/*
 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

import java.io.BufferedWriter;
import java.io.Closeable;
import java.io.IOException;
import java.io.File;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.Flushable;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintStream;
import java.io.UnsupportedEncodingException;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;
import java.nio.charset.Charset;
import java.nio.charset.IllegalCharsetNameException;
import java.nio.charset.UnsupportedCharsetException;
import java.text.DateFormatSymbols;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import java.time.DateTimeException;
import java.time.Instant;
import java.time.ZoneId;
import java.time.ZoneOffset;
import java.time.temporal.ChronoField;
import java.time.temporal.TemporalAccessor;
import java.time.temporal.TemporalQueries;

import sun.misc.DoubleConsts;
import sun.misc.FormattedFloatingDecimal;

An interpreter for printf-style format strings. This class provides support for layout justification and alignment, common formats for numeric, string, and date/time data, and locale-specific output. Common Java types such as byte, BigDecimal, and Calendar are supported. Limited formatting customization for arbitrary user types is provided through the Formattable interface.

Formatters are not necessarily safe for multithreaded access. Thread safety is optional and is the responsibility of users of methods in this class.

Formatted printing for the Java language is heavily inspired by C's printf. Although the format strings are similar to C, some customizations have been made to accommodate the Java language and exploit some of its features. Also, Java formatting is more strict than C's; for example, if a conversion is incompatible with a flag, an exception will be thrown. In C inapplicable flags are silently ignored. The format strings are thus intended to be recognizable to C programmers but not necessarily completely compatible with those in C.

Examples of expected usage:

  StringBuilder sb = new StringBuilder();
  // Send all output to the Appendable object sb
  Formatter formatter = new Formatter(sb, Locale.US);
  // Explicit argument indices may be used to re-order output.
  formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
  // -> " d  c  b  a"
  // Optional locale as the first argument can be used to get
  // locale-specific formatting of numbers.  The precision and width can be
  // given to round and align the value.
  formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
  // -> "e =    +2,7183"
  // The '(' numeric flag may be used to format negative numbers with
  // parentheses rather than a minus sign.  Group separators are
  // automatically inserted.
  formatter.format("Amount gained or lost since last statement: $ %(,.2f",
                   balanceDelta);
  // -> "Amount gained or lost since last statement: $ (6,217.58)"

Convenience methods for common formatting requests exist as illustrated by the following invocations:

  // Writes a formatted string to System.out.
  System.out.format("Local time: %tT", Calendar.getInstance());
  // -> "Local time: 13:34:18"
  // Writes formatted output to System.err.
  System.err.printf("Unable to open file '%1$s': %2$s",
                    fileName, exception.getMessage());
  // -> "Unable to open file 'food': No such file or directory"

Like C's sprintf(3), Strings may be formatted using the static method String.format:

  // Format a string containing a date.
  import java.util.Calendar;
  import java.util.GregorianCalendar;
  import static java.util.Calendar.*;
  Calendar c = new GregorianCalendar(1995, MAY, 23);
  String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
  // -> s == "Duke's Birthday: May 23, 1995"

Organization

This specification is divided into two sections. The first section, Summary, covers the basic formatting concepts. This section is intended for users who want to get started quickly and are familiar with formatted printing in other programming languages. The second section, Details, covers the specific implementation details. It is intended for users who want more precise specification of formatting behavior.

Summary

This section is intended to provide a brief overview of formatting concepts. For precise behavioral details, refer to the Details section.

Format String Syntax

Every method which produces formatted output requires a format string and an argument list. The format string is a String which may contain fixed text and one or more embedded format specifiers. Consider the following example:

  Calendar c = ...;
  String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
This format string is the first argument to the format method. It contains three format specifiers "%1$tm", "%1$te", and "%1$tY" which indicate how the arguments should be processed and where they should be inserted in the text. The remaining portions of the format string are fixed text including "Dukes Birthday: " and any other spaces or punctuation. The argument list consists of all arguments passed to the method after the format string. In the above example, the argument list is of size one and consists of the Calendar object c.
  • The format specifiers for general, character, and numeric types have the following syntax:
      %[argument_index$][flags][width][.precision]conversion
    

    The optional argument_index is a decimal integer indicating the position of the argument in the argument list. The first argument is referenced by "1$", the second by "2$", etc.

    The optional flags is a set of characters that modify the output format. The set of valid flags depends on the conversion.

    The optional width is a positive decimal integer indicating the minimum number of characters to be written to the output.

    The optional precision is a non-negative decimal integer usually used to restrict the number of characters. The specific behavior depends on the conversion.

    The required conversion is a character indicating how the argument should be formatted. The set of valid conversions for a given argument depends on the argument's data type.

  • The format specifiers for types which are used to represents dates and times have the following syntax:
      %[argument_index$][flags][width]conversion
    

    The optional argument_index, flags and width are defined as above.

    The required conversion is a two character sequence. The first character is 't' or 'T'. The second character indicates the format to be used. These characters are similar to but not completely identical to those defined by GNU date and POSIX strftime(3c).

  • The format specifiers which do not correspond to arguments have the following syntax:
      %[flags][width]conversion
    

    The optional flags and width is defined as above.

    The required conversion is a character indicating content to be inserted in the output.

Conversions

Conversions are divided into the following categories:

  1. General - may be applied to any argument type
  2. Character - may be applied to basic types which represent Unicode characters: char, Character, byte, Byte, short, and Short. This conversion may also be applied to the types int and Integer when Character.isValidCodePoint returns true
  3. Numeric
    1. Integral - may be applied to Java integral types: byte, Byte, short, Short, int and Integer, long, Long, and BigInteger (but not char or Character)
    2. Floating Point - may be applied to Java floating-point types: float, Float, double, Double, and BigDecimal
  4. Date/Time - may be applied to Java types which are capable of encoding a date or time: long, Long, Calendar, Date and TemporalAccessor
  5. Percent - produces a literal '%' ('\u0025')
  6. Line Separator - produces the platform-specific line separator

The following table summarizes the supported conversions. Conversions denoted by an upper-case character (i.e. 'B', 'H', 'S', 'C', 'X', 'E', 'G', 'A', and 'T') are the same as those for the corresponding lower-case conversion characters except that the result is converted to upper case according to the rules of the prevailing Locale. The result is equivalent to the following invocation of String.toUpperCase()

   out.toUpperCase() 
Conversion Argument Category Description
'b', 'B' general If the argument arg is null, then the result is "false". If arg is a boolean or Boolean, then the result is the string returned by String.valueOf(arg). Otherwise, the result is "true".
'h', 'H' general If the argument arg is null, then the result is "null". Otherwise, the result is obtained by invoking Integer.toHexString(arg.hashCode()).
's', 'S' general If the argument arg is null, then the result is "null". If arg implements Formattable, then arg.formatTo is invoked. Otherwise, the result is obtained by invoking arg.toString().
'c', 'C' character The result is a Unicode character
'd' integral The result is formatted as a decimal integer
'o' integral The result is formatted as an octal integer
'x', 'X' integral The result is formatted as a hexadecimal integer
'e', 'E' floating point The result is formatted as a decimal number in computerized scientific notation
'f' floating point The result is formatted as a decimal number
'g', 'G' floating point The result is formatted using computerized scientific notation or decimal format, depending on the precision and the value after rounding.
'a', 'A' floating point The result is formatted as a hexadecimal floating-point number with a significand and an exponent. This conversion is not supported for the BigDecimal type despite the latter's being in the floating point argument category.
't', 'T' date/time Prefix for date and time conversion characters. See Date/Time Conversions.
'%' percent The result is a literal '%' ('\u0025')
'n' line separator The result is the platform-specific line separator

Any characters not explicitly defined as conversions are illegal and are reserved for future extensions.

Date/Time Conversions

The following date and time conversion suffix characters are defined for the 't' and 'T' conversions. The types are similar to but not completely identical to those defined by GNU date and POSIX strftime(3c). Additional conversion types are provided to access Java-specific functionality (e.g. 'L' for milliseconds within the second).

The following conversion characters are used for formatting times:

'H' Hour of the day for the 24-hour clock, formatted as two digits with a leading zero as necessary i.e. 00 - 23.
'I' Hour for the 12-hour clock, formatted as two digits with a leading zero as necessary, i.e. 01 - 12.
'k' Hour of the day for the 24-hour clock, i.e. 0 - 23.
'l' Hour for the 12-hour clock, i.e. 1 - 12.
'M' Minute within the hour formatted as two digits with a leading zero as necessary, i.e. 00 - 59.
'S' Seconds within the minute, formatted as two digits with a leading zero as necessary, i.e. 00 - 60 ("60" is a special value required to support leap seconds).
'L' Millisecond within the second formatted as three digits with leading zeros as necessary, i.e. 000 - 999.
'N' Nanosecond within the second, formatted as nine digits with leading zeros as necessary, i.e. 000000000 - 999999999.
'p' Locale-specific morning or afternoon marker in lower case, e.g."am" or "pm". Use of the conversion prefix 'T' forces this output to upper case.
'z' RFC 822 style numeric time zone offset from GMT, e.g. -0800. This value will be adjusted as necessary for Daylight Saving Time. For long, Long, and Date the time zone used is the default time zone for this instance of the Java virtual machine.
'Z' A string representing the abbreviation for the time zone. This value will be adjusted as necessary for Daylight Saving Time. For long, Long, and Date the time zone used is the default time zone for this instance of the Java virtual machine. The Formatter's locale will supersede the locale of the argument (if any).
's' Seconds since the beginning of the epoch starting at 1 January 1970 00:00:00 UTC, i.e. Long.MIN_VALUE/1000 to Long.MAX_VALUE/1000.
'Q' Milliseconds since the beginning of the epoch starting at 1 January 1970 00:00:00 UTC, i.e. Long.MIN_VALUE to Long.MAX_VALUE.

The following conversion characters are used for formatting dates:

'B' Locale-specific full month name, e.g. "January", "February".
'b' Locale-specific abbreviated month name, e.g. "Jan", "Feb".
'h' Same as 'b'.
'A' Locale-specific full name of the day of the week, e.g. "Sunday", "Monday"
'a' Locale-specific short name of the day of the week, e.g. "Sun", "Mon"
'C' Four-digit year divided by 100, formatted as two digits with leading zero as necessary, i.e. 00 - 99
'Y' Year, formatted as at least four digits with leading zeros as necessary, e.g. 0092 equals 92 CE for the Gregorian calendar.
'y' Last two digits of the year, formatted with leading zeros as necessary, i.e. 00 - 99.
'j' Day of year, formatted as three digits with leading zeros as necessary, e.g. 001 - 366 for the Gregorian calendar.
'm' Month, formatted as two digits with leading zeros as necessary, i.e. 01 - 13.
'd' Day of month, formatted as two digits with leading zeros as necessary, i.e. 01 - 31
'e' Day of month, formatted as two digits, i.e. 1 - 31.

The following conversion characters are used for formatting common date/time compositions.

'R' Time formatted for the 24-hour clock as "%tH:%tM"
'T' Time formatted for the 24-hour clock as "%tH:%tM:%tS".
'r' Time formatted for the 12-hour clock as "%tI:%tM:%tS %Tp". The location of the morning or afternoon marker ('%Tp') may be locale-dependent.
'D' Date formatted as "%tm/%td/%ty".
'F' ISO 8601 complete date formatted as "%tY-%tm-%td".
'c' Date and time formatted as "%ta %tb %td %tT %tZ %tY", e.g. "Sun Jul 20 16:17:00 EDT 1969".

Any characters not explicitly defined as date/time conversion suffixes are illegal and are reserved for future extensions.

Flags

The following table summarizes the supported flags. y means the flag is supported for the indicated argument types.

Flag General Character Integral Floating Point Date/Time Description
'-' y y y y y The result will be left-justified.
'#' y1 - y3 y - The result should use a conversion-dependent alternate form
'+' - - y4 y - The result will always include a sign
'  ' - - y4 y - The result will include a leading space for positive values
'0' - - y y - The result will be zero-padded
',' - - y2 y5 - The result will include locale-specific grouping separators
'(' - - y4 y5 - The result will enclose negative numbers in parentheses

1 Depends on the definition of Formattable.

2 For 'd' conversion only.

3 For 'o', 'x', and 'X' conversions only.

4 For 'd', 'o', 'x', and 'X' conversions applied to BigInteger or 'd' applied to byte, Byte, short, Short, int and Integer, long, and Long.

5 For 'e', 'E', 'f', 'g', and 'G' conversions only.

Any characters not explicitly defined as flags are illegal and are reserved for future extensions.

Width

The width is the minimum number of characters to be written to the output. For the line separator conversion, width is not applicable; if it is provided, an exception will be thrown.

Precision

For general argument types, the precision is the maximum number of characters to be written to the output.

For the floating-point conversions 'a', 'A', 'e', 'E', and 'f' the precision is the number of digits after the radix point. If the conversion is 'g' or 'G', then the precision is the total number of digits in the resulting magnitude after rounding.

For character, integral, and date/time argument types and the percent and line separator conversions, the precision is not applicable; if a precision is provided, an exception will be thrown.

Argument Index

The argument index is a decimal integer indicating the position of the argument in the argument list. The first argument is referenced by "1$", the second by "2$", etc.

Another way to reference arguments by position is to use the '<' ('\u003c') flag, which causes the argument for the previous format specifier to be re-used. For example, the following two statements would produce identical strings:

  Calendar c = ...;
  String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
  String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c);

Details

This section is intended to provide behavioral details for formatting, including conditions and exceptions, supported data types, localization, and interactions between flags, conversions, and data types. For an overview of formatting concepts, refer to the Summary

Any characters not explicitly defined as conversions, date/time conversion suffixes, or flags are illegal and are reserved for future extensions. Use of such a character in a format string will cause an UnknownFormatConversionException or UnknownFormatFlagsException to be thrown.

If the format specifier contains a width or precision with an invalid value or which is otherwise unsupported, then a IllegalFormatWidthException or IllegalFormatPrecisionException respectively will be thrown.

If a format specifier contains a conversion character that is not applicable to the corresponding argument, then an IllegalFormatConversionException will be thrown.

All specified exceptions may be thrown by any of the format methods of Formatter as well as by any format convenience methods such as String.format and PrintStream.printf.

Conversions denoted by an upper-case character (i.e. 'B', 'H', 'S', 'C', 'X', 'E', 'G', 'A', and 'T') are the same as those for the corresponding lower-case conversion characters except that the result is converted to upper case according to the rules of the prevailing Locale. The result is equivalent to the following invocation of String.toUpperCase()

   out.toUpperCase() 

General

The following general conversions may be applied to any argument type:

'b' '\u0062' Produces either "true" or "false" as returned by Boolean.toString(boolean).

If the argument is null, then the result is "false". If the argument is a boolean or Boolean, then the result is the string returned by String.valueOf(). Otherwise, the result is "true".

If the '#' flag is given, then a FormatFlagsConversionMismatchException will be thrown.

'B' '\u0042' The upper-case variant of 'b'.
'h' '\u0068' Produces a string representing the hash code value of the object.

If the argument, arg is null, then the result is "null". Otherwise, the result is obtained by invoking Integer.toHexString(arg.hashCode()).

If the '#' flag is given, then a FormatFlagsConversionMismatchException will be thrown.

'H' '\u0048' The upper-case variant of 'h'.
's' '\u0073' Produces a string.

If the argument is null, then the result is "null". If the argument implements Formattable, then its formatTo method is invoked. Otherwise, the result is obtained by invoking the argument's toString() method.

If the '#' flag is given and the argument is not a Formattable , then a FormatFlagsConversionMismatchException will be thrown.

'S' '\u0053' The upper-case variant of 's'.

The following flags apply to general conversions:

'-' '\u002d' Left justifies the output. Spaces ('\u0020') will be added at the end of the converted value as required to fill the minimum width of the field. If the width is not provided, then a MissingFormatWidthException will be thrown. If this flag is not given then the output will be right-justified.
'#' '\u0023' Requires the output use an alternate form. The definition of the form is specified by the conversion.

The width is the minimum number of characters to be written to the output. If the length of the converted value is less than the width then the output will be padded by '  ' ('\u0020') until the total number of characters equals the width. The padding is on the left by default. If the '-' flag is given, then the padding will be on the right. If the width is not specified then there is no minimum.

The precision is the maximum number of characters to be written to the output. The precision is applied before the width, thus the output will be truncated to precision characters even if the width is greater than the precision. If the precision is not specified then there is no explicit limit on the number of characters.

Character

This conversion may be applied to char and Character. It may also be applied to the types byte, Byte, short, and Short, int and Integer when Character.isValidCodePoint returns true. If it returns false then an IllegalFormatCodePointException will be thrown.
'c' '\u0063' Formats the argument as a Unicode character as described in Unicode Character Representation. This may be more than one 16-bit char in the case where the argument represents a supplementary character.

If the '#' flag is given, then a FormatFlagsConversionMismatchException will be thrown.

'C' '\u0043' The upper-case variant of 'c'.

The '-' flag defined for General conversions applies. If the '#' flag is given, then a FormatFlagsConversionMismatchException will be thrown.

The width is defined as for General conversions.

The precision is not applicable. If the precision is specified then an IllegalFormatPrecisionException will be thrown.

Numeric

Numeric conversions are divided into the following categories:

  1. Byte, Short, Integer, and Long
  2. BigInteger
  3. Float and Double
  4. BigDecimal

Numeric types will be formatted according to the following algorithm:

Number Localization Algorithm

After digits are obtained for the integer part, fractional part, and exponent (as appropriate for the data type), the following transformation is applied:

  1. Each digit character d in the string is replaced by a locale-specific digit computed relative to the current locale's zero digit z; that is d -  '0'  + z.
  2. If a decimal separator is present, a locale-specific decimal separator is substituted.
  3. If the ',' ('\u002c') flag is given, then the locale-specific grouping separator is inserted by scanning the integer part of the string from least significant to most significant digits and inserting a separator at intervals defined by the locale's grouping size.
  4. If the '0' flag is given, then the locale-specific zero digits are inserted after the sign character, if any, and before the first non-zero digit, until the length of the string is equal to the requested field width.
  5. If the value is negative and the '(' flag is given, then a '(' ('\u0028') is prepended and a ')' ('\u0029') is appended.
  6. If the value is negative (or floating-point negative zero) and '(' flag is not given, then a '-' ('\u002d') is prepended.
  7. If the '+' flag is given and the value is positive or zero (or floating-point positive zero), then a '+' ('\u002b') will be prepended.

If the value is NaN or positive infinity the literal strings "NaN" or "Infinity" respectively, will be output. If the value is negative infinity, then the output will be "(Infinity)" if the '(' flag is given otherwise the output will be "-Infinity". These values are not localized.

Byte, Short, Integer, and Long

The following conversions may be applied to byte, Byte, short, Short, int and Integer, long, and Long.

'd' '\u0064' Formats the argument as a decimal integer. The localization algorithm is applied.

If the '0' flag is given and the value is negative, then the zero padding will occur after the sign.

If the '#' flag is given then a FormatFlagsConversionMismatchException will be thrown.

'o' '\u006f' Formats the argument as an integer in base eight. No localization is applied.

If x is negative then the result will be an unsigned value generated by adding 2n to the value where n is the number of bits in the type as returned by the static SIZE field in the Byte, Short, Integer, or Long classes as appropriate.

If the '#' flag is given then the output will always begin with the radix indicator '0'.

If the '0' flag is given then the output will be padded with leading zeros to the field width following any indication of sign.

If '(', '+', ' ', or ',' flags are given then a FormatFlagsConversionMismatchException will be thrown.

'x' '\u0078' Formats the argument as an integer in base sixteen. No localization is applied.

