/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;


This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.

This method is described in H. A. Luther 1968 paper An explicit Sixth-Order Runge-Kutta Formula.

This method is an explicit Runge-Kutta method, its Butcher-array is the following one :

       0   |               0                     0                     0                     0                     0                     0
       1   |               1                     0                     0                     0                     0                     0
      1/2  |              3/8                   1/8                    0                     0                     0                     0
      2/3  |              8/27                  2/27                  8/27                   0                     0                     0
  (7-q)/14 | (  -21 +   9q)/392    (  -56 +   8q)/392    (  336 -  48q)/392    (  -63 +   3q)/392                  0                     0
  (7+q)/14 | (-1155 - 255q)/1960   ( -280 -  40q)/1960   (    0 - 320q)/1960   (   63 + 363q)/1960   ( 2352 + 392q)/1960                 0
       1   | (  330 + 105q)/180    (  120 +   0q)/180    ( -200 + 280q)/180    (  126 - 189q)/180    ( -686 - 126q)/180     ( 490 -  70q)/180
           |--------------------------------------------------------------------------------------------------------------------------------------------------
           |              1/20                   0                   16/45                  0                   49/180                 49/180         1/20
where q = √21

Type parameters:
  • <T> – the type of the field elements
See Also:
Since:3.6
/** * This class implements the Luther sixth order Runge-Kutta * integrator for Ordinary Differential Equations. * <p> * This method is described in H. A. Luther 1968 paper <a * href="http://www.ams.org/journals/mcom/1968-22-102/S0025-5718-68-99876-1/S0025-5718-68-99876-1.pdf"> * An explicit Sixth-Order Runge-Kutta Formula</a>. * </p> * <p>This method is an explicit Runge-Kutta method, its Butcher-array * is the following one : * <pre> * 0 | 0 0 0 0 0 0 * 1 | 1 0 0 0 0 0 * 1/2 | 3/8 1/8 0 0 0 0 * 2/3 | 8/27 2/27 8/27 0 0 0 * (7-q)/14 | ( -21 + 9q)/392 ( -56 + 8q)/392 ( 336 - 48q)/392 ( -63 + 3q)/392 0 0 * (7+q)/14 | (-1155 - 255q)/1960 ( -280 - 40q)/1960 ( 0 - 320q)/1960 ( 63 + 363q)/1960 ( 2352 + 392q)/1960 0 * 1 | ( 330 + 105q)/180 ( 120 + 0q)/180 ( -200 + 280q)/180 ( 126 - 189q)/180 ( -686 - 126q)/180 ( 490 - 70q)/180 * |-------------------------------------------------------------------------------------------------------------------------------------------------- * | 1/20 0 16/45 0 49/180 49/180 1/20 * </pre> * where q = &radic;21</p> * * @see EulerFieldIntegrator * @see ClassicalRungeKuttaFieldIntegrator * @see GillFieldIntegrator * @see MidpointFieldIntegrator * @see ThreeEighthesFieldIntegrator * @param <T> the type of the field elements * @since 3.6 */
public class LutherFieldIntegrator<T extends RealFieldElement<T>> extends RungeKuttaFieldIntegrator<T> {
Simple constructor. Build a fourth-order Luther integrator with the given step.
Params:
  • field – field to which the time and state vector elements belong
  • step – integration step
/** Simple constructor. * Build a fourth-order Luther integrator with the given step. * @param field field to which the time and state vector elements belong * @param step integration step */
public LutherFieldIntegrator(final Field<T> field, final T step) { super(field, "Luther", step); }
{@inheritDoc}
/** {@inheritDoc} */
public T[] getC() { final T q = getField().getZero().add(21).sqrt(); final T[] c = MathArrays.buildArray(getField(), 6); c[0] = getField().getOne(); c[1] = fraction(1, 2); c[2] = fraction(2, 3); c[3] = q.subtract(7).divide(-14); c[4] = q.add(7).divide(14); c[5] = getField().getOne(); return c; }
{@inheritDoc}
/** {@inheritDoc} */
public T[][] getA() { final T q = getField().getZero().add(21).sqrt(); final T[][] a = MathArrays.buildArray(getField(), 6, -1); for (int i = 0; i < a.length; ++i) { a[i] = MathArrays.buildArray(getField(), i + 1); } a[0][0] = getField().getOne(); a[1][0] = fraction(3, 8); a[1][1] = fraction(1, 8); a[2][0] = fraction(8, 27); a[2][1] = fraction(2, 27); a[2][2] = a[2][0]; a[3][0] = q.multiply( 9).add( -21).divide( 392); a[3][1] = q.multiply( 8).add( -56).divide( 392); a[3][2] = q.multiply( -48).add( 336).divide( 392); a[3][3] = q.multiply( 3).add( -63).divide( 392); a[4][0] = q.multiply(-255).add(-1155).divide(1960); a[4][1] = q.multiply( -40).add( -280).divide(1960); a[4][2] = q.multiply(-320) .divide(1960); a[4][3] = q.multiply( 363).add( 63).divide(1960); a[4][4] = q.multiply( 392).add( 2352).divide(1960); a[5][0] = q.multiply( 105).add( 330).divide( 180); a[5][1] = fraction(2, 3); a[5][2] = q.multiply( 280).add( -200).divide( 180); a[5][3] = q.multiply(-189).add( 126).divide( 180); a[5][4] = q.multiply(-126).add( -686).divide( 180); a[5][5] = q.multiply( -70).add( 490).divide( 180); return a; }
{@inheritDoc}
/** {@inheritDoc} */
public T[] getB() { final T[] b = MathArrays.buildArray(getField(), 7); b[0] = fraction( 1, 20); b[1] = getField().getZero(); b[2] = fraction(16, 45); b[3] = getField().getZero(); b[4] = fraction(49, 180); b[5] = b[4]; b[6] = b[0]; return b; }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected LutherFieldStepInterpolator<T> createInterpolator(final boolean forward, T[][] yDotK, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldEquationsMapper<T> mapper) { return new LutherFieldStepInterpolator<T>(getField(), forward, yDotK, globalPreviousState, globalCurrentState, globalPreviousState, globalCurrentState, mapper); } }