward, getOrder(), scale, getStepStart(), equations.getMapper());
firstTime = false;
}
setStepSize(hNew);
if (forward) {
if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() >= 0) {
setStepSize(finalTime.subtract(getStepStart().getTime()));
}
} else {
if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() <= 0) {
setStepSize(finalTime.subtract(getStepStart().getTime()));
}
}
// next stages
for (int k = 1; k < stages; ++k) {
for (int j = 0; j < y0.length; ++j) {
T sum = yDotK[0][j].multiply(a[k-1][0]);
for (int l = 1; l < k; ++l) {
sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
}
yTmp[j] = y[j].add(getStepSize().multiply(sum));
}
yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp);
}
// estimate the state at the end of the step
for (int j = 0; j < y0.length; ++j) {
T sum = yDotK[0][j].multiply(b[0]);
for (int l = 1; l < stages; ++l) {
sum = sum.add(yDotK[l][j].multiply(b[l]));
}
yTmp[j] = y[j].add(getStepSize().multiply(sum));
}
// estimate the error at the end of the step
error = estimateError(yDotK, y, yTmp, getStepSize());
if (error.subtract(1.0).getReal() >= 0) {
// reject the step and attempt to reduce error by stepsize control
final T factor = MathUtils.min(maxGrowth,
MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
hNew = filterStep(getStepSize().multiply(factor), forward, false);
}
}
final T stepEnd = getStepStart().getTime().add(getStepSize());
final T[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp);
final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<T>(stepEnd, yTmp, yDotTmp);
// local error is small enough: accept the step, trigger events and step handlers
System.arraycopy(yTmp, 0, y, 0, y0.length);
setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()),
finalTime));
if (!isLastStep()) {
// stepsize control for next step
final T factor = MathUtils.min(maxGrowth,
MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
final T scaledH = getStepSize().multiply(factor);
final T nextT = getStepStart().getTime().add(scaledH);
final boolean nextIsLast = forward ?
nextT.subtract(finalTime).getReal() >= 0 :
nextT.subtract(finalTime).getReal() <= 0;
hNew = filterStep(scaledH, forward, nextIsLast);
final T filteredNextT = getStepStart().getTime().add(hNew);
final boolean filteredNextIsLast = forward ?
filteredNextT.subtract(finalTime).getReal() >= 0 :
filteredNextT.subtract(finalTime).getReal() <= 0;
if (filteredNextIsLast) {
hNew = finalTime.subtract(getStepStart().getTime());
}
}
} while (!isLastStep());
final FieldODEStateAndDerivative<T> finalState = getStepStart();
resetInternalState();
return finalState;
}
Get the minimal reduction factor for stepsize control.
Returns: minimal reduction factor
/** Get the minimal reduction factor for stepsize control.
* @return minimal reduction factor
*/
public T getMinReduction() {
return minReduction;
}
Set the minimal reduction factor for stepsize control.
Params: - minReduction – minimal reduction factor
/** Set the minimal reduction factor for stepsize control.
* @param minReduction minimal reduction factor
*/
public void setMinReduction(final T minReduction) {
this.minReduction = minReduction;
}
Get the maximal growth factor for stepsize control.
Returns: maximal growth factor
/** Get the maximal growth factor for stepsize control.
* @return maximal growth factor
*/
public T getMaxGrowth() {
return maxGrowth;
}
Set the maximal growth factor for stepsize control.
Params: - maxGrowth – maximal growth factor
/** Set the maximal growth factor for stepsize control.
* @param maxGrowth maximal growth factor
*/
public void setMaxGrowth(final T maxGrowth) {
this.maxGrowth = maxGrowth;
}
Compute the error ratio.
Params: - yDotK – derivatives computed during the first stages
- y0 – estimate of the step at the start of the step
- y1 – estimate of the step at the end of the step
- h – current step
Returns: error ratio, greater than 1 if step should be rejected
/** Compute the error ratio.
* @param yDotK derivatives computed during the first stages
* @param y0 estimate of the step at the start of the step
* @param y1 estimate of the step at the end of the step
* @param h current step
* @return error ratio, greater than 1 if step should be rejected
*/
protected abstract T estimateError(T[][] yDotK, T[] y0, T[] y1, T h);
}