If x is negative then the result will be an unsigned value generated by adding 2n to the value where n is the number of bits in the type as returned by the static SIZE field in the Byte, Short, Integer, or Long classes as appropriate.

If the '#' flag is given then the output will always begin with the radix indicator "0x".

If the '0' flag is given then the output will be padded to the field width with leading zeros after the radix indicator or sign (if present).

If '(', '  ', '+', or ',' flags are given then a FormatFlagsConversionMismatchException will be thrown.

'X' '\u0058' The upper-case variant of 'x'. The entire string representing the number will be converted to upper case including the 'x' (if any) and all hexadecimal digits 'a' - 'f' ('\u0061' - '\u0066').

If the conversion is 'o', 'x', or 'X' and both the '#' and the '0' flags are given, then result will contain the radix indicator ('0' for octal and "0x" or "0X" for hexadecimal), some number of zeros (based on the width), and the value.

If the '-' flag is not given, then the space padding will occur before the sign.

The following flags apply to numeric integral conversions:

'+' '\u002b' Requires the output to include a positive sign for all positive numbers. If this flag is not given then only negative values will include a sign.

If both the '+' and '  ' flags are given then an IllegalFormatFlagsException will be thrown.

'  ' '\u0020' Requires the output to include a single extra space ('\u0020') for non-negative values.

If both the '+' and '  ' flags are given then an IllegalFormatFlagsException will be thrown.

'0' '\u0030' Requires the output to be padded with leading zeros to the minimum field width following any sign or radix indicator except when converting NaN or infinity. If the width is not provided, then a MissingFormatWidthException will be thrown.

If both the '-' and '0' flags are given then an IllegalFormatFlagsException will be thrown.

',' '\u002c' Requires the output to include the locale-specific group separators as described in the "group" section of the localization algorithm.
'(' '\u0028' Requires the output to prepend a '(' ('\u0028') and append a ')' ('\u0029') to negative values.

If no flags are given the default formatting is as follows:

  • The output is right-justified within the width
  • Negative numbers begin with a '-' ('\u002d')
  • Positive numbers and zero do not include a sign or extra leading space
  • No grouping separators are included

The width is the minimum number of characters to be written to the output. This includes any signs, digits, grouping separators, radix indicator, and parentheses. If the length of the converted value is less than the width then the output will be padded by spaces ('\u0020') until the total number of characters equals width. The padding is on the left by default. If '-' flag is given then the padding will be on the right. If width is not specified then there is no minimum.

The precision is not applicable. If precision is specified then an IllegalFormatPrecisionException will be thrown.

BigInteger

The following conversions may be applied to BigInteger.

'd' '\u0064' Requires the output to be formatted as a decimal integer. The localization algorithm is applied.

If the '#' flag is given FormatFlagsConversionMismatchException will be thrown.

'o' '\u006f' Requires the output to be formatted as an integer in base eight. No localization is applied.

If x is negative then the result will be a signed value beginning with '-' ('\u002d'). Signed output is allowed for this type because unlike the primitive types it is not possible to create an unsigned equivalent without assuming an explicit data-type size.

If x is positive or zero and the '+' flag is given then the result will begin with '+' ('\u002b').

If the '#' flag is given then the output will always begin with '0' prefix.

If the '0' flag is given then the output will be padded with leading zeros to the field width following any indication of sign.

If the ',' flag is given then a FormatFlagsConversionMismatchException will be thrown.

'x' '\u0078' Requires the output to be formatted as an integer in base sixteen. No localization is applied.

If x is negative then the result will be a signed value beginning with '-' ('\u002d'). Signed output is allowed for this type because unlike the primitive types it is not possible to create an unsigned equivalent without assuming an explicit data-type size.

If x is positive or zero and the '+' flag is given then the result will begin with '+' ('\u002b').

If the '#' flag is given then the output will always begin with the radix indicator "0x".

If the '0' flag is given then the output will be padded to the field width with leading zeros after the radix indicator or sign (if present).

If the ',' flag is given then a FormatFlagsConversionMismatchException will be thrown.

'X' '\u0058' The upper-case variant of 'x'. The entire string representing the number will be converted to upper case including the 'x' (if any) and all hexadecimal digits 'a' - 'f' ('\u0061' - '\u0066').

If the conversion is 'o', 'x', or 'X' and both the '#' and the '0' flags are given, then result will contain the base indicator ('0' for octal and "0x" or "0X" for hexadecimal), some number of zeros (based on the width), and the value.

If the '0' flag is given and the value is negative, then the zero padding will occur after the sign.

If the '-' flag is not given, then the space padding will occur before the sign.

All flags defined for Byte, Short, Integer, and Long apply. The default behavior when no flags are given is the same as for Byte, Short, Integer, and Long.

The specification of width is the same as defined for Byte, Short, Integer, and Long.

The precision is not applicable. If precision is specified then an IllegalFormatPrecisionException will be thrown.

Float and Double

The following conversions may be applied to float, Float, double and Double.

'e' '\u0065' Requires the output to be formatted using computerized scientific notation. The localization algorithm is applied.

The formatting of the magnitude m depends upon its value.

If m is NaN or infinite, the literal strings "NaN" or "Infinity", respectively, will be output. These values are not localized.

If m is positive-zero or negative-zero, then the exponent will be "+00".

Otherwise, the result is a string that represents the sign and magnitude (absolute value) of the argument. The formatting of the sign is described in the localization algorithm. The formatting of the magnitude m depends upon its value.

Let n be the unique integer such that 10n <= m < 10n+1; then let a be the mathematically exact quotient of m and 10n so that 1 <= a < 10. The magnitude is then represented as the integer part of a, as a single decimal digit, followed by the decimal separator followed by decimal digits representing the fractional part of a, followed by the exponent symbol 'e' ('\u0065'), followed by the sign of the exponent, followed by a representation of n as a decimal integer, as produced by the method Long.toString(long, int), and zero-padded to include at least two digits.

The number of digits in the result for the fractional part of m or a is equal to the precision. If the precision is not specified then the default value is 6. If the precision is less than the number of digits which would appear after the decimal point in the string returned by Float.toString(float) or Double.toString(double) respectively, then the value will be rounded using the round half up algorithm. Otherwise, zeros may be appended to reach the precision. For a canonical representation of the value, use Float.toString(float) or Double.toString(double) as appropriate.

If the ',' flag is given, then an FormatFlagsConversionMismatchException will be thrown.

'E' '\u0045' The upper-case variant of 'e'. The exponent symbol will be 'E' ('\u0045').
'g' '\u0067' Requires the output to be formatted in general scientific notation as described below. The localization algorithm is applied.

After rounding for the precision, the formatting of the resulting magnitude m depends on its value.

If m is greater than or equal to 10-4 but less than 10precision then it is represented in decimal format.

If m is less than 10-4 or greater than or equal to 10precision, then it is represented in computerized scientific notation.

The total number of significant digits in m is equal to the precision. If the precision is not specified, then the default value is 6. If the precision is 0, then it is taken to be 1.

If the '#' flag is given then an FormatFlagsConversionMismatchException will be thrown.

'G' '\u0047' The upper-case variant of 'g'.
'f' '\u0066' Requires the output to be formatted using decimal format. The localization algorithm is applied.

The result is a string that represents the sign and magnitude (absolute value) of the argument. The formatting of the sign is described in the localization algorithm. The formatting of the magnitude m depends upon its value.

If m NaN or infinite, the literal strings "NaN" or "Infinity", respectively, will be output. These values are not localized.

The magnitude is formatted as the integer part of m, with no leading zeroes, followed by the decimal separator followed by one or more decimal digits representing the fractional part of m.

The number of digits in the result for the fractional part of m or a is equal to the precision. If the precision is not specified then the default value is 6. If the precision is less than the number of digits which would appear after the decimal point in the string returned by Float.toString(float) or Double.toString(double) respectively, then the value will be rounded using the round half up algorithm. Otherwise, zeros may be appended to reach the precision. For a canonical representation of the value, use Float.toString(float) or Double.toString(double) as appropriate.

'a' '\u0061' Requires the output to be formatted in hexadecimal exponential form. No localization is applied.

The result is a string that represents the sign and magnitude (absolute value) of the argument x.

If x is negative or a negative-zero value then the result will begin with '-' ('\u002d').

If x is positive or a positive-zero value and the '+' flag is given then the result will begin with '+' ('\u002b').

The formatting of the magnitude m depends upon its value.

  • If the value is NaN or infinite, the literal strings "NaN" or "Infinity", respectively, will be output.
  • If m is zero then it is represented by the string "0x0.0p0".
  • If m is a double value with a normalized representation then substrings are used to represent the significand and exponent fields. The significand is represented by the characters "0x1." followed by the hexadecimal representation of the rest of the significand as a fraction. The exponent is represented by 'p' ('\u0070') followed by a decimal string of the unbiased exponent as if produced by invoking Integer.toString on the exponent value. If the precision is specified, the value is rounded to the given number of hexadecimal digits.
  • If m is a double value with a subnormal representation then, unless the precision is specified to be in the range 1 through 12, inclusive, the significand is represented by the characters '0x0.' followed by the hexadecimal representation of the rest of the significand as a fraction, and the exponent represented by 'p-1022'. If the precision is in the interval [1, 12], the subnormal value is normalized such that it begins with the characters '0x1.', rounded to the number of hexadecimal digits of precision, and the exponent adjusted accordingly. Note that there must be at least one nonzero digit in a subnormal significand.

If the '(' or ',' flags are given, then a FormatFlagsConversionMismatchException will be thrown.

'A' '\u0041' The upper-case variant of 'a'. The entire string representing the number will be converted to upper case including the 'x' ('\u0078') and 'p' ('\u0070' and all hexadecimal digits 'a' - 'f' ('\u0061' - '\u0066').

All flags defined for Byte, Short, Integer, and Long apply.

If the '#' flag is given, then the decimal separator will always be present.

If no flags are given the default formatting is as follows:

  • The output is right-justified within the width
  • Negative numbers begin with a '-'
  • Positive numbers and positive zero do not include a sign or extra leading space
  • No grouping separators are included
  • The decimal separator will only appear if a digit follows it

The width is the minimum number of characters to be written to the output. This includes any signs, digits, grouping separators, decimal separators, exponential symbol, radix indicator, parentheses, and strings representing infinity and NaN as applicable. If the length of the converted value is less than the width then the output will be padded by spaces ('\u0020') until the total number of characters equals width. The padding is on the left by default. If the '-' flag is given then the padding will be on the right. If width is not specified then there is no minimum.

If the conversion is 'e', 'E' or 'f', then the precision is the number of digits after the decimal separator. If the precision is not specified, then it is assumed to be 6.

If the conversion is 'g' or 'G', then the precision is the total number of significant digits in the resulting magnitude after rounding. If the precision is not specified, then the default value is 6. If the precision is 0, then it is taken to be 1.

If the conversion is 'a' or 'A', then the precision is the number of hexadecimal digits after the radix point. If the precision is not provided, then all of the digits as returned by Double.toHexString(double) will be output.

BigDecimal

The following conversions may be applied BigDecimal.

'e' '\u0065' Requires the output to be formatted using computerized scientific notation. The localization algorithm is applied.

The formatting of the magnitude m depends upon its value.

If m is positive-zero or negative-zero, then the exponent will be "+00".

Otherwise, the result is a string that represents the sign and magnitude (absolute value) of the argument. The formatting of the sign is described in the localization algorithm. The formatting of the magnitude m depends upon its value.

Let n be the unique integer such that 10n <= m < 10n+1; then let a be the mathematically exact quotient of m and 10n so that 1 <= a < 10. The magnitude is then represented as the integer part of a, as a single decimal digit, followed by the decimal separator followed by decimal digits representing the fractional part of a, followed by the exponent symbol 'e' ('\u0065'), followed by the sign of the exponent, followed by a representation of n as a decimal integer, as produced by the method Long.toString(long, int), and zero-padded to include at least two digits.

The number of digits in the result for the fractional part of m or a is equal to the precision. If the precision is not specified then the default value is 6. If the precision is less than the number of digits to the right of the decimal point then the value will be rounded using the round half up algorithm. Otherwise, zeros may be appended to reach the precision. For a canonical representation of the value, use BigDecimal.toString().

If the ',' flag is given, then an FormatFlagsConversionMismatchException will be thrown.

'E' '\u0045' The upper-case variant of 'e'. The exponent symbol will be 'E' ('\u0045').
'g' '\u0067' Requires the output to be formatted in general scientific notation as described below. The localization algorithm is applied.

After rounding for the precision, the formatting of the resulting magnitude m depends on its value.

If m is greater than or equal to 10-4 but less than 10precision then it is represented in decimal format.

If m is less than 10-4 or greater than or equal to 10precision, then it is represented in computerized scientific notation.

The total number of significant digits in m is equal to the precision. If the precision is not specified, then the default value is 6. If the precision is 0, then it is taken to be 1.

If the '#' flag is given then an FormatFlagsConversionMismatchException will be thrown.

'G' '\u0047' The upper-case variant of 'g'.
'f' '\u0066' Requires the output to be formatted using decimal format. The localization algorithm is applied.

The result is a string that represents the sign and magnitude (absolute value) of the argument. The formatting of the sign is described in the localization algorithm. The formatting of the magnitude m depends upon its value.

The magnitude is formatted as the integer part of m, with no leading zeroes, followed by the decimal separator followed by one or more decimal digits representing the fractional part of m.

The number of digits in the result for the fractional part of m or a is equal to the precision. If the precision is not specified then the default value is 6. If the precision is less than the number of digits to the right of the decimal point then the value will be rounded using the round half up algorithm. Otherwise, zeros may be appended to reach the precision. For a canonical representation of the value, use BigDecimal.toString().

All flags defined for Byte, Short, Integer, and Long apply.

If the '#' flag is given, then the decimal separator will always be present.

The default behavior when no flags are given is the same as for Float and Double.

The specification of width and precision is the same as defined for Float and Double.

Date/Time

This conversion may be applied to long, Long, Calendar, Date and TemporalAccessor

't' '\u0074' Prefix for date and time conversion characters.
'T' '\u0054' The upper-case variant of 't'.

The following date and time conversion character suffixes are defined for the 't' and 'T' conversions. The types are similar to but not completely identical to those defined by GNU date and POSIX strftime(3c). Additional conversion types are provided to access Java-specific functionality (e.g. 'L' for milliseconds within the second).

The following conversion characters are used for formatting times:

'H' '\u0048' Hour of the day for the 24-hour clock, formatted as two digits with a leading zero as necessary i.e. 00 - 23. 00 corresponds to midnight.
'I' '\u0049' Hour for the 12-hour clock, formatted as two digits with a leading zero as necessary, i.e. 01 - 12. 01 corresponds to one o'clock (either morning or afternoon).
'k' '\u006b' Hour of the day for the 24-hour clock, i.e. 0 - 23. 0 corresponds to midnight.
'l' '\u006c' Hour for the 12-hour clock, i.e. 1 - 12. 1 corresponds to one o'clock (either morning or afternoon).
'M' '\u004d' Minute within the hour formatted as two digits with a leading zero as necessary, i.e. 00 - 59.
'S' '\u0053' Seconds within the minute, formatted as two digits with a leading zero as necessary, i.e. 00 - 60 ("60" is a special value required to support leap seconds).
'L' '\u004c' Millisecond within the second formatted as three digits with leading zeros as necessary, i.e. 000 - 999.
'N' '\u004e' Nanosecond within the second, formatted as nine digits with leading zeros as necessary, i.e. 000000000 - 999999999. The precision of this value is limited by the resolution of the underlying operating system or hardware.
'p' '\u0070' Locale-specific morning or afternoon marker in lower case, e.g."am" or "pm". Use of the conversion prefix 'T' forces this output to upper case. (Note that 'p' produces lower-case output. This is different from GNU date and POSIX strftime(3c) which produce upper-case output.)
'z' '\u007a' RFC 822 style numeric time zone offset from GMT, e.g. -0800. This value will be adjusted as necessary for Daylight Saving Time. For long, Long, and Date the time zone used is the default time zone for this instance of the Java virtual machine.
'Z' '\u005a' A string representing the abbreviation for the time zone. This value will be adjusted as necessary for Daylight Saving Time. For long, Long, and Date the time zone used is the default time zone for this instance of the Java virtual machine. The Formatter's locale will supersede the locale of the argument (if any).
's' '\u0073' Seconds since the beginning of the epoch starting at 1 January 1970 00:00:00 UTC, i.e. Long.MIN_VALUE/1000 to Long.MAX_VALUE/1000.
'Q' '\u004f' Milliseconds since the beginning of the epoch starting at 1 January 1970 00:00:00 UTC, i.e. Long.MIN_VALUE to Long.MAX_VALUE. The precision of this value is limited by the resolution of the underlying operating system or hardware.

The following conversion characters are used for formatting dates:

'B' '\u0042' Locale-specific full month name, e.g. "January", "February".
'b' '\u0062' Locale-specific abbreviated month name, e.g. "Jan", "Feb".
'h' '\u0068' Same as 'b'.
'A' '\u0041' Locale-specific full name of the day of the week, e.g. "Sunday", "Monday"
'a' '\u0061' Locale-specific short name of the day of the week, e.g. "Sun", "Mon"
'C' '\u0043' Four-digit year divided by 100, formatted as two digits with leading zero as necessary, i.e. 00 - 99
'Y' '\u0059' Year, formatted to at least four digits with leading zeros as necessary, e.g. 0092 equals 92 CE for the Gregorian calendar.
'y' '\u0079' Last two digits of the year, formatted with leading zeros as necessary, i.e. 00 - 99.
'j' '\u006a' Day of year, formatted as three digits with leading zeros as necessary, e.g. 001 - 366 for the Gregorian calendar. 001 corresponds to the first day of the year.
'm' '\u006d' Month, formatted as two digits with leading zeros as necessary, i.e. 01 - 13, where "01" is the first month of the year and ("13" is a special value required to support lunar calendars).
'd' '\u0064' Day of month, formatted as two digits with leading zeros as necessary, i.e. 01 - 31, where "01" is the first day of the month.
'e' '\u0065' Day of month, formatted as two digits, i.e. 1 - 31 where "1" is the first day of the month.

The following conversion characters are used for formatting common date/time compositions.

'R' '\u0052' Time formatted for the 24-hour clock as "%tH:%tM"
'T' '\u0054' Time formatted for the 24-hour clock as "%tH:%tM:%tS".
'r' '\u0072' Time formatted for the 12-hour clock as "%tI:%tM:%tS %Tp". The location of the morning or afternoon marker ('%Tp') may be locale-dependent.
'D' '\u0044' Date formatted as "%tm/%td/%ty".
'F' '\u0046' ISO 8601 complete date formatted as "%tY-%tm-%td".
'c' '\u0063' Date and time formatted as "%ta %tb %td %tT %tZ %tY", e.g. "Sun Jul 20 16:17:00 EDT 1969".

The '-' flag defined for General conversions applies. If the '#' flag is given, then a FormatFlagsConversionMismatchException will be thrown.

The width is the minimum number of characters to be written to the output. If the length of the converted value is less than the width then the output will be padded by spaces ('\u0020') until the total number of characters equals width. The padding is on the left by default. If the '-' flag is given then the padding will be on the right. If width is not specified then there is no minimum.

The precision is not applicable. If the precision is specified then an IllegalFormatPrecisionException will be thrown.

Percent

The conversion does not correspond to any argument.

'%' The result is a literal '%' ('\u0025')

The width is the minimum number of characters to be written to the output including the '%'. If the length of the converted value is less than the width then the output will be padded by spaces ('\u0020') until the total number of characters equals width. The padding is on the left. If width is not specified then just the '%' is output.

