/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;


This class implements the Gill fourth order Runge-Kutta integrator for Ordinary Differential Equations .

This method is an explicit Runge-Kutta method, its Butcher-array is the following one :

   0  |    0        0       0      0
  1/2 |   1/2       0       0      0
  1/2 | (q-1)/2  (2-q)/2    0      0
   1  |    0       -q/2  (2+q)/2   0
      |-------------------------------
      |   1/6    (2-q)/6 (2+q)/6  1/6
where q = sqrt(2)

Type parameters:
  • <T> – the type of the field elements
See Also:
Since:3.6
/** * This class implements the Gill fourth order Runge-Kutta * integrator for Ordinary Differential Equations . * <p>This method is an explicit Runge-Kutta method, its Butcher-array * is the following one : * <pre> * 0 | 0 0 0 0 * 1/2 | 1/2 0 0 0 * 1/2 | (q-1)/2 (2-q)/2 0 0 * 1 | 0 -q/2 (2+q)/2 0 * |------------------------------- * | 1/6 (2-q)/6 (2+q)/6 1/6 * </pre> * where q = sqrt(2)</p> * * @see EulerFieldIntegrator * @see ClassicalRungeKuttaFieldIntegrator * @see MidpointFieldIntegrator * @see ThreeEighthesFieldIntegrator * @see LutherFieldIntegrator * @param <T> the type of the field elements * @since 3.6 */
public class GillFieldIntegrator<T extends RealFieldElement<T>> extends RungeKuttaFieldIntegrator<T> {
Simple constructor. Build a fourth-order Gill integrator with the given step.
Params:
  • field – field to which the time and state vector elements belong
  • step – integration step
/** Simple constructor. * Build a fourth-order Gill integrator with the given step. * @param field field to which the time and state vector elements belong * @param step integration step */
public GillFieldIntegrator(final Field<T> field, final T step) { super(field, "Gill", step); }
{@inheritDoc}
/** {@inheritDoc} */
public T[] getC() { final T[] c = MathArrays.buildArray(getField(), 3); c[0] = fraction(1, 2); c[1] = c[0]; c[2] = getField().getOne(); return c; }
{@inheritDoc}
/** {@inheritDoc} */
public T[][] getA() { final T two = getField().getZero().add(2); final T sqrtTwo = two.sqrt(); final T[][] a = MathArrays.buildArray(getField(), 3, -1); for (int i = 0; i < a.length; ++i) { a[i] = MathArrays.buildArray(getField(), i + 1); } a[0][0] = fraction(1, 2); a[1][0] = sqrtTwo.subtract(1).multiply(0.5); a[1][1] = sqrtTwo.subtract(2).multiply(-0.5); a[2][0] = getField().getZero(); a[2][1] = sqrtTwo.multiply(-0.5); a[2][2] = sqrtTwo.add(2).multiply(0.5); return a; }
{@inheritDoc}
/** {@inheritDoc} */
public T[] getB() { final T two = getField().getZero().add(2); final T sqrtTwo = two.sqrt(); final T[] b = MathArrays.buildArray(getField(), 4); b[0] = fraction(1, 6); b[1] = sqrtTwo.subtract(2).divide(-6); b[2] = sqrtTwo.add(2).divide(6); b[3] = b[0]; return b; }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected GillFieldStepInterpolator<T> createInterpolator(final boolean forward, T[][] yDotK, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldEquationsMapper<T> mapper) { return new GillFieldStepInterpolator<T>(getField(), forward, yDotK, globalPreviousState, globalCurrentState, globalPreviousState, globalCurrentState, mapper); } }