/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;

This class represents an interpolator over the last step during an ODE integration for the 5(4) Dormand-Prince integrator.
Type parameters:
  • <T> – the type of the field elements
See Also:
  • DormandPrince54Integrator
Since:3.6
/** * This class represents an interpolator over the last step during an * ODE integration for the 5(4) Dormand-Prince integrator. * * @see DormandPrince54Integrator * * @param <T> the type of the field elements * @since 3.6 */
class DormandPrince54FieldStepInterpolator<T extends RealFieldElement<T>> extends RungeKuttaFieldStepInterpolator<T> {
Last row of the Butcher-array internal weights, element 0.
/** Last row of the Butcher-array internal weights, element 0. */
private final T a70; // element 1 is zero, so it is neither stored nor used
Last row of the Butcher-array internal weights, element 2.
/** Last row of the Butcher-array internal weights, element 2. */
private final T a72;
Last row of the Butcher-array internal weights, element 3.
/** Last row of the Butcher-array internal weights, element 3. */
private final T a73;
Last row of the Butcher-array internal weights, element 4.
/** Last row of the Butcher-array internal weights, element 4. */
private final T a74;
Last row of the Butcher-array internal weights, element 5.
/** Last row of the Butcher-array internal weights, element 5. */
private final T a75;
Shampine (1986) Dense output, element 0.
/** Shampine (1986) Dense output, element 0. */
private final T d0; // element 1 is zero, so it is neither stored nor used
Shampine (1986) Dense output, element 2.
/** Shampine (1986) Dense output, element 2. */
private final T d2;
Shampine (1986) Dense output, element 3.
/** Shampine (1986) Dense output, element 3. */
private final T d3;
Shampine (1986) Dense output, element 4.
/** Shampine (1986) Dense output, element 4. */
private final T d4;
Shampine (1986) Dense output, element 5.
/** Shampine (1986) Dense output, element 5. */
private final T d5;
Shampine (1986) Dense output, element 6.
/** Shampine (1986) Dense output, element 6. */
private final T d6;
Simple constructor.
Params:
  • field – field to which the time and state vector elements belong
  • forward – integration direction indicator
  • yDotK – slopes at the intermediate points
  • globalPreviousState – start of the global step
  • globalCurrentState – end of the global step
  • softPreviousState – start of the restricted step
  • softCurrentState – end of the restricted step
  • mapper – equations mapper for the all equations
/** Simple constructor. * @param field field to which the time and state vector elements belong * @param forward integration direction indicator * @param yDotK slopes at the intermediate points * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param softPreviousState start of the restricted step * @param softCurrentState end of the restricted step * @param mapper equations mapper for the all equations */
DormandPrince54FieldStepInterpolator(final Field<T> field, final boolean forward, final T[][] yDotK, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldODEStateAndDerivative<T> softPreviousState, final FieldODEStateAndDerivative<T> softCurrentState, final FieldEquationsMapper<T> mapper) { super(field, forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper); final T one = field.getOne(); a70 = one.multiply( 35.0).divide( 384.0); a72 = one.multiply( 500.0).divide(1113.0); a73 = one.multiply( 125.0).divide( 192.0); a74 = one.multiply(-2187.0).divide(6784.0); a75 = one.multiply( 11.0).divide( 84.0); d0 = one.multiply(-12715105075.0).divide( 11282082432.0); d2 = one.multiply( 87487479700.0).divide( 32700410799.0); d3 = one.multiply(-10690763975.0).divide( 1880347072.0); d4 = one.multiply(701980252875.0).divide(199316789632.0); d5 = one.multiply( -1453857185.0).divide( 822651844.0); d6 = one.multiply( 69997945.0).divide( 29380423.0); }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected DormandPrince54FieldStepInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK, final FieldODEStateAndDerivative<T> newGlobalPreviousState, final FieldODEStateAndDerivative<T> newGlobalCurrentState, final FieldODEStateAndDerivative<T> newSoftPreviousState, final FieldODEStateAndDerivative<T> newSoftCurrentState, final FieldEquationsMapper<T> newMapper) { return new DormandPrince54FieldStepInterpolator<T>(newField, newForward, newYDotK, newGlobalPreviousState, newGlobalCurrentState, newSoftPreviousState, newSoftCurrentState, newMapper); }