The '-' flag defined for General conversions applies. If any other flags are provided, then a FormatFlagsConversionMismatchException will be thrown.

The precision is not applicable. If the precision is specified an IllegalFormatPrecisionException will be thrown.

Line Separator

The conversion does not correspond to any argument.

'n' the platform-specific line separator as returned by System.getProperty("line.separator").

Flags, width, and precision are not applicable. If any are provided an IllegalFormatFlagsException, IllegalFormatWidthException, and IllegalFormatPrecisionException, respectively will be thrown.

Argument Index

Format specifiers can reference arguments in three ways:

  • Explicit indexing is used when the format specifier contains an argument index. The argument index is a decimal integer indicating the position of the argument in the argument list. The first argument is referenced by "1$", the second by "2$", etc. An argument may be referenced more than once.

    For example:

      formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
                       "a", "b", "c", "d")
      // -> "d c b a d c b a"
    
  • Relative indexing is used when the format specifier contains a '<' ('\u003c') flag which causes the argument for the previous format specifier to be re-used. If there is no previous argument, then a MissingFormatArgumentException is thrown.
       formatter.format("%s %s %<s %<s", "a", "b", "c", "d")
       // -> "a b b b"
       // "c" and "d" are ignored because they are not referenced
    
  • Ordinary indexing is used when the format specifier contains neither an argument index nor a '<' flag. Each format specifier which uses ordinary indexing is assigned a sequential implicit index into argument list which is independent of the indices used by explicit or relative indexing.
      formatter.format("%s %s %s %s", "a", "b", "c", "d")
      // -> "a b c d"
    

It is possible to have a format string which uses all forms of indexing, for example:

  formatter.format("%2$s %s %<s %s", "a", "b", "c", "d")
  // -> "b a a b"
  // "c" and "d" are ignored because they are not referenced

The maximum number of arguments is limited by the maximum dimension of a Java array as defined by The Java™ Virtual Machine Specification. If the argument index is does not correspond to an available argument, then a MissingFormatArgumentException is thrown.

If there are more arguments than format specifiers, the extra arguments are ignored.

Unless otherwise specified, passing a null argument to any method or constructor in this class will cause a NullPointerException to be thrown.

Author: Iris Clark
Since:1.5
/** * An interpreter for printf-style format strings. This class provides support * for layout justification and alignment, common formats for numeric, string, * and date/time data, and locale-specific output. Common Java types such as * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar} * are supported. Limited formatting customization for arbitrary user types is * provided through the {@link Formattable} interface. * * <p> Formatters are not necessarily safe for multithreaded access. Thread * safety is optional and is the responsibility of users of methods in this * class. * * <p> Formatted printing for the Java language is heavily inspired by C's * {@code printf}. Although the format strings are similar to C, some * customizations have been made to accommodate the Java language and exploit * some of its features. Also, Java formatting is more strict than C's; for * example, if a conversion is incompatible with a flag, an exception will be * thrown. In C inapplicable flags are silently ignored. The format strings * are thus intended to be recognizable to C programmers but not necessarily * completely compatible with those in C. * * <p> Examples of expected usage: * * <blockquote><pre> * StringBuilder sb = new StringBuilder(); * // Send all output to the Appendable object sb * Formatter formatter = new Formatter(sb, Locale.US); * * // Explicit argument indices may be used to re-order output. * formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d") * // -&gt; " d c b a" * * // Optional locale as the first argument can be used to get * // locale-specific formatting of numbers. The precision and width can be * // given to round and align the value. * formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E); * // -&gt; "e = +2,7183" * * // The '(' numeric flag may be used to format negative numbers with * // parentheses rather than a minus sign. Group separators are * // automatically inserted. * formatter.format("Amount gained or lost since last statement: $ %(,.2f", * balanceDelta); * // -&gt; "Amount gained or lost since last statement: $ (6,217.58)" * </pre></blockquote> * * <p> Convenience methods for common formatting requests exist as illustrated * by the following invocations: * * <blockquote><pre> * // Writes a formatted string to System.out. * System.out.format("Local time: %tT", Calendar.getInstance()); * // -&gt; "Local time: 13:34:18" * * // Writes formatted output to System.err. * System.err.printf("Unable to open file '%1$s': %2$s", * fileName, exception.getMessage()); * // -&gt; "Unable to open file 'food': No such file or directory" * </pre></blockquote> * * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static * method {@link String#format(String,Object...) String.format}: * * <blockquote><pre> * // Format a string containing a date. * import java.util.Calendar; * import java.util.GregorianCalendar; * import static java.util.Calendar.*; * * Calendar c = new GregorianCalendar(1995, MAY, 23); * String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c); * // -&gt; s == "Duke's Birthday: May 23, 1995" * </pre></blockquote> * * <h3><a name="org">Organization</a></h3> * * <p> This specification is divided into two sections. The first section, <a * href="#summary">Summary</a>, covers the basic formatting concepts. This * section is intended for users who want to get started quickly and are * familiar with formatted printing in other programming languages. The second * section, <a href="#detail">Details</a>, covers the specific implementation * details. It is intended for users who want more precise specification of * formatting behavior. * * <h3><a name="summary">Summary</a></h3> * * <p> This section is intended to provide a brief overview of formatting * concepts. For precise behavioral details, refer to the <a * href="#detail">Details</a> section. * * <h4><a name="syntax">Format String Syntax</a></h4> * * <p> Every method which produces formatted output requires a <i>format * string</i> and an <i>argument list</i>. The format string is a {@link * String} which may contain fixed text and one or more embedded <i>format * specifiers</i>. Consider the following example: * * <blockquote><pre> * Calendar c = ...; * String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c); * </pre></blockquote> * * This format string is the first argument to the {@code format} method. It * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and * "{@code %1$tY}" which indicate how the arguments should be processed and * where they should be inserted in the text. The remaining portions of the * format string are fixed text including {@code "Dukes Birthday: "} and any * other spaces or punctuation. * * The argument list consists of all arguments passed to the method after the * format string. In the above example, the argument list is of size one and * consists of the {@link java.util.Calendar Calendar} object {@code c}. * * <ul> * * <li> The format specifiers for general, character, and numeric types have * the following syntax: * * <blockquote><pre> * %[argument_index$][flags][width][.precision]conversion * </pre></blockquote> * * <p> The optional <i>argument_index</i> is a decimal integer indicating the * position of the argument in the argument list. The first argument is * referenced by "{@code 1$}", the second by "{@code 2$}", etc. * * <p> The optional <i>flags</i> is a set of characters that modify the output * format. The set of valid flags depends on the conversion. * * <p> The optional <i>width</i> is a positive decimal integer indicating * the minimum number of characters to be written to the output. * * <p> The optional <i>precision</i> is a non-negative decimal integer usually * used to restrict the number of characters. The specific behavior depends on * the conversion. * * <p> The required <i>conversion</i> is a character indicating how the * argument should be formatted. The set of valid conversions for a given * argument depends on the argument's data type. * * <li> The format specifiers for types which are used to represents dates and * times have the following syntax: * * <blockquote><pre> * %[argument_index$][flags][width]conversion * </pre></blockquote> * * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are * defined as above. * * <p> The required <i>conversion</i> is a two character sequence. The first * character is {@code 't'} or {@code 'T'}. The second character indicates * the format to be used. These characters are similar to but not completely * identical to those defined by GNU {@code date} and POSIX * {@code strftime(3c)}. * * <li> The format specifiers which do not correspond to arguments have the * following syntax: * * <blockquote><pre> * %[flags][width]conversion * </pre></blockquote> * * <p> The optional <i>flags</i> and <i>width</i> is defined as above. * * <p> The required <i>conversion</i> is a character indicating content to be * inserted in the output. * * </ul> * * <h4> Conversions </h4> * * <p> Conversions are divided into the following categories: * * <ol> * * <li> <b>General</b> - may be applied to any argument * type * * <li> <b>Character</b> - may be applied to basic types which represent * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link * Byte}, {@code short}, and {@link Short}. This conversion may also be * applied to the types {@code int} and {@link Integer} when {@link * Character#isValidCodePoint} returns {@code true} * * <li> <b>Numeric</b> * * <ol> * * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte}, * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger * BigInteger} (but not {@code char} or {@link Character}) * * <li><b>Floating Point</b> - may be applied to Java floating-point types: * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link * java.math.BigDecimal BigDecimal} * * </ol> * * <li> <b>Date/Time</b> - may be applied to Java types which are capable of * encoding a date or time: {@code long}, {@link Long}, {@link Calendar}, * {@link Date} and {@link TemporalAccessor TemporalAccessor} * * <li> <b>Percent</b> - produces a literal {@code '%'} * (<tt>'&#92;u0025'</tt>) * * <li> <b>Line Separator</b> - produces the platform-specific line separator * * </ol> * * <p> The following table summarizes the supported conversions. Conversions * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'}, * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'}, * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding * lower-case conversion characters except that the result is converted to * upper case according to the rules of the prevailing {@link java.util.Locale * Locale}. The result is equivalent to the following invocation of {@link * String#toUpperCase()} * * <pre> * out.toUpperCase() </pre> * * <table cellpadding=5 summary="genConv"> * * <tr><th valign="bottom"> Conversion * <th valign="bottom"> Argument Category * <th valign="bottom"> Description * * <tr><td valign="top"> {@code 'b'}, {@code 'B'} * <td valign="top"> general * <td> If the argument <i>arg</i> is {@code null}, then the result is * "{@code false}". If <i>arg</i> is a {@code boolean} or {@link * Boolean}, then the result is the string returned by {@link * String#valueOf(boolean) String.valueOf(arg)}. Otherwise, the result is * "true". * * <tr><td valign="top"> {@code 'h'}, {@code 'H'} * <td valign="top"> general * <td> If the argument <i>arg</i> is {@code null}, then the result is * "{@code null}". Otherwise, the result is obtained by invoking * {@code Integer.toHexString(arg.hashCode())}. * * <tr><td valign="top"> {@code 's'}, {@code 'S'} * <td valign="top"> general * <td> If the argument <i>arg</i> is {@code null}, then the result is * "{@code null}". If <i>arg</i> implements {@link Formattable}, then * {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the * result is obtained by invoking {@code arg.toString()}. * * <tr><td valign="top">{@code 'c'}, {@code 'C'} * <td valign="top"> character * <td> The result is a Unicode character * * <tr><td valign="top">{@code 'd'} * <td valign="top"> integral * <td> The result is formatted as a decimal integer * * <tr><td valign="top">{@code 'o'} * <td valign="top"> integral * <td> The result is formatted as an octal integer * * <tr><td valign="top">{@code 'x'}, {@code 'X'} * <td valign="top"> integral * <td> The result is formatted as a hexadecimal integer * * <tr><td valign="top">{@code 'e'}, {@code 'E'} * <td valign="top"> floating point * <td> The result is formatted as a decimal number in computerized * scientific notation * * <tr><td valign="top">{@code 'f'} * <td valign="top"> floating point * <td> The result is formatted as a decimal number * * <tr><td valign="top">{@code 'g'}, {@code 'G'} * <td valign="top"> floating point * <td> The result is formatted using computerized scientific notation or * decimal format, depending on the precision and the value after rounding. * * <tr><td valign="top">{@code 'a'}, {@code 'A'} * <td valign="top"> floating point * <td> The result is formatted as a hexadecimal floating-point number with * a significand and an exponent. This conversion is <b>not</b> supported * for the {@code BigDecimal} type despite the latter's being in the * <i>floating point</i> argument category. * * <tr><td valign="top">{@code 't'}, {@code 'T'} * <td valign="top"> date/time * <td> Prefix for date and time conversion characters. See <a * href="#dt">Date/Time Conversions</a>. * * <tr><td valign="top">{@code '%'} * <td valign="top"> percent * <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>) * * <tr><td valign="top">{@code 'n'} * <td valign="top"> line separator * <td> The result is the platform-specific line separator * * </table> * * <p> Any characters not explicitly defined as conversions are illegal and are * reserved for future extensions. * * <h4><a name="dt">Date/Time Conversions</a></h4> * * <p> The following date and time conversion suffix characters are defined for * the {@code 't'} and {@code 'T'} conversions. The types are similar to but * not completely identical to those defined by GNU {@code date} and POSIX * {@code strftime(3c)}. Additional conversion types are provided to access * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the * second). * * <p> The following conversion characters are used for formatting times: * * <table cellpadding=5 summary="time"> * * <tr><td valign="top"> {@code 'H'} * <td> Hour of the day for the 24-hour clock, formatted as two digits with * a leading zero as necessary i.e. {@code 00 - 23}. * * <tr><td valign="top">{@code 'I'} * <td> Hour for the 12-hour clock, formatted as two digits with a leading * zero as necessary, i.e. {@code 01 - 12}. * * <tr><td valign="top">{@code 'k'} * <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}. * * <tr><td valign="top">{@code 'l'} * <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}. * * <tr><td valign="top">{@code 'M'} * <td> Minute within the hour formatted as two digits with a leading zero * as necessary, i.e. {@code 00 - 59}. * * <tr><td valign="top">{@code 'S'} * <td> Seconds within the minute, formatted as two digits with a leading * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special * value required to support leap seconds). * * <tr><td valign="top">{@code 'L'} * <td> Millisecond within the second formatted as three digits with * leading zeros as necessary, i.e. {@code 000 - 999}. * * <tr><td valign="top">{@code 'N'} * <td> Nanosecond within the second, formatted as nine digits with leading * zeros as necessary, i.e. {@code 000000000 - 999999999}. * * <tr><td valign="top">{@code 'p'} * <td> Locale-specific {@linkplain * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker * in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion * prefix {@code 'T'} forces this output to upper case. * * <tr><td valign="top">{@code 'z'} * <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a> * style numeric time zone offset from GMT, e.g. {@code -0800}. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. * * <tr><td valign="top">{@code 'Z'} * <td> A string representing the abbreviation for the time zone. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. The Formatter's locale will * supersede the locale of the argument (if any). * * <tr><td valign="top">{@code 's'} * <td> Seconds since the beginning of the epoch starting at 1 January 1970 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to * {@code Long.MAX_VALUE/1000}. * * <tr><td valign="top">{@code 'Q'} * <td> Milliseconds since the beginning of the epoch starting at 1 January * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to * {@code Long.MAX_VALUE}. * * </table> * * <p> The following conversion characters are used for formatting dates: * * <table cellpadding=5 summary="date"> * * <tr><td valign="top">{@code 'B'} * <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths * full month name}, e.g. {@code "January"}, {@code "February"}. * * <tr><td valign="top">{@code 'b'} * <td> Locale-specific {@linkplain * java.text.DateFormatSymbols#getShortMonths abbreviated month name}, * e.g. {@code "Jan"}, {@code "Feb"}. * * <tr><td valign="top">{@code 'h'} * <td> Same as {@code 'b'}. * * <tr><td valign="top">{@code 'A'} * <td> Locale-specific full name of the {@linkplain * java.text.DateFormatSymbols#getWeekdays day of the week}, * e.g. {@code "Sunday"}, {@code "Monday"} * * <tr><td valign="top">{@code 'a'} * <td> Locale-specific short name of the {@linkplain * java.text.DateFormatSymbols#getShortWeekdays day of the week}, * e.g. {@code "Sun"}, {@code "Mon"} * * <tr><td valign="top">{@code 'C'} * <td> Four-digit year divided by {@code 100}, formatted as two digits * with leading zero as necessary, i.e. {@code 00 - 99} * * <tr><td valign="top">{@code 'Y'} * <td> Year, formatted as at least four digits with leading zeros as * necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian * calendar. * * <tr><td valign="top">{@code 'y'} * <td> Last two digits of the year, formatted with leading zeros as * necessary, i.e. {@code 00 - 99}. * * <tr><td valign="top">{@code 'j'} * <td> Day of year, formatted as three digits with leading zeros as * necessary, e.g. {@code 001 - 366} for the Gregorian calendar. * * <tr><td valign="top">{@code 'm'} * <td> Month, formatted as two digits with leading zeros as necessary, * i.e. {@code 01 - 13}. * * <tr><td valign="top">{@code 'd'} * <td> Day of month, formatted as two digits with leading zeros as * necessary, i.e. {@code 01 - 31} * * <tr><td valign="top">{@code 'e'} * <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}. * * </table> * * <p> The following conversion characters are used for formatting common * date/time compositions. * * <table cellpadding=5 summary="composites"> * * <tr><td valign="top">{@code 'R'} * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"} * * <tr><td valign="top">{@code 'T'} * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}. * * <tr><td valign="top">{@code 'r'} * <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}. * The location of the morning or afternoon marker ({@code '%Tp'}) may be * locale-dependent. * * <tr><td valign="top">{@code 'D'} * <td> Date formatted as {@code "%tm/%td/%ty"}. * * <tr><td valign="top">{@code 'F'} * <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a> * complete date formatted as {@code "%tY-%tm-%td"}. * * <tr><td valign="top">{@code 'c'} * <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"}, * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}. * * </table> * * <p> Any characters not explicitly defined as date/time conversion suffixes * are illegal and are reserved for future extensions. * * <h4> Flags </h4> * * <p> The following table summarizes the supported flags. <i>y</i> means the * flag is supported for the indicated argument types. * * <table cellpadding=5 summary="genConv"> * * <tr><th valign="bottom"> Flag <th valign="bottom"> General * <th valign="bottom"> Character <th valign="bottom"> Integral * <th valign="bottom"> Floating Point * <th valign="bottom"> Date/Time * <th valign="bottom"> Description * * <tr><td> '-' <td align="center" valign="top"> y * <td align="center" valign="top"> y * <td align="center" valign="top"> y * <td align="center" valign="top"> y * <td align="center" valign="top"> y * <td> The result will be left-justified. * * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup> * <td align="center" valign="top"> - * <td align="center" valign="top"> y<sup>3</sup> * <td align="center" valign="top"> y * <td align="center" valign="top"> - * <td> The result should use a conversion-dependent alternate form * * <tr><td> '+' <td align="center" valign="top"> - * <td align="center" valign="top"> - * <td align="center" valign="top"> y<sup>4</sup> * <td align="center" valign="top"> y * <td align="center" valign="top"> - * <td> The result will always include a sign * * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> - * <td align="center" valign="top"> - * <td align="center" valign="top"> y<sup>4</sup> * <td align="center" valign="top"> y * <td align="center" valign="top"> - * <td> The result will include a leading space for positive values * * <tr><td> '0' <td align="center" valign="top"> - * <td align="center" valign="top"> - * <td align="center" valign="top"> y * <td align="center" valign="top"> y * <td align="center" valign="top"> - * <td> The result will be zero-padded * * <tr><td> ',' <td align="center" valign="top"> - * <td align="center" valign="top"> - * <td align="center" valign="top"> y<sup>2</sup> * <td align="center" valign="top"> y<sup>5</sup> * <td align="center" valign="top"> - * <td> The result will include locale-specific {@linkplain * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators} * * <tr><td> '(' <td align="center" valign="top"> - * <td align="center" valign="top"> - * <td align="center" valign="top"> y<sup>4</sup> * <td align="center" valign="top"> y<sup>5</sup> * <td align="center"> - * <td> The result will enclose negative numbers in parentheses * * </table> * * <p> <sup>1</sup> Depends on the definition of {@link Formattable}. * * <p> <sup>2</sup> For {@code 'd'} conversion only. * * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'} * conversions only. * * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger} * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}. * * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'}, * {@code 'g'}, and {@code 'G'} conversions only. * * <p> Any characters not explicitly defined as flags are illegal and are * reserved for future extensions. * * <h4> Width </h4> * * <p> The width is the minimum number of characters to be written to the * output. For the line separator conversion, width is not applicable; if it * is provided, an exception will be thrown. * * <h4> Precision </h4> * * <p> For general argument types, the precision is the maximum number of * characters to be written to the output. * * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'}, * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the * radix point. If the conversion is {@code 'g'} or {@code 'G'}, then the * precision is the total number of digits in the resulting magnitude after * rounding. * * <p> For character, integral, and date/time argument types and the percent * and line separator conversions, the precision is not applicable; if a * precision is provided, an exception will be thrown. * * <h4> Argument Index </h4> * * <p> The argument index is a decimal integer indicating the position of the * argument in the argument list. The first argument is referenced by * "{@code 1$}", the second by "{@code 2$}", etc. * * <p> Another way to reference arguments by position is to use the * {@code '<'} (<tt>'&#92;u003c'</tt>) flag, which causes the argument for * the previous format specifier to be re-used. For example, the following two * statements would produce identical strings: * * <blockquote><pre> * Calendar c = ...; * String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c); * * String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c); * </pre></blockquote> * * <hr> * <h3><a name="detail">Details</a></h3> * * <p> This section is intended to provide behavioral details for formatting, * including conditions and exceptions, supported data types, localization, and * interactions between flags, conversions, and data types. For an overview of * formatting concepts, refer to the <a href="#summary">Summary</a> * * <p> Any characters not explicitly defined as conversions, date/time * conversion suffixes, or flags are illegal and are reserved for * future extensions. Use of such a character in a format string will * cause an {@link UnknownFormatConversionException} or {@link * UnknownFormatFlagsException} to be thrown. * * <p> If the format specifier contains a width or precision with an invalid * value or which is otherwise unsupported, then a {@link * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException} * respectively will be thrown. * * <p> If a format specifier contains a conversion character that is not * applicable to the corresponding argument, then an {@link * IllegalFormatConversionException} will be thrown. * * <p> All specified exceptions may be thrown by any of the {@code format} * methods of {@code Formatter} as well as by any {@code format} convenience * methods such as {@link String#format(String,Object...) String.format} and * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}. * * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'}, * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the * corresponding lower-case conversion characters except that the result is * converted to upper case according to the rules of the prevailing {@link * java.util.Locale Locale}. The result is equivalent to the following * invocation of {@link String#toUpperCase()} * * <pre> * out.toUpperCase() </pre> * * <h4><a name="dgen">General</a></h4> * * <p> The following general conversions may be applied to any argument type: * * <table cellpadding=5 summary="dgConv"> * * <tr><td valign="top"> {@code 'b'} * <td valign="top"> <tt>'&#92;u0062'</tt> * <td> Produces either "{@code true}" or "{@code false}" as returned by * {@link Boolean#toString(boolean)}. * * <p> If the argument is {@code null}, then the result is * "{@code false}". If the argument is a {@code boolean} or {@link * Boolean}, then the result is the string returned by {@link * String#valueOf(boolean) String.valueOf()}. Otherwise, the result is * "{@code true}". * * <p> If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'B'} * <td valign="top"> <tt>'&#92;u0042'</tt> * <td> The upper-case variant of {@code 'b'}. * * <tr><td valign="top"> {@code 'h'} * <td valign="top"> <tt>'&#92;u0068'</tt> * <td> Produces a string representing the hash code value of the object. * * <p> If the argument, <i>arg</i> is {@code null}, then the * result is "{@code null}". Otherwise, the result is obtained * by invoking {@code Integer.toHexString(arg.hashCode())}. * * <p> If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'H'} * <td valign="top"> <tt>'&#92;u0048'</tt> * <td> The upper-case variant of {@code 'h'}. * * <tr><td valign="top"> {@code 's'} * <td valign="top"> <tt>'&#92;u0073'</tt> * <td> Produces a string. * * <p> If the argument is {@code null}, then the result is * "{@code null}". If the argument implements {@link Formattable}, then * its {@link Formattable#formatTo formatTo} method is invoked. * Otherwise, the result is obtained by invoking the argument's * {@code toString()} method. * * <p> If the {@code '#'} flag is given and the argument is not a {@link * Formattable} , then a {@link FormatFlagsConversionMismatchException} * will be thrown. * * <tr><td valign="top"> {@code 'S'} * <td valign="top"> <tt>'&#92;u0053'</tt> * <td> The upper-case variant of {@code 's'}. * * </table> * * <p> The following <a name="dFlags">flags</a> apply to general conversions: * * <table cellpadding=5 summary="dFlags"> * * <tr><td valign="top"> {@code '-'} * <td valign="top"> <tt>'&#92;u002d'</tt> * <td> Left justifies the output. Spaces (<tt>'&#92;u0020'</tt>) will be * added at the end of the converted value as required to fill the minimum * width of the field. If the width is not provided, then a {@link * MissingFormatWidthException} will be thrown. If this flag is not given * then the output will be right-justified. * * <tr><td valign="top"> {@code '#'} * <td valign="top"> <tt>'&#92;u0023'</tt> * <td> Requires the output use an alternate form. The definition of the * form is specified by the conversion. * * </table> * * <p> The <a name="genWidth">width</a> is the minimum number of characters to * be written to the * output. If the length of the converted value is less than the width then * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'&#92;u0020'</tt>) * until the total number of characters equals the width. The padding is on * the left by default. If the {@code '-'} flag is given, then the padding * will be on the right. If the width is not specified then there is no * minimum. * * <p> The precision is the maximum number of characters to be written to the * output. The precision is applied before the width, thus the output will be * truncated to {@code precision} characters even if the width is greater than * the precision. If the precision is not specified then there is no explicit * limit on the number of characters. * * <h4><a name="dchar">Character</a></h4> * * This conversion may be applied to {@code char} and {@link Character}. It * may also be applied to the types {@code byte}, {@link Byte}, * {@code short}, and {@link Short}, {@code int} and {@link Integer} when * {@link Character#isValidCodePoint} returns {@code true}. If it returns * {@code false} then an {@link IllegalFormatCodePointException} will be * thrown. * * <table cellpadding=5 summary="charConv"> * * <tr><td valign="top"> {@code 'c'} * <td valign="top"> <tt>'&#92;u0063'</tt> * <td> Formats the argument as a Unicode character as described in <a * href="../lang/Character.html#unicode">Unicode Character * Representation</a>. This may be more than one 16-bit {@code char} in * the case where the argument represents a supplementary character. * * <p> If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'C'} * <td valign="top"> <tt>'&#92;u0043'</tt> * <td> The upper-case variant of {@code 'c'}. * * </table> * * <p> The {@code '-'} flag defined for <a href="#dFlags">General * conversions</a> applies. If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <p> The width is defined as for <a href="#genWidth">General conversions</a>. * * <p> The precision is not applicable. If the precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * * <h4><a name="dnum">Numeric</a></h4> * * <p> Numeric conversions are divided into the following categories: * * <ol> * * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a> * * <li> <a href="#dnbint"><b>BigInteger</b></a> * * <li> <a href="#dndec"><b>Float and Double</b></a> * * <li> <a href="#dnbdec"><b>BigDecimal</b></a> * * </ol> * * <p> Numeric types will be formatted according to the following algorithm: * * <p><b><a name="L10nAlgorithm"> Number Localization Algorithm</a></b> * * <p> After digits are obtained for the integer part, fractional part, and * exponent (as appropriate for the data type), the following transformation * is applied: * * <ol> * * <li> Each digit character <i>d</i> in the string is replaced by a * locale-specific digit computed relative to the current locale's * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit} * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'} * <i>&nbsp;+&nbsp;z</i>. * * <li> If a decimal separator is present, a locale-specific {@linkplain * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is * substituted. * * <li> If the {@code ','} (<tt>'&#92;u002c'</tt>) * <a name="L10nGroup">flag</a> is given, then the locale-specific {@linkplain * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is * inserted by scanning the integer part of the string from least significant * to most significant digits and inserting a separator at intervals defined by * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping * size}. * * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted * after the sign character, if any, and before the first non-zero digit, until * the length of the string is equal to the requested field width. * * <li> If the value is negative and the {@code '('} flag is given, then a * {@code '('} (<tt>'&#92;u0028'</tt>) is prepended and a {@code ')'} * (<tt>'&#92;u0029'</tt>) is appended. * * <li> If the value is negative (or floating-point negative zero) and * {@code '('} flag is not given, then a {@code '-'} (<tt>'&#92;u002d'</tt>) * is prepended. * * <li> If the {@code '+'} flag is given and the value is positive or zero (or * floating-point positive zero), then a {@code '+'} (<tt>'&#92;u002b'</tt>) * will be prepended. * * </ol> * * <p> If the value is NaN or positive infinity the literal strings "NaN" or * "Infinity" respectively, will be output. If the value is negative infinity, * then the output will be "(Infinity)" if the {@code '('} flag is given * otherwise the output will be "-Infinity". These values are not localized. * * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a> * * <p> The following conversions may be applied to {@code byte}, {@link Byte}, * {@code short}, {@link Short}, {@code int} and {@link Integer}, * {@code long}, and {@link Long}. * * <table cellpadding=5 summary="IntConv"> * * <tr><td valign="top"> {@code 'd'} * <td valign="top"> <tt>'&#92;u0064'</tt> * <td> Formats the argument as a decimal integer. The <a * href="#L10nAlgorithm">localization algorithm</a> is applied. * * <p> If the {@code '0'} flag is given and the value is negative, then * the zero padding will occur after the sign. * * <p> If the {@code '#'} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'o'} * <td valign="top"> <tt>'&#92;u006f'</tt> * <td> Formats the argument as an integer in base eight. No localization * is applied. * * <p> If <i>x</i> is negative then the result will be an unsigned value * generated by adding 2<sup>n</sup> to the value where {@code n} is the * number of bits in the type as returned by the static {@code SIZE} field * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short}, * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long} * classes as appropriate. * * <p> If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code '0'}. * * <p> If the {@code '0'} flag is given then the output will be padded * with leading zeros to the field width following any indication of sign. * * <p> If {@code '('}, {@code '+'}, '&nbsp;&nbsp;', or {@code ','} flags * are given then a {@link FormatFlagsConversionMismatchException} will be * thrown. * * <tr><td valign="top"> {@code 'x'} * <td valign="top"> <tt>'&#92;u0078'</tt> * <td> Formats the argument as an integer in base sixteen. No * localization is applied. * * <p> If <i>x</i> is negative then the result will be an unsigned value * generated by adding 2<sup>n</sup> to the value where {@code n} is the * number of bits in the type as returned by the static {@code SIZE} field * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short}, * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long} * classes as appropriate. * * <p> If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code "0x"}. * * <p> If the {@code '0'} flag is given then the output will be padded to * the field width with leading zeros after the radix indicator or sign (if * present). * * <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or * {@code ','} flags are given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'X'} * <td valign="top"> <tt>'&#92;u0058'</tt> * <td> The upper-case variant of {@code 'x'}. The entire string * representing the number will be converted to {@linkplain * String#toUpperCase upper case} including the {@code 'x'} (if any) and * all hexadecimal digits {@code 'a'} - {@code 'f'} * (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>). * * </table> * * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and * both the {@code '#'} and the {@code '0'} flags are given, then result will * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or * {@code "0X"} for hexadecimal), some number of zeros (based on the width), * and the value. * * <p> If the {@code '-'} flag is not given, then the space padding will occur * before the sign. * * <p> The following <a name="intFlags">flags</a> apply to numeric integral * conversions: * * <table cellpadding=5 summary="intFlags"> * * <tr><td valign="top"> {@code '+'} * <td valign="top"> <tt>'&#92;u002b'</tt> * <td> Requires the output to include a