{@inheritDoc}
/** {@inheritDoc} */
@SuppressWarnings("unchecked") @Override protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper, final T time, final T theta, final T thetaH, final T oneMinusThetaH) { // interpolate final T one = time.getField().getOne(); final T eta = one.subtract(theta); final T twoTheta = theta.multiply(2); final T dot2 = one.subtract(twoTheta); final T dot3 = theta.multiply(theta.multiply(-3).add(2)); final T dot4 = twoTheta.multiply(theta.multiply(twoTheta.subtract(3)).add(1)); final T[] interpolatedState; final T[] interpolatedDerivatives; if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) { final T f1 = thetaH; final T f2 = f1.multiply(eta); final T f3 = f2.multiply(theta); final T f4 = f3.multiply(eta); final T coeff0 = f1.multiply(a70). subtract(f2.multiply(a70.subtract(1))). add(f3.multiply(a70.multiply(2).subtract(1))). add(f4.multiply(d0)); final T coeff1 = time.getField().getZero(); final T coeff2 = f1.multiply(a72). subtract(f2.multiply(a72)). add(f3.multiply(a72.multiply(2))). add(f4.multiply(d2)); final T coeff3 = f1.multiply(a73). subtract(f2.multiply(a73)). add(f3.multiply(a73.multiply(2))). add(f4.multiply(d3)); final T coeff4 = f1.multiply(a74). subtract(f2.multiply(a74)). add(f3.multiply(a74.multiply(2))). add(f4.multiply(d4)); final T coeff5 = f1.multiply(a75). subtract(f2.multiply(a75)). add(f3.multiply(a75.multiply(2))). add(f4.multiply(d5)); final T coeff6 = f4.multiply(d6).subtract(f3); final T coeffDot0 = a70. subtract(dot2.multiply(a70.subtract(1))). add(dot3.multiply(a70.multiply(2).subtract(1))). add(dot4.multiply(d0)); final T coeffDot1 = time.getField().getZero(); final T coeffDot2 = a72. subtract(dot2.multiply(a72)). add(dot3.multiply(a72.multiply(2))). add(dot4.multiply(d2)); final T coeffDot3 = a73. subtract(dot2.multiply(a73)). add(dot3.multiply(a73.multiply(2))). add(dot4.multiply(d3)); final T coeffDot4 = a74. subtract(dot2.multiply(a74)). add(dot3.multiply(a74.multiply(2))). add(dot4.multiply(d4)); final T coeffDot5 = a75. subtract(dot2.multiply(a75)). add(dot3.multiply(a75.multiply(2))). add(dot4.multiply(d5)); final T coeffDot6 = dot4.multiply(d6).subtract(dot3); interpolatedState = previousStateLinearCombination(coeff0, coeff1, coeff2, coeff3, coeff4, coeff5, coeff6); interpolatedDerivatives = derivativeLinearCombination(coeffDot0, coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6); } else { final T f1 = oneMinusThetaH.negate(); final T f2 = oneMinusThetaH.multiply(theta); final T f3 = f2.multiply(theta); final T f4 = f3.multiply(eta); final T coeff0 = f1.multiply(a70). subtract(f2.multiply(a70.subtract(1))). add(f3.multiply(a70.multiply(2).subtract(1))). add(f4.multiply(d0)); final T coeff1 = time.getField().getZero(); final T coeff2 = f1.multiply(a72). subtract(f2.multiply(a72)). add(f3.multiply(a72.multiply(2))). add(f4.multiply(d2)); final T coeff3 = f1.multiply(a73). subtract(f2.multiply(a73)). add(f3.multiply(a73.multiply(2))). add(f4.multiply(d3)); final T coeff4 = f1.multiply(a74). subtract(f2.multiply(a74)). add(f3.multiply(a74.multiply(2))). add(f4.multiply(d4)); final T coeff5 = f1.multiply(a75). subtract(f2.multiply(a75)). add(f3.multiply(a75.multiply(2))). add(f4.multiply(d5)); final T coeff6 = f4.multiply(d6).subtract(f3); final T coeffDot0 = a70. subtract(dot2.multiply(a70.subtract(1))). add(dot3.multiply(a70.multiply(2).subtract(1))). add(dot4.multiply(d0)); final T coeffDot1 = time.getField().getZero(); final T coeffDot2 = a72. subtract(dot2.multiply(a72)). add(dot3.multiply(a72.multiply(2))). add(dot4.multiply(d2)); final T coeffDot3 = a73. subtract(dot2.multiply(a73)). add(dot3.multiply(a73.multiply(2))). add(dot4.multiply(d3)); final T coeffDot4 = a74. subtract(dot2.multiply(a74)). add(dot3.multiply(a74.multiply(2))). add(dot4.multiply(d4)); final T coeffDot5 = a75. subtract(dot2.multiply(a75)). add(dot3.multiply(a75.multiply(2))). add(dot4.multiply(d5)); final T coeffDot6 = dot4.multiply(d6).subtract(dot3); interpolatedState = currentStateLinearCombination(coeff0, coeff1, coeff2, coeff3, coeff4, coeff5, coeff6); interpolatedDerivatives = derivativeLinearCombination(coeffDot0, coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6); } return new FieldODEStateAndDerivative<T>(time, interpolatedState, interpolatedDerivatives); } }