positive sign for all positive * numbers. If this flag is not given then only negative values will * include a sign. * * <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given * then an {@link IllegalFormatFlagsException} will be thrown. * * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt> * <td valign="top"> <tt>'&#92;u0020'</tt> * <td> Requires the output to include a single extra space * (<tt>'&#92;u0020'</tt>) for non-negative values. * * <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given * then an {@link IllegalFormatFlagsException} will be thrown. * * <tr><td valign="top"> {@code '0'} * <td valign="top"> <tt>'&#92;u0030'</tt> * <td> Requires the output to be padded with leading {@linkplain * java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field * width following any sign or radix indicator except when converting NaN * or infinity. If the width is not provided, then a {@link * MissingFormatWidthException} will be thrown. * * <p> If both the {@code '-'} and {@code '0'} flags are given then an * {@link IllegalFormatFlagsException} will be thrown. * * <tr><td valign="top"> {@code ','} * <td valign="top"> <tt>'&#92;u002c'</tt> * <td> Requires the output to include the locale-specific {@linkplain * java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as * described in the <a href="#L10nGroup">"group" section</a> of the * localization algorithm. * * <tr><td valign="top"> {@code '('} * <td valign="top"> <tt>'&#92;u0028'</tt> * <td> Requires the output to prepend a {@code '('} * (<tt>'&#92;u0028'</tt>) and append a {@code ')'} * (<tt>'&#92;u0029'</tt>) to negative values. * * </table> * * <p> If no <a name="intdFlags">flags</a> are given the default formatting is * as follows: * * <ul> * * <li> The output is right-justified within the {@code width} * * <li> Negative numbers begin with a {@code '-'} (<tt>'&#92;u002d'</tt>) * * <li> Positive numbers and zero do not include a sign or extra leading * space * * <li> No grouping separators are included * * </ul> * * <p> The <a name="intWidth">width</a> is the minimum number of characters to * be written to the output. This includes any signs, digits, grouping * separators, radix indicator, and parentheses. If the length of the * converted value is less than the width then the output will be padded by * spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals * width. The padding is on the left by default. If {@code '-'} flag is * given then the padding will be on the right. If width is not specified then * there is no minimum. * * <p> The precision is not applicable. If precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * * <p><a name="dnbint"><b> BigInteger </b></a> * * <p> The following conversions may be applied to {@link * java.math.BigInteger}. * * <table cellpadding=5 summary="BIntConv"> * * <tr><td valign="top"> {@code 'd'} * <td valign="top"> <tt>'&#92;u0064'</tt> * <td> Requires the output to be formatted as a decimal integer. The <a * href="#L10nAlgorithm">localization algorithm</a> is applied. * * <p> If the {@code '#'} flag is given {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'o'} * <td valign="top"> <tt>'&#92;u006f'</tt> * <td> Requires the output to be formatted as an integer in base eight. * No localization is applied. * * <p> If <i>x</i> is negative then the result will be a signed value * beginning with {@code '-'} (<tt>'&#92;u002d'</tt>). Signed output is * allowed for this type because unlike the primitive types it is not * possible to create an unsigned equivalent without assuming an explicit * data-type size. * * <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given * then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>). * * <p> If the {@code '#'} flag is given then the output will always begin * with {@code '0'} prefix. * * <p> If the {@code '0'} flag is given then the output will be padded * with leading zeros to the field width following any indication of sign. * * <p> If the {@code ','} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'x'} * <td valign="top"> <tt>'&#92;u0078'</tt> * <td> Requires the output to be formatted as an integer in base * sixteen. No localization is applied. * * <p> If <i>x</i> is negative then the result will be a signed value * beginning with {@code '-'} (<tt>'&#92;u002d'</tt>). Signed output is * allowed for this type because unlike the primitive types it is not * possible to create an unsigned equivalent without assuming an explicit * data-type size. * * <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given * then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>). * * <p> If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code "0x"}. * * <p> If the {@code '0'} flag is given then the output will be padded to * the field width with leading zeros after the radix indicator or sign (if * present). * * <p> If the {@code ','} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'X'} * <td valign="top"> <tt>'&#92;u0058'</tt> * <td> The upper-case variant of {@code 'x'}. The entire string * representing the number will be converted to {@linkplain * String#toUpperCase upper case} including the {@code 'x'} (if any) and * all hexadecimal digits {@code 'a'} - {@code 'f'} * (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>). * * </table> * * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and * both the {@code '#'} and the {@code '0'} flags are given, then result will * contain the base indicator ({@code '0'} for octal and {@code "0x"} or * {@code "0X"} for hexadecimal), some number of zeros (based on the width), * and the value. * * <p> If the {@code '0'} flag is given and the value is negative, then the * zero padding will occur after the sign. * * <p> If the {@code '-'} flag is not given, then the space padding will occur * before the sign. * * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and * Long apply. The <a href="#intdFlags">default behavior</a> when no flags are * given is the same as for Byte, Short, Integer, and Long. * * <p> The specification of <a href="#intWidth">width</a> is the same as * defined for Byte, Short, Integer, and Long. * * <p> The precision is not applicable. If precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * * <p><a name="dndec"><b> Float and Double</b></a> * * <p> The following conversions may be applied to {@code float}, {@link * Float}, {@code double} and {@link Double}. * * <table cellpadding=5 summary="floatConv"> * * <tr><td valign="top"> {@code 'e'} * <td valign="top"> <tt>'&#92;u0065'</tt> * <td> Requires the output to be formatted using <a * name="scientific">computerized scientific notation</a>. The <a * href="#L10nAlgorithm">localization algorithm</a> is applied. * * <p> The formatting of the magnitude <i>m</i> depends upon its value. * * <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or * "Infinity", respectively, will be output. These values are not * localized. * * <p> If <i>m</i> is positive-zero or negative-zero, then the exponent * will be {@code "+00"}. * * <p> Otherwise, the result is a string that represents the sign and * magnitude (absolute value) of the argument. The formatting of the sign * is described in the <a href="#L10nAlgorithm">localization * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its * value. * * <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup> * &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the * mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so * that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the * integer part of <i>a</i>, as a single decimal digit, followed by the * decimal separator followed by decimal digits representing the fractional * part of <i>a</i>, followed by the exponent symbol {@code 'e'} * (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed * by a representation of <i>n</i> as a decimal integer, as produced by the * method {@link Long#toString(long, int)}, and zero-padded to include at * least two digits. * * <p> The number of digits in the result for the fractional part of * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is less * than the number of digits which would appear after the decimal point in * the string returned by {@link Float#toString(float)} or {@link * Double#toString(double)} respectively, then the value will be rounded * using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * Float#toString(float)} or {@link Double#toString(double)} as * appropriate. * * <p>If the {@code ','} flag is given, then an {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'E'} * <td valign="top"> <tt>'&#92;u0045'</tt> * <td> The upper-case variant of {@code 'e'}. The exponent symbol * will be {@code 'E'} (<tt>'&#92;u0045'</tt>). * * <tr><td valign="top"> {@code 'g'} * <td valign="top"> <tt>'&#92;u0067'</tt> * <td> Requires the output to be formatted in general scientific notation * as described below. The <a href="#L10nAlgorithm">localization * algorithm</a> is applied. * * <p> After rounding for the precision, the formatting of the resulting * magnitude <i>m</i> depends on its value. * * <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less * than 10<sup>precision</sup> then it is represented in <i><a * href="#decimal">decimal format</a></i>. * * <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to * 10<sup>precision</sup>, then it is represented in <i><a * href="#scientific">computerized scientific notation</a></i>. * * <p> The total number of significant digits in <i>m</i> is equal to the * precision. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * * <p> If the {@code '#'} flag is given then an {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'G'} * <td valign="top"> <tt>'&#92;u0047'</tt> * <td> The upper-case variant of {@code 'g'}. * * <tr><td valign="top"> {@code 'f'} * <td valign="top"> <tt>'&#92;u0066'</tt> * <td> Requires the output to be formatted using <a name="decimal">decimal * format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is * applied. * * <p> The result is a string that represents the sign and magnitude * (absolute value) of the argument. The formatting of the sign is * described in the <a href="#L10nAlgorithm">localization * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its * value. * * <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or * "Infinity", respectively, will be output. These values are not * localized. * * <p> The magnitude is formatted as the integer part of <i>m</i>, with no * leading zeroes, followed by the decimal separator followed by one or * more decimal digits representing the fractional part of <i>m</i>. * * <p> The number of digits in the result for the fractional part of * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is less * than the number of digits which would appear after the decimal point in * the string returned by {@link Float#toString(float)} or {@link * Double#toString(double)} respectively, then the value will be rounded * using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * Float#toString(float)} or {@link Double#toString(double)} as * appropriate. * * <tr><td valign="top"> {@code 'a'} * <td valign="top"> <tt>'&#92;u0061'</tt> * <td> Requires the output to be formatted in hexadecimal exponential * form. No localization is applied. * * <p> The result is a string that represents the sign and magnitude * (absolute value) of the argument <i>x</i>. * * <p> If <i>x</i> is negative or a negative-zero value then the result * will begin with {@code '-'} (<tt>'&#92;u002d'</tt>). * * <p> If <i>x</i> is positive or a positive-zero value and the * {@code '+'} flag is given then the result will begin with {@code '+'} * (<tt>'&#92;u002b'</tt>). * * <p> The formatting of the magnitude <i>m</i> depends upon its value. * * <ul> * * <li> If the value is NaN or infinite, the literal strings "NaN" or * "Infinity", respectively, will be output. * * <li> If <i>m</i> is zero then it is represented by the string * {@code "0x0.0p0"}. * * <li> If <i>m</i> is a {@code double} value with a normalized * representation then substrings are used to represent the significand and * exponent fields. The significand is represented by the characters * {@code "0x1."} followed by the hexadecimal representation of the rest * of the significand as a fraction. The exponent is represented by * {@code 'p'} (<tt>'&#92;u0070'</tt>) followed by a decimal string of the * unbiased exponent as if produced by invoking {@link * Integer#toString(int) Integer.toString} on the exponent value. If the * precision is specified, the value is rounded to the given number of * hexadecimal digits. * * <li> If <i>m</i> is a {@code double} value with a subnormal * representation then, unless the precision is specified to be in the range * 1 through 12, inclusive, the significand is represented by the characters * {@code '0x0.'} followed by the hexadecimal representation of the rest of * the significand as a fraction, and the exponent represented by * {@code 'p-1022'}. If the precision is in the interval * [1,&nbsp;12], the subnormal value is normalized such that it * begins with the characters {@code '0x1.'}, rounded to the number of * hexadecimal digits of precision, and the exponent adjusted * accordingly. Note that there must be at least one nonzero digit in a * subnormal significand. * * </ul> * * <p> If the {@code '('} or {@code ','} flags are given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'A'} * <td valign="top"> <tt>'&#92;u0041'</tt> * <td> The upper-case variant of {@code 'a'}. The entire string * representing the number will be converted to upper case including the * {@code 'x'} (<tt>'&#92;u0078'</tt>) and {@code 'p'} * (<tt>'&#92;u0070'</tt> and all hexadecimal digits {@code 'a'} - * {@code 'f'} (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>). * * </table> * * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and * Long apply. * * <p> If the {@code '#'} flag is given, then the decimal separator will * always be present. * * <p> If no <a name="floatdFlags">flags</a> are given the default formatting * is as follows: * * <ul> * * <li> The output is right-justified within the {@code width} * * <li> Negative numbers begin with a {@code '-'} * * <li> Positive numbers and positive zero do not include a sign or extra * leading space * * <li> No grouping separators are included * * <li> The decimal separator will only appear if a digit follows it * * </ul> * * <p> The <a name="floatDWidth">width</a> is the minimum number of characters * to be written to the output. This includes any signs, digits, grouping * separators, decimal separators, exponential symbol, radix indicator, * parentheses, and strings representing infinity and NaN as applicable. If * the length of the converted value is less than the width then the output * will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of * characters equals width. The padding is on the left by default. If the * {@code '-'} flag is given then the padding will be on the right. If width * is not specified then there is no minimum. * * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'}, * {@code 'E'} or {@code 'f'}, then the precision is the number of digits * after the decimal separator. If the precision is not specified, then it is * assumed to be {@code 6}. * * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is * the total number of significant digits in the resulting magnitude after * rounding. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision * is the number of hexadecimal digits after the radix point. If the * precision is not provided, then all of the digits as returned by {@link * Double#toHexString(double)} will be output. * * <p><a name="dnbdec"><b> BigDecimal </b></a> * * <p> The following conversions may be applied {@link java.math.BigDecimal * BigDecimal}. * * <table cellpadding=5 summary="floatConv"> * * <tr><td valign="top"> {@code 'e'} * <td valign="top"> <tt>'&#92;u0065'</tt> * <td> Requires the output to be formatted using <a * name="bscientific">computerized scientific notation</a>. The <a * href="#L10nAlgorithm">localization algorithm</a> is applied. * * <p> The formatting of the magnitude <i>m</i> depends upon its value. * * <p> If <i>m</i> is positive-zero or negative-zero, then the exponent * will be {@code "+00"}. * * <p> Otherwise, the result is a string that represents the sign and * magnitude (absolute value) of the argument. The formatting of the sign * is described in the <a href="#L10nAlgorithm">localization * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its * value. * * <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup> * &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the * mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so * that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the * integer part of <i>a</i>, as a single decimal digit, followed by the * decimal separator followed by decimal digits representing the fractional * part of <i>a</i>, followed by the exponent symbol {@code 'e'} * (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed * by a representation of <i>n</i> as a decimal integer, as produced by the * method {@link Long#toString(long, int)}, and zero-padded to include at * least two digits. * * <p> The number of digits in the result for the fractional part of * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is * less than the number of digits to the right of the decimal point then * the value will be rounded using the * {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * BigDecimal#toString()}. * * <p> If the {@code ','} flag is given, then an {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'E'} * <td valign="top"> <tt>'&#92;u0045'</tt> * <td> The upper-case variant of {@code 'e'}. The exponent symbol * will be {@code 'E'} (<tt>'&#92;u0045'</tt>). * * <tr><td valign="top"> {@code 'g'} * <td valign="top"> <tt>'&#92;u0067'</tt> * <td> Requires the output to be formatted in general scientific notation * as described below. The <a href="#L10nAlgorithm">localization * algorithm</a> is applied. * * <p> After rounding for the precision, the formatting of the resulting * magnitude <i>m</i> depends on its value. * * <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less * than 10<sup>precision</sup> then it is represented in <i><a * href="#bdecimal">decimal format</a></i>. * * <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to * 10<sup>precision</sup>, then it is represented in <i><a * href="#bscientific">computerized scientific notation</a></i>. * * <p> The total number of significant digits in <i>m</i> is equal to the * precision. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * * <p> If the {@code '#'} flag is given then an {@link * FormatFlagsConversionMismatchException} will be thrown. * * <tr><td valign="top"> {@code 'G'} * <td valign="top"> <tt>'&#92;u0047'</tt> * <td> The upper-case variant of {@code 'g'}. * * <tr><td valign="top"> {@code 'f'} * <td valign="top"> <tt>'&#92;u0066'</tt> * <td> Requires the output to be formatted using <a name="bdecimal">decimal * format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is * applied. * * <p> The result is a string that represents the sign and magnitude * (absolute value) of the argument. The formatting of the sign is * described in the <a href="#L10nAlgorithm">localization * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its * value. * * <p> The magnitude is formatted as the integer part of <i>m</i>, with no * leading zeroes, followed by the decimal separator followed by one or * more decimal digits representing the fractional part of <i>m</i>. * * <p> The number of digits in the result for the fractional part of * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is * less than the number of digits to the right of the decimal point * then the value will be rounded using the * {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * BigDecimal#toString()}. * * </table> * * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and * Long apply. * * <p> If the {@code '#'} flag is given, then the decimal separator will * always be present. * * <p> The <a href="#floatdFlags">default behavior</a> when no flags are * given is the same as for Float and Double. * * <p> The specification of <a href="#floatDWidth">width</a> and <a * href="#floatDPrec">precision</a> is the same as defined for Float and * Double. * * <h4><a name="ddt">Date/Time</a></h4> * * <p> This conversion may be applied to {@code long}, {@link Long}, {@link * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor} * * <table cellpadding=5 summary="DTConv"> * * <tr><td valign="top"> {@code 't'} * <td valign="top"> <tt>'&#92;u0074'</tt> * <td> Prefix for date and time conversion characters. * <tr><td valign="top"> {@code 'T'} * <td valign="top"> <tt>'&#92;u0054'</tt> * <td> The upper-case variant of {@code 't'}. * * </table> * * <p> The following date and time conversion character suffixes are defined * for the {@code 't'} and {@code 'T'} conversions. The types are similar to * but not completely identical to those defined by GNU {@code date} and * POSIX {@code strftime(3c)}. Additional conversion types are provided to * access Java-specific functionality (e.g. {@code 'L'} for milliseconds * within the second). * * <p> The following conversion characters are used for formatting times: * * <table cellpadding=5 summary="time"> * * <tr><td valign="top"> {@code 'H'} * <td valign="top"> <tt>'&#92;u0048'</tt> * <td> Hour of the day for the 24-hour clock, formatted as two digits with * a leading zero as necessary i.e. {@code 00 - 23}. {@code 00} * corresponds to midnight. * * <tr><td valign="top">{@code 'I'} * <td valign="top"> <tt>'&#92;u0049'</tt> * <td> Hour for the 12-hour clock, formatted as two digits with a leading * zero as necessary, i.e. {@code 01 - 12}. {@code 01} corresponds to * one o'clock (either morning or afternoon). * * <tr><td valign="top">{@code 'k'} * <td valign="top"> <tt>'&#92;u006b'</tt> * <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}. * {@code 0} corresponds to midnight. * * <tr><td valign="top">{@code 'l'} * <td valign="top"> <tt>'&#92;u006c'</tt> * <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}. {@code 1} * corresponds to one o'clock (either morning or afternoon). * * <tr><td valign="top">{@code 'M'} * <td valign="top"> <tt>'&#92;u004d'</tt> * <td> Minute within the hour formatted as two digits with a leading zero * as necessary, i.e. {@code 00 - 59}. * * <tr><td valign="top">{@code 'S'} * <td valign="top"> <tt>'&#92;u0053'</tt> * <td> Seconds within the minute, formatted as two digits with a leading * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special * value required to support leap seconds). * * <tr><td valign="top">{@code 'L'} * <td valign="top"> <tt>'&#92;u004c'</tt> * <td> Millisecond within the second formatted as three digits with * leading zeros as necessary, i.e. {@code 000 - 999}. * * <tr><td valign="top">{@code 'N'} * <td valign="top"> <tt>'&#92;u004e'</tt> * <td> Nanosecond within the second, formatted as nine digits with leading * zeros as necessary, i.e. {@code 000000000 - 999999999}. The precision * of this value is limited by the resolution of the underlying operating * system or hardware. * * <tr><td valign="top">{@code 'p'} * <td valign="top"> <tt>'&#92;u0070'</tt> * <td> Locale-specific {@linkplain * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker * in lower case, e.g."{@code am}" or "{@code pm}". Use of the * conversion prefix {@code 'T'} forces this output to upper case. (Note * that {@code 'p'} produces lower-case output. This is different from * GNU {@code date} and POSIX {@code strftime(3c)} which produce * upper-case output.) * * <tr><td valign="top">{@code 'z'} * <td valign="top"> <tt>'&#92;u007a'</tt> * <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a> * style numeric time zone offset from GMT, e.g. {@code -0800}. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. * * <tr><td valign="top">{@code 'Z'} * <td valign="top"> <tt>'&#92;u005a'</tt> * <td> A string representing the abbreviation for the time zone. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. The Formatter's locale will * supersede the locale of the argument (if any). * * <tr><td valign="top">{@code 's'} * <td valign="top"> <tt>'&#92;u0073'</tt> * <td> Seconds since the beginning of the epoch starting at 1 January 1970 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to * {@code Long.MAX_VALUE/1000}. * * <tr><td valign="top">{@code 'Q'} * <td valign="top"> <tt>'&#92;u004f'</tt> * <td> Milliseconds since the beginning of the epoch starting at 1 January * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to * {@code Long.MAX_VALUE}. The precision of this value is limited by * the resolution of the underlying operating system or hardware. * * </table> * * <p> The following conversion characters are used for formatting dates: * * <table cellpadding=5 summary="date"> * * <tr><td valign="top">{@code 'B'} * <td valign="top"> <tt>'&#92;u0042'</tt> * <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths * full month name}, e.g. {@code "January"}, {@code "February"}. * * <tr><td valign="top">{@code 'b'} * <td valign="top"> <tt>'&#92;u0062'</tt> * <td> Locale-specific {@linkplain * java.text.DateFormatSymbols#getShortMonths abbreviated month name}, * e.g. {@code "Jan"}, {@code "Feb"}. * * <tr><td valign="top">{@code 'h'} * <td valign="top"> <tt>'&#92;u0068'</tt> * <td> Same as {@code 'b'}. * * <tr><td valign="top">{@code 'A'} * <td valign="top"> <tt>'&#92;u0041'</tt> * <td> Locale-specific full name of the {@linkplain * java.text.DateFormatSymbols#getWeekdays day of the week}, * e.g. {@code "Sunday"}, {@code "Monday"} * * <tr><td valign="top">{@code 'a'} * <td valign="top"> <tt>'&#92;u0061'</tt> * <td> Locale-specific short name of the {@linkplain * java.text.DateFormatSymbols#getShortWeekdays day of the week}, * e.g. {@code "Sun"}, {@code "Mon"} * * <tr><td valign="top">{@code 'C'} * <td valign="top"> <tt>'&#92;u0043'</tt> * <td> Four-digit year divided by {@code 100}, formatted as two digits * with leading zero as necessary, i.e. {@code 00 - 99} * * <tr><td valign="top">{@code 'Y'} * <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least * four digits with leading zeros as necessary, e.g. {@code 0092} equals * {@code 92} CE for the Gregorian calendar. * * <tr><td valign="top">{@code 'y'} * <td valign="top"> <tt>'&#92;u0079'</tt> * <td> Last two digits of the year, formatted with leading zeros as * necessary, i.e. {@code 00 - 99}. * * <tr><td valign="top">{@code 'j'} * <td valign="top"> <tt>'&#92;u006a'</tt> * <td> Day of year, formatted as three digits with leading zeros as * necessary, e.g. {@code 001 - 366} for the Gregorian calendar. * {@code 001} corresponds to the first day of the year. * * <tr><td valign="top">{@code 'm'} * <td valign="top"> <tt>'&#92;u006d'</tt> * <td> Month, formatted as two digits with leading zeros as necessary, * i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the * year and ("{@code 13}" is a special value required to support lunar * calendars). * * <tr><td valign="top">{@code 'd'} * <td valign="top"> <tt>'&#92;u0064'</tt> * <td> Day of month, formatted as two digits with leading zeros as * necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day * of the month. * * <tr><td valign="top">{@code 'e'} * <td valign="top"> <tt>'&#92;u0065'</tt> * <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where * "{@code 1}" is the first day of the month. * * </table> * * <p> The following conversion characters are used for formatting common * date/time compositions. * * <table cellpadding=5 summary="composites"> * * <tr><td valign="top">{@code 'R'} * <td valign="top"> <tt>'&#92;u0052'</tt> * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"} * * <tr><td valign="top">{@code 'T'} * <td valign="top"> <tt>'&#92;u0054'</tt> * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}. * * <tr><td valign="top">{@code 'r'} * <td valign="top"> <tt>'&#92;u0072'</tt> * <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS * %Tp"}. The location of the morning or afternoon marker * ({@code '%Tp'}) may be locale-dependent. * * <tr><td valign="top">{@code 'D'} * <td valign="top"> <tt>'&#92;u0044'</tt> * <td> Date formatted as {@code "%tm/%td/%ty"}. * * <tr><td valign="top">{@code 'F'} * <td valign="top"> <tt>'&#92;u0046'</tt> * <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a> * complete date formatted as {@code "%tY-%tm-%td"}. * * <tr><td valign="top">{@code 'c'} * <td valign="top"> <tt>'&#92;u0063'</tt> * <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"}, * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}. * * </table> * * <p> The {@code '-'} flag defined for <a href="#dFlags">General * conversions</a> applies. If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * * <p> The width is the minimum number of characters to * be written to the output. If the length of the converted value is less than * the {@code width} then the output will be padded by spaces * (<tt>'&#92;u0020'</tt>) until the total number of characters equals width. * The padding is on the left by default. If the {@code '-'} flag is given * then the padding will be on the right. If width is not specified then there * is no minimum. * * <p> The precision is not applicable. If the precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * * <h4><a name="dper">Percent</a></h4> * * <p> The conversion does not correspond to any argument. * * <table cellpadding=5 summary="DTConv"> * * <tr><td valign="top">{@code '%'} * <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>) * * <p> The width is the minimum number of characters to * be written to the output including the {@code '%'}. If the length of the * converted value is less than the {@code width} then the output will be * padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of * characters equals width. The padding is on the left. If width is not * specified then just the {@code '%'} is output. * * <p> The {@code '-'} flag defined for <a href="#dFlags">General * conversions</a> applies. If any other flags are provided, then a * {@link FormatFlagsConversionMismatchException} will be thrown. * * <p> The precision is not applicable. If the precision is specified an * {@link IllegalFormatPrecisionException} will be thrown. * * </table> * * <h4><a name="dls">Line Separator</a></h4> * * <p> The conversion does not correspond to any argument. * * <table cellpadding=5 summary="DTConv"> * * <tr><td valign="top">{@code 'n'} * <td> the platform-specific line separator as returned by {@link * System#getProperty System.getProperty("line.separator")}. * * </table> * * <p> Flags, width, and precision are not applicable. If any are provided an * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException}, * and {@link IllegalFormatPrecisionException}, respectively will be thrown. * * <h4><a name="dpos">Argument Index</a></h4> * * <p> Format specifiers can reference arguments in three ways: * * <ul> * * <li> <i>Explicit indexing</i> is used when the format specifier contains an * argument index. The argument index is a decimal integer indicating the * position of the argument in the argument list. The first argument is * referenced by "{@code 1$}", the second by "{@code 2$}", etc. An argument * may be referenced more than once. * * <p> For example: * * <blockquote><pre> * formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s", * "a", "b", "c", "d") * // -&gt; "d c b a d c b a" * </pre></blockquote> * * <li> <i>Relative indexing</i> is used when the format specifier contains a * {@code '<'} (<tt>'&#92;u003c'</tt>) flag which causes the argument for * the previous format specifier to be re-used. If there is no previous * argument, then a {@link MissingFormatArgumentException} is thrown. * * <blockquote><pre> * formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d") * // -&gt; "a b b b" * // "c" and "d" are ignored because they are not referenced * </pre></blockquote> * * <li> <i>Ordinary indexing</i> is used when the format specifier contains * neither an argument index nor a {@code '<'} flag. Each format specifier * which uses ordinary indexing is assigned a sequential implicit index into * argument list which is independent of the indices used by explicit or * relative indexing. * * <blockquote><pre> * formatter.format("%s %s %s %s", "a", "b", "c", "d") * // -&gt; "a b c d" * </pre></blockquote> * * </ul> * * <p> It is possible to have a format string which uses all forms of indexing, * for example: * * <blockquote><pre> * formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d") * // -&gt; "b a a b" * // "c" and "d" are ignored because they are not referenced * </pre></blockquote> * * <p> The maximum number of arguments is limited by the maximum dimension of a * Java array as defined by * <cite>The Java&trade; Virtual Machine Specification</cite>. * If the argument index is does not correspond to an * available argument, then a {@link MissingFormatArgumentException} is thrown. * * <p> If there are more arguments than format specifiers, the extra arguments * are ignored. * * <p> Unless otherwise specified, passing a {@code null} argument to any * method or constructor in this class will cause a {@link * NullPointerException} to be thrown. * * @author Iris Clark * @since 1.5 */
public final class Formatter implements Closeable, Flushable { private Appendable a; private final Locale l; private IOException lastException; private final char zero; private static double scaleUp; // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign) // + 3 (max # exp digits) + 4 (error) = 30 private static final int MAX_FD_CHARS = 30;
Returns a charset object for the given charset name.
Throws:
/** * Returns a charset object for the given charset name. * @throws NullPointerException is csn is null * @throws UnsupportedEncodingException if the charset is not supported */
private static Charset toCharset(String csn) throws UnsupportedEncodingException { Objects.requireNonNull(csn, "charsetName"); try { return Charset.forName(csn); } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) { // UnsupportedEncodingException should be thrown throw new UnsupportedEncodingException(csn); } } private static final Appendable nonNullAppendable(Appendable a) { if (a == null) return new StringBuilder(); return a; } /* Private constructors */ private Formatter(Locale l, Appendable a) { this.a = a; this.l = l; this.zero = getZero(l); } private Formatter(Charset charset, Locale l, File file) throws FileNotFoundException { this(l, new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset))); }
Constructs a new formatter.

The destination of the formatted output is a StringBuilder which may be retrieved by invoking out() and whose current content may be converted into a string by invoking toString(). The locale used is the default locale for formatting for this instance of the Java virtual machine.

/** * Constructs a new formatter. * * <p> The destination of the formatted output is a {@link StringBuilder} * which may be retrieved by invoking {@link #out out()} and whose * current content may be converted into a string by invoking {@link * #toString toString()}. The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. */
public Formatter() { this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder()); }
Constructs a new formatter with the specified destination.

The locale used is the default locale for formatting for this instance of the Java virtual machine.

Params:
  • a – Destination for the formatted output. If a is null then a StringBuilder will be created.
/** * Constructs a new formatter with the specified destination. * * <p> The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param a * Destination for the formatted output. If {@code a} is * {@code null} then a {@link StringBuilder} will be created. */
public Formatter(Appendable a) { this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a)); }
Constructs a new formatter with the specified locale.

The destination of the formatted output is a StringBuilder which may be retrieved by invoking out() and whose current content may be converted into a string by invoking toString().

Params:
  • l – The locale to apply during formatting. If l is null then no localization is applied.
/** * Constructs a new formatter with the specified locale. * * <p> The destination of the formatted output is a {@link StringBuilder} * which may be retrieved by invoking {@link #out out()} and whose current * content may be converted into a string by invoking {@link #toString * toString()}. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. */
public Formatter(Locale l) { this(l, new StringBuilder()); }
Constructs a new formatter with the specified destination and locale.
Params:
  • a – Destination for the formatted output. If a is null then a StringBuilder will be created.
  • l – The locale to apply during formatting. If l is null then no localization is applied.
/** * Constructs a new formatter with the specified destination and locale. * * @param a * Destination for the formatted output. If {@code a} is * {@code null} then a {@link StringBuilder} will be created. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. */
public Formatter(Appendable a, Locale l) { this(l, nonNullAppendable(a)); }
Constructs a new formatter with the specified file name.

The charset used is the default charset for this instance of the Java virtual machine.

The locale used is the default locale for formatting for this instance of the Java virtual machine.

Params:
  • fileName – The name of the file to use as the destination of this formatter. If the file exists then it will be truncated to zero size; otherwise, a new file will be created. The output will be written to the file and is buffered.
Throws:
  • SecurityException – If a security manager is present and checkWrite(fileName) denies write access to the file
  • FileNotFoundException – If the given file name does not denote an existing, writable regular file and a new regular file of that name cannot be created, or if some other error occurs while opening or creating the file
/** * Constructs a new formatter with the specified file name. * * <p> The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * * <p> The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file */
public Formatter(String fileName) throws FileNotFoundException { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName)))); }
Constructs a new formatter with the specified file name and charset.

The locale used is the default locale for formatting for this instance of the Java virtual machine.

Params:
  • fileName – The name of the file to use as the destination of this formatter. If the file exists then it will be truncated to zero size; otherwise, a new file will be created. The output will be written to the file and is buffered.
  • csn – The name of a supported charset
Throws:
/** * Constructs a new formatter with the specified file name and charset. * * <p> The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */
public Formatter(String fileName, String csn) throws FileNotFoundException, UnsupportedEncodingException { this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT)); }
Constructs a new formatter with the specified file name, charset, and locale.
Params:
  • fileName – The name of the file to use as the destination of this formatter. If the file exists then it will be truncated to zero size; otherwise, a new file will be created. The output will be written to the file and is buffered.
  • csn – The name of a supported charset
  • l – The locale to apply during formatting. If l is null then no localization is applied.
Throws:
/** * Constructs a new formatter with the specified file name, charset, and * locale. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */
public Formatter(String fileName, String csn, Locale l) throws FileNotFoundException, UnsupportedEncodingException { this(toCharset(csn), l, new File(fileName)); }
Constructs a new formatter with the specified file.

The charset used is the default charset for this instance of the Java virtual machine.

The locale used is the default locale for formatting for this instance of the Java virtual machine.

Params:
  • file – The file to use as the destination of this formatter. If the file exists then it will be truncated to zero size; otherwise, a new file will be created. The output will be written to the file and is buffered.
Throws:
  • SecurityException – If a security manager is present and checkWrite(file.getPath()) denies write access to the file
  • FileNotFoundException – If the given file object does not denote an existing, writable regular file and a new regular file of that name cannot be created, or if some other error occurs while opening or creating the file
/** * Constructs a new formatter with the specified file. * * <p> The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * * <p> The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file */
public Formatter(File file) throws FileNotFoundException { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file)))); }
Constructs a new formatter with the specified file and charset.

The locale used is the default locale for formatting for this instance of the Java virtual machine.

Params:
  • file – The file to use as the destination of this formatter. If the file exists then it will be truncated to zero size; otherwise, a new file will be created. The output will be written to the file and is buffered.
  • csn – The name of a supported charset
Throws:
/** * Constructs a new formatter with the specified file and charset. * * <p> The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */
public Formatter(File file, String csn) throws FileNotFoundException, UnsupportedEncodingException { this(file, csn, Locale.getDefault(Locale.Category.FORMAT)); }
Constructs a new formatter with the specified file, charset, and locale.
Params:
  • file – The file to use as the destination of this formatter. If the file exists then it will be truncated to zero size; otherwise, a new file will be created. The output will be written to the file and is buffered.
  • csn – The name of a supported charset
  • l – The locale to apply during formatting. If l is null then no localization is applied.
Throws:
/** * Constructs a new formatter with the specified file, charset, and * locale. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */
public Formatter(File file, String csn, Locale l) throws FileNotFoundException, UnsupportedEncodingException { this(toCharset(csn), l, file); }
Constructs a new formatter with the specified print stream.

The locale used is the default locale for formatting for this instance of the Java virtual machine.

Characters are written to the given PrintStream object and are therefore encoded using that object's charset.

Params:
  • ps – The stream to use as the destination of this formatter.
/** * Constructs a new formatter with the specified print stream. * * <p> The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * <p> Characters are written to the given {@link java.io.PrintStream * PrintStream} object and are therefore encoded using that object's * charset. * * @param ps * The stream to use as the destination of this formatter. */
public Formatter(PrintStream ps) { this(Locale.getDefault(Locale.Category.FORMAT), (Appendable)Objects.requireNonNull(ps)); }
Constructs a new formatter with the specified output stream.

The charset used is the default charset for this instance of the Java virtual machine.

The locale used is the default locale for formatting for this instance of the Java virtual machine.

Params:
  • os – The output stream to use as the destination of this formatter. The output will be buffered.
/** * Constructs a new formatter with the specified output stream. * * <p> The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * * <p> The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. */
public Formatter(OutputStream os) { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(os))); }
Constructs a new formatter with the specified output stream and charset.

The locale used is the default locale for formatting for this instance of the Java virtual machine.

Params:
  • os – The output stream to use as the destination of this formatter. The output will be buffered.
  • csn – The name of a supported charset
Throws:
/** * Constructs a new formatter with the specified output stream and * charset. * * <p> The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws UnsupportedEncodingException * If the named charset is not supported */
public Formatter(OutputStream os, String csn) throws UnsupportedEncodingException { this(os, csn, Locale.getDefault(Locale.Category.FORMAT)); }
Constructs a new formatter with the specified output stream, charset, and locale.
Params:
  • os – The output stream to use as the destination of this formatter. The output will be buffered.
  • csn – The name of a supported charset
  • l – The locale to apply during formatting. If l is null then no localization is applied.
Throws:
/** * Constructs a new formatter with the specified output stream, charset, * and locale. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws UnsupportedEncodingException * If the named charset is not supported */
public Formatter(OutputStream os, String csn, Locale l) throws UnsupportedEncodingException { this(l, new BufferedWriter(new OutputStreamWriter(os, csn))); } private static char getZero(Locale l) { if ((l != null) && !l.equals(Locale.US)) { DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); return dfs.getZeroDigit(); } else { return '0'; } }
Returns the locale set by the construction of this formatter.

The format method for this object which has a locale argument does not change this value.

Throws:
Returns: null if no localization is applied, otherwise a locale
/** * Returns the locale set by the construction of this formatter. * * <p> The {@link #format(java.util.Locale,String,Object...) format} method * for this object which has a locale argument does not change this value. * * @return {@code null} if no localization is applied, otherwise a * locale * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */
public Locale locale() { ensureOpen(); return l; }
Returns the destination for the output.
Throws:
Returns: The destination for the output
/** * Returns the destination for the output. * * @return The destination for the output * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */
public Appendable out() { ensureOpen(); return a; }
Returns the result of invoking toString() on the destination for the output. For example, the following code formats text into a StringBuilder then retrieves the resultant string:
  Formatter f = new Formatter();
  f.format("Last reboot at %tc", lastRebootDate);
  String s = f.toString();
  // -> s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"

An invocation of this method behaves in exactly the same way as the invocation

    out().toString() 

Depending on the specification of toString for the Appendable, the returned string may or may not contain the characters written to the destination. For instance, buffers typically return their contents in toString(), but streams cannot since the data is discarded.

Throws:
Returns: The result of invoking toString() on the destination for the output
/** * Returns the result of invoking {@code toString()} on the destination * for the output. For example, the following code formats text into a * {@link StringBuilder} then retrieves the resultant string: * * <blockquote><pre> * Formatter f = new Formatter(); * f.format("Last reboot at %tc", lastRebootDate); * String s = f.toString(); * // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000" * </pre></blockquote> * * <p> An invocation of this method behaves in exactly the same way as the * invocation * * <pre> * out().toString() </pre> * * <p> Depending on the specification of {@code toString} for the {@link * Appendable}, the returned string may or may not contain the characters * written to the destination. For instance, buffers typically return * their contents in {@code toString()}, but streams cannot since the * data is discarded. * * @return The result of invoking {@code toString()} on the destination * for the output * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */
public String toString() { ensureOpen(); return a.toString(); }
Flushes this formatter. If the destination implements the Flushable interface, its flush method will be invoked.

Flushing a formatter writes any buffered output in the destination to the underlying stream.

Throws:
/** * Flushes this formatter. If the destination implements the {@link * java.io.Flushable} interface, its {@code flush} method will be invoked. * * <p> Flushing a formatter writes any buffered output in the destination * to the underlying stream. * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */
public void flush() { ensureOpen(); if (a instanceof Flushable) { try { ((Flushable)a).flush(); } catch (IOException ioe) { lastException = ioe; } } }
Closes this formatter. If the destination implements the Closeable interface, its close method will be invoked.

Closing a formatter allows it to release resources it may be holding (such as open files). If the formatter is already closed, then invoking this method has no effect.

Attempting to invoke any methods except ioException() in this formatter after it has been closed will result in a FormatterClosedException.

/** * Closes this formatter. If the destination implements the {@link * java.io.Closeable} interface, its {@code close} method will be invoked. * * <p> Closing a formatter allows it to release resources it may be holding * (such as open files). If the formatter is already closed, then invoking * this method has no effect. * * <p> Attempting to invoke any methods except {@link #ioException()} in * this formatter after it has been closed will result in a {@link * FormatterClosedException}. */
public void close() { if (a == null) return; try { if (a instanceof Closeable) ((Closeable)a).close(); } catch (IOException ioe) { lastException = ioe; } finally { a = null; } } private void ensureOpen() { if (a == null) throw new FormatterClosedException(); }
Returns the IOException last thrown by this formatter's Appendable.

If the destination's append() method never throws IOException, then this method will always return null.

Returns: The last exception thrown by the Appendable or null if no such exception exists.
/** * Returns the {@code IOException} last thrown by this formatter's {@link * Appendable}. * * <p> If the destination's {@code append()} method never throws * {@code IOException}, then this method will always return {@code null}. * * @return The last exception thrown by the Appendable or {@code null} if * no such exception exists. */
public IOException ioException() { return lastException; }
Writes a formatted string to this object's destination using the specified format string and arguments. The locale used is the one defined during the construction of this formatter.
Params:
  • format – A format string as described in Format string syntax.
  • args – Arguments referenced by the format specifiers in the format string. If there are more arguments than format specifiers, the extra arguments are ignored. The maximum number of arguments is limited by the maximum dimension of a Java array as defined by The Java™ Virtual Machine Specification.
Throws:
  • IllegalFormatException – If a format string contains an illegal syntax, a format specifier that is incompatible with the given arguments, insufficient arguments given the format string, or other illegal conditions. For specification of all possible formatting errors, see the Details section of the formatter class specification.
  • FormatterClosedException – If this formatter has been closed by invoking its close() method
Returns: This formatter
/** * Writes a formatted string to this object's destination using the * specified format string and arguments. The locale used is the one * defined during the construction of this formatter. * * @param format * A format string as described in <a href="#syntax">Format string * syntax</a>. * * @param args * Arguments referenced by the format specifiers in the format * string. If there are more arguments than format specifiers, the * extra arguments are ignored. The maximum number of arguments is * limited by the maximum dimension of a Java array as defined by * <cite>The Java&trade; Virtual Machine Specification</cite>. * * @throws IllegalFormatException * If a format string contains an illegal syntax, a format * specifier that is incompatible with the given arguments, * insufficient arguments given the format string, or other * illegal conditions. For specification of all possible * formatting errors, see the <a href="#detail">Details</a> * section of the formatter class specification. * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method * * @return This formatter */
public Formatter format(String format, Object ... args) { return format(l, format, args); }
Writes a formatted string to this object's destination using the specified locale, format string, and arguments.
Params:
  • l – The locale to apply during formatting. If l is null then no localization is applied. This does not change this object's locale that was set during construction.
  • format – A format string as described in Format string syntax
  • args – Arguments referenced by the format specifiers in the format string. If there are more arguments than format specifiers, the extra arguments are ignored. The maximum number of arguments is limited by the maximum dimension of a Java array as defined by The Java™ Virtual Machine Specification.
Throws:
  • IllegalFormatException – If a format string contains an illegal syntax, a format specifier that is incompatible with the given arguments, insufficient arguments given the format string, or other illegal conditions. For specification of all possible formatting errors, see the Details section of the formatter class specification.
  • FormatterClosedException – If this formatter has been closed by invoking its close() method
Returns: This formatter
/** * Writes a formatted string to this object's destination using the * specified locale, format string, and arguments. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. This does not change this object's locale that was * set during construction. * * @param format * A format string as described in <a href="#syntax">Format string * syntax</a> * * @param args * Arguments referenced by the format specifiers in the format * string. If there are more arguments than format specifiers, the * extra arguments are ignored. The maximum number of arguments is * limited by the maximum dimension of a Java array as defined by * <cite>The Java&trade; Virtual Machine Specification</cite>. * * @throws IllegalFormatException * If a format string contains an illegal syntax, a format * specifier that is incompatible with the given arguments, * insufficient arguments given the format string, or other * illegal conditions. For specification of all possible * formatting errors, see the <a href="#detail">Details</a> * section of the formatter class specification. * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method * * @return This formatter */
public Formatter format(Locale l, String format, Object ... args) { ensureOpen(); // index of last argument referenced int last = -1; // last ordinary index int lasto = -1; FormatString[] fsa = parse(format); for (int i = 0; i < fsa.length; i++) { FormatString fs = fsa[i]; int index = fs.index(); try { switch (index) { case -2: // fixed string, "%n", or "%%" fs.print(null, l); break; case -1: // relative index if (last < 0 || (args != null && last > args.length - 1)) throw new MissingFormatArgumentException(fs.toString()); fs.print((args == null ? null : args[last]), l); break; case 0: // ordinary index lasto++; last = lasto; if (args != null && lasto > args.length - 1) throw new MissingFormatArgumentException(fs.toString()); fs.print((args == null ? null : args[lasto]), l); break; default: // explicit index last = index - 1; if (args != null && last > args.length - 1) throw new MissingFormatArgumentException(fs.toString()); fs.print((args == null ? null : args[last]), l); break; } } catch (IOException x) { lastException = x; } } return this; } // %[argument_index$][flags][width][.precision][t]conversion private static final String formatSpecifier = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])"; private static Pattern fsPattern = Pattern.compile(formatSpecifier);
Finds format specifiers in the format string.
/** * Finds format specifiers in the format string. */
private FormatString[] parse(String s) { ArrayList<FormatString> al = new ArrayList<>(); Matcher m = fsPattern.matcher(s); for (int i = 0, len = s.length(); i < len; ) { if (m.find(i)) { // Anything between the start of the string and the beginning // of the format specifier is either fixed text or contains // an invalid format string. if (m.start() != i) { // Make sure we didn't miss any invalid format specifiers checkText(s, i, m.start()); // Assume previous characters were fixed text al.add(new FixedString(s.substring(i, m.start()))); } al.add(new FormatSpecifier(m)); i = m.end(); } else { // No more valid format specifiers. Check for possible invalid // format specifiers. checkText(s, i, len); // The rest of the string is fixed text al.add(new FixedString(s.substring(i))); break; } } return al.toArray(new FormatString[al.size()]); } private static void checkText(String s, int start, int end) { for (int i = start; i < end; i++) { // Any '%' found in the region starts an invalid format specifier. if (s.charAt(i) == '%') { char c = (i == end - 1) ? '%' : s.charAt(i + 1); throw new UnknownFormatConversionException(String.valueOf(c)); } } } private interface FormatString { int index(); void print(Object arg, Locale l) throws IOException; String toString(); } private class FixedString implements FormatString { private String s; FixedString(String s) { this.s = s; } public int index() { return -2; } public void print(Object arg, Locale l) throws IOException { a.append(s); } public String toString() { return s; } }
Enum for BigDecimal formatting.
/** * Enum for {@code BigDecimal} formatting. */
public enum BigDecimalLayoutForm {
Format the BigDecimal in computerized scientific notation.
/** * Format the {@code BigDecimal} in computerized scientific notation. */
SCIENTIFIC,
Format the BigDecimal as a decimal number.
/** * Format the {@code BigDecimal} as a decimal number. */
DECIMAL_FLOAT }; private class FormatSpecifier implements FormatString { private int index = -1; private Flags f = Flags.NONE; private int width; private int precision; private boolean dt = false; private char c; private int index(String s) { if (s != null) { try { index = Integer.parseInt(s.substring(0, s.length() - 1)); } catch (NumberFormatException x) { assert(false); } } else { index = 0; } return index; } public int index() { return index; } private Flags flags(String s) { f = Flags.parse(s); if (f.contains(Flags.PREVIOUS)) index = -1; return f; } Flags flags() { return f; } private int width(String s) { width = -1; if (s != null) { try { width = Integer.parseInt(s); if (width < 0) throw new IllegalFormatWidthException(width); } catch (NumberFormatException x) { assert(false); } } return width; } int width() { return width; } private int precision(String s) { precision = -1; if (s != null) { try { // remove the '.' precision = Integer.parseInt(s.substring(1)); if (precision < 0) throw new IllegalFormatPrecisionException(precision); } catch (NumberFormatException x) { assert(false); } } return precision; } int precision() { return precision; } private char conversion(String s) { c = s.charAt(0); if (!dt) { if (!Conversion.isValid(c)) throw new UnknownFormatConversionException(String.valueOf(c)); if (Character.isUpperCase(c)) f.add(Flags.UPPERCASE); c = Character.toLowerCase(c); if (Conversion.isText(c)) index = -2; } return c; } private char conversion() { return c; } FormatSpecifier(Matcher m) { int idx = 1; index(m.group(idx++)); flags(m.group(idx++)); width(m.group(idx++)); precision(m.group(idx++)); String tT = m.group(idx++); if (tT != null) { dt = true; if (tT.equals("T")) f.add(Flags.UPPERCASE); } conversion(m.group(idx)); if (dt) checkDateTime(); else if (Conversion.isGeneral(c)) checkGeneral(); else if (Conversion.isCharacter(c)) checkCharacter(); else if (Conversion.isInteger(c)) checkInteger(); else if (Conversion.isFloat(c)) checkFloat(); else if (Conversion.isText(c)) checkText(); else throw new UnknownFormatConversionException(String.valueOf(c)); } public void print(Object arg, Locale l) throws IOException { if (dt) { printDateTime(arg, l); return; } switch(c) { case Conversion.DECIMAL_INTEGER: case Conversion.OCTAL_INTEGER: case Conversion.HEXADECIMAL_INTEGER: printInteger(arg, l); break; case Conversion.SCIENTIFIC: case Conversion.GENERAL: case Conversion.DECIMAL_FLOAT: case Conversion.HEXADECIMAL_FLOAT: printFloat(arg, l); break; case Conversion.CHARACTER: case Conversion.CHARACTER_UPPER: printCharacter(arg); break; case Conversion.BOOLEAN: printBoolean(arg); break; case Conversion.STRING: printString(arg, l); break; case Conversion.HASHCODE: printHashCode(arg); break; case Conversion.LINE_SEPARATOR: a.append(System.lineSeparator()); break; case Conversion.PERCENT_SIGN: a.append('%'); break; default: assert false; } } private void printInteger(Object arg, Locale l) throws IOException { if (arg == null) print("null"); else if (arg instanceof Byte) print(((Byte)arg).byteValue(), l); else if (arg instanceof Short) print(((Short)arg).shortValue(), l); else if (arg instanceof Integer) print(((Integer)arg).intValue(), l); else if (arg instanceof Long) print(((Long)arg).longValue(), l); else if (arg instanceof BigInteger) print(((BigInteger)arg), l); else failConversion(c, arg); } private void printFloat(Object arg, Locale l) throws IOException { if (arg == null) print("null"); else if (arg instanceof Float) print(((Float)arg).floatValue(), l); else if (arg instanceof Double) print(((Double)arg).doubleValue(), l); else if (arg instanceof BigDecimal) print(((BigDecimal)arg), l); else failConversion(c, arg); } private void printDateTime(Object arg, Locale l) throws IOException { if (arg == null) { print("null"); return; } Calendar cal = null; // Instead of Calendar.setLenient(true), perhaps we should // wrap the IllegalArgumentException that might be thrown? if (arg instanceof Long) { // Note that the following method uses an instance of the // default time zone (TimeZone.getDefaultRef(). cal = Calendar.getInstance(l == null ? Locale.US : l); cal.setTimeInMillis((Long)arg); } else if (arg instanceof Date) { // Note that the following method uses an instance of the // default time zone (TimeZone.getDefaultRef(). cal = Calendar.getInstance(l == null ? Locale.US : l); cal.setTime((Date)arg); } else if (arg instanceof Calendar) { cal = (Calendar) ((Calendar) arg).clone(); cal.setLenient(true); } else if (arg instanceof TemporalAccessor) { print((TemporalAccessor) arg, c, l); return; } else { failConversion(c, arg); } // Use the provided locale so that invocations of // localizedMagnitude() use optimizations for null. print(cal, c, l); } private void printCharacter(Object arg) throws IOException { if (arg == null) { print("null"); return; } String s = null; if (arg instanceof Character) { s = ((Character)arg).toString(); } else if (arg instanceof Byte) { byte i = ((Byte)arg).byteValue(); if (Character.isValidCodePoint(i)) s = new String(Character.toChars(i)); else throw new IllegalFormatCodePointException(i); } else if (arg instanceof Short) { short i = ((Short)arg).shortValue(); if (Character.isValidCodePoint(i)) s = new String(Character.toChars(i)); else throw new IllegalFormatCodePointException(i); } else if (arg instanceof Integer) { int i = ((Integer)arg).intValue(); if (Character.isValidCodePoint(i)) s = new String(Character.toChars(i)); else throw new IllegalFormatCodePointException(i); } else { failConversion(c, arg); } print(s); } private void printString(Object arg, Locale l) throws IOException { if (arg instanceof Formattable) { Formatter fmt = Formatter.this; if (fmt.locale() != l) fmt = new Formatter(fmt.out(), l); ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision); } else { if (f.contains(Flags.ALTERNATE)) failMismatch(Flags.ALTERNATE, 's'); if (arg == null) print("null"); else print(arg.toString()); } } private void printBoolean(Object arg) throws IOException { String s; if (arg != null) s = ((arg instanceof Boolean) ? ((Boolean)arg).toString() : Boolean.toString(true)); else s = Boolean.toString(false); print(s); } private void printHashCode(Object arg) throws IOException { String s = (arg == null ? "null" : Integer.toHexString(arg.hashCode())); print(s); } private void print(String s) throws IOException { if (precision != -1 && precision < s.length()) s = s.substring(0, precision); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); a.append(justify(s)); } private String justify(String s) { if (width == -1) return s; StringBuilder sb = new StringBuilder(); boolean pad = f.contains(Flags.LEFT_JUSTIFY); int sp = width - s.length(); if (!pad) for (int i = 0; i < sp; i++) sb.append(' '); sb.append(s); if (pad) for (int i = 0; i < sp; i++) sb.append(' '); return sb.toString(); } public String toString() { StringBuilder sb = new StringBuilder("%"); // Flags.UPPERCASE is set internally for legal conversions. Flags dupf = f.dup().remove(Flags.UPPERCASE); sb.append(dupf.toString()); if (index > 0) sb.append(index).append('$'); if (width != -1) sb.append(width); if (precision != -1) sb.append('.').append(precision); if (dt) sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't'); sb.append(f.contains(Flags.UPPERCASE) ? Character.toUpperCase(c) : c); return sb.toString(); } private void checkGeneral() { if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE) && f.contains(Flags.ALTERNATE)) failMismatch(Flags.ALTERNATE, c); // '-' requires a width if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) throw new MissingFormatWidthException(toString()); checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES); } private void checkDateTime() { if (precision != -1) throw new IllegalFormatPrecisionException(precision); if (!DateTime.isValid(c)) throw new UnknownFormatConversionException("t" + c); checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES); // '-' requires a width if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) throw new MissingFormatWidthException(toString()); } private void checkCharacter() { if (precision != -1) throw new IllegalFormatPrecisionException(precision); checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES); // '-' requires a width if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) throw new MissingFormatWidthException(toString()); } private void checkInteger() { checkNumeric(); if (precision != -1) throw new IllegalFormatPrecisionException(precision); if (c == Conversion.DECIMAL_INTEGER) checkBadFlags(Flags.ALTERNATE); else if (c == Conversion.OCTAL_INTEGER) checkBadFlags(Flags.GROUP); else checkBadFlags(Flags.GROUP); } private void checkBadFlags(Flags ... badFlags) { for (int i = 0; i < badFlags.length; i++) if (f.contains(badFlags[i])) failMismatch(badFlags[i], c); } private void checkFloat() { checkNumeric(); if (c == Conversion.DECIMAL_FLOAT) { } else if (c == Conversion.HEXADECIMAL_FLOAT) { checkBadFlags(Flags.PARENTHESES, Flags.GROUP); } else if (c == Conversion.SCIENTIFIC) { checkBadFlags(Flags.GROUP); } else if (c == Conversion.GENERAL) { checkBadFlags(Flags.ALTERNATE); } } private void checkNumeric() { if (width != -1 && width < 0) throw new IllegalFormatWidthException(width); if (precision != -1 && precision < 0) throw new IllegalFormatPrecisionException(precision); // '-' and '0' require a width if (width == -1 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD))) throw new MissingFormatWidthException(toString()); // bad combination if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE)) || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD))) throw new IllegalFormatFlagsException(f.toString()); } private void checkText() { if (precision != -1) throw new IllegalFormatPrecisionException(precision); switch (c) { case Conversion.PERCENT_SIGN: if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf() && f.valueOf() != Flags.NONE.valueOf()) throw new IllegalFormatFlagsException(f.toString()); // '-' requires a width if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) throw new MissingFormatWidthException(toString()); break; case Conversion.LINE_SEPARATOR: if (width != -1) throw new IllegalFormatWidthException(width); if (f.valueOf() != Flags.NONE.valueOf()) throw new IllegalFormatFlagsException(f.toString()); break; default: assert false; } } private void print(byte value, Locale l) throws IOException { long v = value; if (value < 0 && (c == Conversion.OCTAL_INTEGER || c == Conversion.HEXADECIMAL_INTEGER)) { v += (1L << 8); assert v >= 0 : v; } print(v, l); } private void print(short value, Locale l) throws IOException { long v = value; if (value < 0 && (c == Conversion.OCTAL_INTEGER || c == Conversion.HEXADECIMAL_INTEGER)) { v += (1L << 16); assert v >= 0 : v; } print(v, l); } private void print(int value, Locale l) throws IOException { long v = value; if (value < 0 && (c == Conversion.OCTAL_INTEGER || c == Conversion.HEXADECIMAL_INTEGER)) { v += (1L << 32); assert v >= 0 : v; } print(v, l); } private void print(long value, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); if (c == Conversion.DECIMAL_INTEGER) { boolean neg = value < 0; char[] va; if (value < 0) va = Long.toString(value, 10).substring(1).toCharArray(); else va = Long.toString(value, 10).toCharArray(); // leading sign indicator leadingSign(sb, neg); // the value localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l); // trailing sign indicator trailingSign(sb, neg); } else if (c == Conversion.OCTAL_INTEGER) { checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE, Flags.PLUS); String s = Long.toOctalString(value); int len = (f.contains(Flags.ALTERNATE) ? s.length() + 1 : s.length()); // apply ALTERNATE (radix indicator for octal) before ZERO_PAD if (f.contains(Flags.ALTERNATE)) sb.append('0'); if (f.contains(Flags.ZERO_PAD)) for (int i = 0; i < width - len; i++) sb.append('0'); sb.append(s); } else if (c == Conversion.HEXADECIMAL_INTEGER) { checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE, Flags.PLUS); String s = Long.toHexString(value); int len = (f.contains(Flags.ALTERNATE) ? s.length() + 2 : s.length()); // apply ALTERNATE (radix indicator for hex) before ZERO_PAD if (f.contains(Flags.ALTERNATE)) sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x"); if (f.contains(Flags.ZERO_PAD)) for (int i = 0; i < width - len; i++) sb.append('0'); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); sb.append(s); } // justify based on width a.append(justify(sb.toString())); } // neg := val < 0 private StringBuilder leadingSign(StringBuilder sb, boolean neg) { if (!neg) { if (f.contains(Flags.PLUS)) { sb.append('+'); } else if (f.contains(Flags.LEADING_SPACE)) { sb.append(' '); } } else { if (f.contains(Flags.PARENTHESES)) sb.append('('); else sb.append('-'); } return sb; } // neg := val < 0 private StringBuilder trailingSign(StringBuilder sb, boolean neg) { if (neg && f.contains(Flags.PARENTHESES)) sb.append(')'); return sb; } private void print(BigInteger value, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); boolean neg = value.signum() == -1; BigInteger v = value.abs(); // leading sign indicator leadingSign(sb, neg); // the value if (c == Conversion.DECIMAL_INTEGER) { char[] va = v.toString().toCharArray(); localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l); } else if (c == Conversion.OCTAL_INTEGER) { String s = v.toString(8); int len = s.length() + sb.length(); if (neg && f.contains(Flags.PARENTHESES)) len++; // apply ALTERNATE (radix indicator for octal) before ZERO_PAD if (f.contains(Flags.ALTERNATE)) { len++; sb.append('0'); } if (f.contains(Flags.ZERO_PAD)) { for (int i = 0; i < width - len; i++) sb.append('0'); } sb.append(s); } else if (c == Conversion.HEXADECIMAL_INTEGER) { String s = v.toString(16); int len = s.length() + sb.length(); if (neg && f.contains(Flags.PARENTHESES)) len++; // apply ALTERNATE (radix indicator for hex) before ZERO_PAD if (f.contains(Flags.ALTERNATE)) { len += 2; sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x"); } if (f.contains(Flags.ZERO_PAD)) for (int i = 0; i < width - len; i++) sb.append('0'); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); sb.append(s); } // trailing sign indicator trailingSign(sb, (value.signum() == -1)); // justify based on width a.append(justify(sb.toString())); } private void print(float value, Locale l) throws IOException { print((double) value, l); } private void print(double value, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); boolean neg = Double.compare(value, 0.0) == -1; if (!Double.isNaN(value)) { double v = Math.abs(value); // leading sign indicator leadingSign(sb, neg); // the value if (!Double.isInfinite(v)) print(sb, v, l, f, c, precision, neg); else sb.append(f.contains(Flags.UPPERCASE) ? "INFINITY" : "Infinity"); // trailing sign indicator trailingSign(sb, neg); } else { sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN"); } // justify based on width a.append(justify(sb.toString())); } // !Double.isInfinite(value) && !Double.isNaN(value) private void print(StringBuilder sb, double value, Locale l, Flags f, char c, int precision, boolean neg) throws IOException { if (c == Conversion.SCIENTIFIC) { // Create a new FormattedFloatingDecimal with the desired // precision. int prec = (precision == -1 ? 6 : precision); FormattedFloatingDecimal fd = FormattedFloatingDecimal.valueOf(value, prec, FormattedFloatingDecimal.Form.SCIENTIFIC); char[] mant = addZeros(fd.getMantissa(), prec); // If the precision is zero and the '#' flag is set, add the // requested decimal point. if (f.contains(Flags.ALTERNATE) && (prec == 0)) mant = addDot(mant); char[] exp = (value == 0.0) ? new char[] {'+','0','0'} : fd.getExponent(); int newW = width; if (width != -1) newW = adjustWidth(width - exp.length - 1, f, neg); localizedMagnitude(sb, mant, f, newW, l); sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e'); Flags flags = f.dup().remove(Flags.GROUP); char sign = exp[0]; assert(sign == '+' || sign == '-'); sb.append(sign); char[] tmp = new char[exp.length - 1]; System.arraycopy(exp, 1, tmp, 0, exp.length - 1); sb.append(localizedMagnitude(null, tmp, flags, -1, l)); } else if (c == Conversion.DECIMAL_FLOAT) { // Create a new FormattedFloatingDecimal with the desired // precision. int prec = (precision == -1 ? 6 : precision); FormattedFloatingDecimal fd = FormattedFloatingDecimal.valueOf(value, prec, FormattedFloatingDecimal.Form.DECIMAL_FLOAT); char[] mant = addZeros(fd.getMantissa(), prec); // If the precision is zero and the '#' flag is set, add the // requested decimal point. if (f.contains(Flags.ALTERNATE) && (prec == 0)) mant = addDot(mant); int newW = width; if (width != -1) newW = adjustWidth(width, f, neg); localizedMagnitude(sb, mant, f, newW, l); } else if (c == Conversion.GENERAL) { int prec = precision; if (precision == -1) prec = 6; else if (precision == 0) prec = 1; char[] exp; char[] mant; int expRounded; if (value == 0.0) { exp = null; mant = new char[] {'0'}; expRounded = 0; } else { FormattedFloatingDecimal fd = FormattedFloatingDecimal.valueOf(value, prec, FormattedFloatingDecimal.Form.GENERAL); exp = fd.getExponent(); mant = fd.getMantissa(); expRounded = fd.getExponentRounded(); } if (exp != null) { prec -= 1; } else { prec -= expRounded + 1; } mant = addZeros(mant, prec); // If the precision is zero and the '#' flag is set, add the // requested decimal point. if (f.contains(Flags.ALTERNATE) && (prec == 0)) mant = addDot(mant); int newW = width; if (width != -1) { if (exp != null) newW = adjustWidth(width - exp.length - 1, f, neg); else newW = adjustWidth(width, f, neg); } localizedMagnitude(sb, mant, f, newW, l); if (exp != null) { sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e'); Flags flags = f.dup().remove(Flags.GROUP); char sign = exp[0]; assert(sign == '+' || sign == '-'); sb.append(sign); char[] tmp = new char[exp.length - 1]; System.arraycopy(exp, 1, tmp, 0, exp.length - 1); sb.append(localizedMagnitude(null, tmp, flags, -1, l)); } } else if (c == Conversion.HEXADECIMAL_FLOAT) { int prec = precision; if (precision == -1) // assume that we want all of the digits prec = 0; else if (precision == 0) prec = 1; String s = hexDouble(value, prec); char[] va; boolean upper = f.contains(Flags.UPPERCASE); sb.append(upper ? "0X" : "0x"); if (f.contains(Flags.ZERO_PAD)) for (int i = 0; i < width - s.length() - 2; i++) sb.append('0'); int idx = s.indexOf('p'); va = s.substring(0, idx).toCharArray(); if (upper) { String tmp = new String(va); // don't localize hex tmp = tmp.toUpperCase(Locale.US); va = tmp.toCharArray(); } sb.append(prec != 0 ? addZeros(va, prec) : va); sb.append(upper ? 'P' : 'p'); sb.append(s.substring(idx+1)); } } // Add zeros to the requested precision. private char[] addZeros(char[] v, int prec) { // Look for the dot. If we don't find one, the we'll need to add // it before we add the zeros. int i; for (i = 0; i < v.length; i++) { if (v[i] == '.') break; } boolean needDot = false; if (i == v.length) { needDot = true; } // Determine existing precision. int outPrec = v.length - i - (needDot ? 0 : 1); assert (outPrec <= prec); if (outPrec == prec) return v; // Create new array with existing contents. char[] tmp = new char[v.length + prec - outPrec + (needDot ? 1 : 0)]; System.arraycopy(v, 0, tmp, 0, v.length); // Add dot if previously determined to be necessary. int start = v.length; if (needDot) { tmp[v.length] = '.'; start++; } // Add zeros. for (int j = start; j < tmp.length; j++) tmp[j] = '0'; return tmp; } // Method assumes that d > 0. private String hexDouble(double d, int prec) { // Let Double.toHexString handle simple cases if(!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) // remove "0x" return Double.toHexString(d).substring(2); else { assert(prec >= 1 && prec <= 12); int exponent = Math.getExponent(d); boolean subnormal = (exponent == DoubleConsts.MIN_EXPONENT - 1); // If this is subnormal input so normalize (could be faster to // do as integer operation). if (subnormal) { scaleUp = Math.scalb(1.0, 54); d *= scaleUp; // Calculate the exponent. This is not just exponent + 54 // since the former is not the normalized exponent. exponent = Math.getExponent(d); assert exponent >= DoubleConsts.MIN_EXPONENT && exponent <= DoubleConsts.MAX_EXPONENT: exponent; } int precision = 1 + prec*4; int shiftDistance = DoubleConsts.SIGNIFICAND_WIDTH - precision; assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH); long doppel = Double.doubleToLongBits(d); // Deterime the number of bits to keep. long newSignif = (doppel & (DoubleConsts.EXP_BIT_MASK | DoubleConsts.SIGNIF_BIT_MASK)) >> shiftDistance; // Bits to round away. long roundingBits = doppel & ~(~0L << shiftDistance); // To decide how to round, look at the low-order bit of the // working significand, the highest order discarded bit (the // round bit) and whether any of the lower order discarded bits // are nonzero (the sticky bit). boolean leastZero = (newSignif & 0x1L) == 0L; boolean round = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L; boolean sticky = shiftDistance > 1 && (~(1L<< (shiftDistance - 1)) & roundingBits) != 0; if((leastZero && round && sticky) || (!leastZero && round)) { newSignif++; } long signBit = doppel & DoubleConsts.SIGN_BIT_MASK; newSignif = signBit | (newSignif << shiftDistance); double result = Double.longBitsToDouble(newSignif); if (Double.isInfinite(result) ) { // Infinite result generated by rounding return "1.0p1024"; } else { String res = Double.toHexString(result).substring(2); if (!subnormal) return res; else { // Create a normalized subnormal string. int idx = res.indexOf('p'); if (idx == -1) { // No 'p' character in hex string. assert false; return null; } else { // Get exponent and append at the end. String exp = res.substring(idx + 1); int iexp = Integer.parseInt(exp) -54; return res.substring(0, idx) + "p" + Integer.toString(iexp); } } } } } private void print(BigDecimal value, Locale l) throws IOException { if (c == Conversion.HEXADECIMAL_FLOAT) failConversion(c, value); StringBuilder sb = new StringBuilder(); boolean neg = value.signum() == -1; BigDecimal v = value.abs(); // leading sign indicator leadingSign(sb, neg); // the value print(sb, v, l, f, c, precision, neg); // trailing sign indicator trailingSign(sb, neg); // justify based on width a.append(justify(sb.toString())); } // value > 0 private void print(StringBuilder sb, BigDecimal value, Locale l, Flags f, char c, int precision, boolean neg) throws IOException { if (c == Conversion.SCIENTIFIC) { // Create a new BigDecimal with the desired precision. int prec = (precision == -1 ? 6 : precision); int scale = value.scale(); int origPrec = value.precision(); int nzeros = 0; int compPrec; if (prec > origPrec - 1) { compPrec = origPrec; nzeros = prec - (origPrec - 1); } else { compPrec = prec + 1; } MathContext mc = new MathContext(compPrec); BigDecimal v = new BigDecimal(value.unscaledValue(), scale, mc); BigDecimalLayout bdl = new BigDecimalLayout(v.unscaledValue(), v.scale(), BigDecimalLayoutForm.SCIENTIFIC); char[] mant = bdl.mantissa(); // Add a decimal point if necessary. The mantissa may not // contain a decimal point if the scale is zero (the internal // representation has no fractional part) or the original // precision is one. Append a decimal point if '#' is set or if // we require zero padding to get to the requested precision. if ((origPrec == 1 || !bdl.hasDot()) && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) mant = addDot(mant); // Add trailing zeros in the case precision is greater than // the number of available digits after the decimal separator. mant = trailingZeros(mant, nzeros); char[] exp = bdl.exponent(); int newW = width; if (width != -1) newW = adjustWidth(width - exp.length - 1, f, neg); localizedMagnitude(sb, mant, f, newW, l); sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e'); Flags flags = f.dup().remove(Flags.GROUP); char sign = exp[0]; assert(sign == '+' || sign == '-'); sb.append(exp[0]); char[] tmp = new char[exp.length - 1]; System.arraycopy(exp, 1, tmp, 0, exp.length - 1); sb.append(localizedMagnitude(null, tmp, flags, -1, l)); } else if (c == Conversion.DECIMAL_FLOAT) { // Create a new BigDecimal with the desired precision. int prec = (precision == -1 ? 6 : precision); int scale = value.scale(); if (scale > prec) { // more "scale" digits than the requested "precision" int compPrec = value.precision(); if (compPrec <= scale) { // case of 0.xxxxxx value = value.setScale(prec, RoundingMode.HALF_UP); } else { compPrec -= (scale - prec); value = new BigDecimal(value.unscaledValue(), scale, new MathContext(compPrec)); } } BigDecimalLayout bdl = new BigDecimalLayout( value.unscaledValue(), value.scale(), BigDecimalLayoutForm.DECIMAL_FLOAT); char mant[] = bdl.mantissa(); int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0); // Add a decimal point if necessary. The mantissa may not // contain a decimal point if the scale is zero (the internal // representation has no fractional part). Append a decimal // point if '#' is set or we require zero padding to get to the // requested precision. if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0)) mant = addDot(bdl.mantissa()); // Add trailing zeros if the precision is greater than the // number of available digits after the decimal separator. mant = trailingZeros(mant, nzeros); localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l); } else if (c == Conversion.GENERAL) { int prec = precision; if (precision == -1) prec = 6; else if (precision == 0) prec = 1; BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4); BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec); if ((value.equals(BigDecimal.ZERO)) || ((value.compareTo(tenToTheNegFour) != -1) && (value.compareTo(tenToThePrec) == -1))) { int e = - value.scale() + (value.unscaledValue().toString().length() - 1); // xxx.yyy // g precision (# sig digits) = #x + #y // f precision = #y // exponent = #x - 1 // => f precision = g precision - exponent - 1 // 0.000zzz // g precision (# sig digits) = #z // f precision = #0 (after '.') + #z // exponent = - #0 (after '.') - 1 // => f precision = g precision - exponent - 1 prec = prec - e - 1; print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec, neg); } else { print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg); } } else if (c == Conversion.HEXADECIMAL_FLOAT) { // This conversion isn't supported. The error should be // reported earlier. assert false; } } private class BigDecimalLayout { private StringBuilder mant; private StringBuilder exp; private boolean dot = false; private int scale; public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) { layout(intVal, scale, form); } public boolean hasDot() { return dot; } public int scale() { return scale; } // char[] with canonical string representation public char[] layoutChars() { StringBuilder sb = new StringBuilder(mant); if (exp != null) { sb.append('E'); sb.append(exp); } return toCharArray(sb); } public char[] mantissa() { return toCharArray(mant); } // The exponent will be formatted as a sign ('+' or '-') followed // by the exponent zero-padded to include at least two digits. public char[] exponent() { return toCharArray(exp); } private char[] toCharArray(StringBuilder sb) { if (sb == null) return null; char[] result = new char[sb.length()]; sb.getChars(0, result.length, result, 0); return result; } private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) { char coeff[] = intVal.toString().toCharArray(); this.scale = scale; // Construct a buffer, with sufficient capacity for all cases. // If E-notation is needed, length will be: +1 if negative, +1 // if '.' needed, +2 for "E+", + up to 10 for adjusted // exponent. Otherwise it could have +1 if negative, plus // leading "0.00000" mant = new StringBuilder(coeff.length + 14); if (scale == 0) { int len = coeff.length; if (len > 1) { mant.append(coeff[0]); if (form == BigDecimalLayoutForm.SCIENTIFIC) { mant.append('.'); dot = true; mant.append(coeff, 1, len - 1); exp = new StringBuilder("+"); if (len < 10) exp.append("0").append(len - 1); else exp.append(len - 1); } else { mant.append(coeff, 1, len - 1); } } else { mant.append(coeff); if (form == BigDecimalLayoutForm.SCIENTIFIC) exp = new StringBuilder("+00"); } return; } long adjusted = -(long) scale + (coeff.length - 1); if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) { // count of padding zeros int pad = scale - coeff.length; if (pad >= 0) { // 0.xxx form mant.append("0."); dot = true; for (; pad > 0 ; pad--) mant.append('0'); mant.append(coeff); } else { if (-pad < coeff.length) { // xx.xx form mant.append(coeff, 0, -pad); mant.append('.'); dot = true; mant.append(coeff, -pad, scale); } else { // xx form mant.append(coeff, 0, coeff.length); for (int i = 0; i < -scale; i++) mant.append('0'); this.scale = 0; } } } else { // x.xxx form mant.append(coeff[0]); if (coeff.length > 1) { mant.append('.'); dot = true; mant.append(coeff, 1, coeff.length-1); } exp = new StringBuilder(); if (adjusted != 0) { long abs = Math.abs(adjusted); // require sign exp.append(adjusted < 0 ? '-' : '+'); if (abs < 10) exp.append('0'); exp.append(abs); } else { exp.append("+00"); } } } } private int adjustWidth(int width, Flags f, boolean neg) { int newW = width; if (newW != -1 && neg && f.contains(Flags.PARENTHESES)) newW--; return newW; } // Add a '.' to th mantissa if required private char[] addDot(char[] mant) { char[] tmp = mant; tmp = new char[mant.length + 1]; System.arraycopy(mant, 0, tmp, 0, mant.length); tmp[tmp.length - 1] = '.'; return tmp; } // Add trailing zeros in the case precision is greater than the number // of available digits after the decimal separator. private char[] trailingZeros(char[] mant, int nzeros) { char[] tmp = mant; if (nzeros > 0) { tmp = new char[mant.length + nzeros]; System.arraycopy(mant, 0, tmp, 0, mant.length); for (int i = mant.length; i < tmp.length; i++) tmp[i] = '0'; } return tmp; } private void print(Calendar t, char c, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); print(sb, t, c, l); // justify based on width String s = justify(sb.toString()); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); a.append(s); } private Appendable print(StringBuilder sb, Calendar t, char c, Locale l) throws IOException { if (sb == null) sb = new StringBuilder(); switch (c) { case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23) case DateTime.HOUR_0: // 'I' (01 - 12) case DateTime.HOUR_OF_DAY: // 'k' (0 - 23) -- like H case DateTime.HOUR: { // 'l' (1 - 12) -- like I int i = t.get(Calendar.HOUR_OF_DAY); if (c == DateTime.HOUR_0 || c == DateTime.HOUR) i = (i == 0 || i == 12 ? 12 : i % 12); Flags flags = (c == DateTime.HOUR_OF_DAY_0 || c == DateTime.HOUR_0 ? Flags.ZERO_PAD : Flags.NONE); sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.MINUTE: { // 'M' (00 - 59) int i = t.get(Calendar.MINUTE); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999) int i = t.get(Calendar.MILLISECOND) * 1000000; Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 9, l)); break; } case DateTime.MILLISECOND: { // 'L' (000 - 999) int i = t.get(Calendar.MILLISECOND); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 3, l)); break; } case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?) long i = t.getTimeInMillis(); Flags flags = Flags.NONE; sb.append(localizedMagnitude(null, i, flags, width, l)); break; } case DateTime.AM_PM: { // 'p' (am or pm) // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper String[] ampm = { "AM", "PM" }; if (l != null && l != Locale.US) { DateFormatSymbols dfs = DateFormatSymbols.getInstance(l); ampm = dfs.getAmPmStrings(); } String s = ampm[t.get(Calendar.AM_PM)]; sb.append(s.toLowerCase(l != null ? l : Locale.US)); break; } case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?) long i = t.getTimeInMillis() / 1000; Flags flags = Flags.NONE; sb.append(localizedMagnitude(null, i, flags, width, l)); break; } case DateTime.SECOND: { // 'S' (00 - 60 - leap second) int i = t.get(Calendar.SECOND); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus? int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET); boolean neg = i < 0; sb.append(neg ? '-' : '+'); if (neg) i = -i; int min = i / 60000; // combine minute and hour into a single integer int offset = (min / 60) * 100 + (min % 60); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, offset, flags, 4, l)); break; } case DateTime.ZONE: { // 'Z' (symbol) TimeZone tz = t.getTimeZone(); sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0), TimeZone.SHORT, (l == null) ? Locale.US : l)); break; } // Date case DateTime.NAME_OF_DAY_ABBREV: // 'a' case DateTime.NAME_OF_DAY: { // 'A' int i = t.get(Calendar.DAY_OF_WEEK); Locale lt = ((l == null) ? Locale.US : l); DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); if (c == DateTime.NAME_OF_DAY) sb.append(dfs.getWeekdays()[i]); else sb.append(dfs.getShortWeekdays()[i]); break; } case DateTime.NAME_OF_MONTH_ABBREV: // 'b' case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b case DateTime.NAME_OF_MONTH: { // 'B' int i = t.get(Calendar.MONTH); Locale lt = ((l == null) ? Locale.US : l); DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); if (c == DateTime.NAME_OF_MONTH) sb.append(dfs.getMonths()[i]); else sb.append(dfs.getShortMonths()[i]); break; } case DateTime.CENTURY: // 'C' (00 - 99) case DateTime.YEAR_2: // 'y' (00 - 99) case DateTime.YEAR_4: { // 'Y' (0000 - 9999) int i = t.get(Calendar.YEAR); int size = 2; switch (c) { case DateTime.CENTURY: i /= 100; break; case DateTime.YEAR_2: i %= 100; break; case DateTime.YEAR_4: size = 4; break; } Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, size, l)); break; } case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31) case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d int i = t.get(Calendar.DATE); Flags flags = (c == DateTime.DAY_OF_MONTH_0 ? Flags.ZERO_PAD : Flags.NONE); sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366) int i = t.get(Calendar.DAY_OF_YEAR); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 3, l)); break; } case DateTime.MONTH: { // 'm' (01 - 12) int i = t.get(Calendar.MONTH) + 1; Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } // Composites case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS) case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M) char sep = ':'; print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep); print(sb, t, DateTime.MINUTE, l); if (c == DateTime.TIME) { sb.append(sep); print(sb, t, DateTime.SECOND, l); } break; } case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M) char sep = ':'; print(sb, t, DateTime.HOUR_0, l).append(sep); print(sb, t, DateTime.MINUTE, l).append(sep); print(sb, t, DateTime.SECOND, l).append(' '); // this may be in wrong place for some locales StringBuilder tsb = new StringBuilder(); print(tsb, t, DateTime.AM_PM, l); sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US)); break; } case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999) char sep = ' '; print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep); print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); print(sb, t, DateTime.TIME, l).append(sep); print(sb, t, DateTime.ZONE, l).append(sep); print(sb, t, DateTime.YEAR_4, l); break; } case DateTime.DATE: { // 'D' (mm/dd/yy) char sep = '/'; print(sb, t, DateTime.MONTH, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); print(sb, t, DateTime.YEAR_2, l); break; } case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d) char sep = '-'; print(sb, t, DateTime.YEAR_4, l).append(sep); print(sb, t, DateTime.MONTH, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l); break; } default: assert false; } return sb; } private void print(TemporalAccessor t, char c, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); print(sb, t, c, l); // justify based on width String s = justify(sb.toString()); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); a.append(s); } private Appendable print(StringBuilder sb, TemporalAccessor t, char c, Locale l) throws IOException { if (sb == null) sb = new StringBuilder(); try { switch (c) { case DateTime.HOUR_OF_DAY_0: { // 'H' (00 - 23) int i = t.get(ChronoField.HOUR_OF_DAY); sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l)); break; } case DateTime.HOUR_OF_DAY: { // 'k' (0 - 23) -- like H int i = t.get(ChronoField.HOUR_OF_DAY); sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l)); break; } case DateTime.HOUR_0: { // 'I' (01 - 12) int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM); sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l)); break; } case DateTime.HOUR: { // 'l' (1 - 12) -- like I int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM); sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l)); break; } case DateTime.MINUTE: { // 'M' (00 - 59) int i = t.get(ChronoField.MINUTE_OF_HOUR); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999) int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000; Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 9, l)); break; } case DateTime.MILLISECOND: { // 'L' (000 - 999) int i = t.get(ChronoField.MILLI_OF_SECOND); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 3, l)); break; } case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?) long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L + t.getLong(ChronoField.MILLI_OF_SECOND); Flags flags = Flags.NONE; sb.append(localizedMagnitude(null, i, flags, width, l)); break; } case DateTime.AM_PM: { // 'p' (am or pm) // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper String[] ampm = { "AM", "PM" }; if (l != null && l != Locale.US) { DateFormatSymbols dfs = DateFormatSymbols.getInstance(l); ampm = dfs.getAmPmStrings(); } String s = ampm[t.get(ChronoField.AMPM_OF_DAY)]; sb.append(s.toLowerCase(l != null ? l : Locale.US)); break; } case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?) long i = t.getLong(ChronoField.INSTANT_SECONDS); Flags flags = Flags.NONE; sb.append(localizedMagnitude(null, i, flags, width, l)); break; } case DateTime.SECOND: { // 'S' (00 - 60 - leap second) int i = t.get(ChronoField.SECOND_OF_MINUTE); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus? int i = t.get(ChronoField.OFFSET_SECONDS); boolean neg = i < 0; sb.append(neg ? '-' : '+'); if (neg) i = -i; int min = i / 60; // combine minute and hour into a single integer int offset = (min / 60) * 100 + (min % 60); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, offset, flags, 4, l)); break; } case DateTime.ZONE: { // 'Z' (symbol) ZoneId zid = t.query(TemporalQueries.zone()); if (zid == null) { throw new IllegalFormatConversionException(c, t.getClass()); } if (!(zid instanceof ZoneOffset) && t.isSupported(ChronoField.INSTANT_SECONDS)) { Instant instant = Instant.from(t); sb.append(TimeZone.getTimeZone(zid.getId()) .getDisplayName(zid.getRules().isDaylightSavings(instant), TimeZone.SHORT, (l == null) ? Locale.US : l)); break; } sb.append(zid.getId()); break; } // Date case DateTime.NAME_OF_DAY_ABBREV: // 'a' case DateTime.NAME_OF_DAY: { // 'A' int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1; Locale lt = ((l == null) ? Locale.US : l); DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); if (c == DateTime.NAME_OF_DAY) sb.append(dfs.getWeekdays()[i]); else sb.append(dfs.getShortWeekdays()[i]); break; } case DateTime.NAME_OF_MONTH_ABBREV: // 'b' case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b case DateTime.NAME_OF_MONTH: { // 'B' int i = t.get(ChronoField.MONTH_OF_YEAR) - 1; Locale lt = ((l == null) ? Locale.US : l); DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); if (c == DateTime.NAME_OF_MONTH) sb.append(dfs.getMonths()[i]); else sb.append(dfs.getShortMonths()[i]); break; } case DateTime.CENTURY: // 'C' (00 - 99) case DateTime.YEAR_2: // 'y' (00 - 99) case DateTime.YEAR_4: { // 'Y' (0000 - 9999) int i = t.get(ChronoField.YEAR_OF_ERA); int size = 2; switch (c) { case DateTime.CENTURY: i /= 100; break; case DateTime.YEAR_2: i %= 100; break; case DateTime.YEAR_4: size = 4; break; } Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, size, l)); break; } case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31) case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d int i = t.get(ChronoField.DAY_OF_MONTH); Flags flags = (c == DateTime.DAY_OF_MONTH_0 ? Flags.ZERO_PAD : Flags.NONE); sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366) int i = t.get(ChronoField.DAY_OF_YEAR); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 3, l)); break; } case DateTime.MONTH: { // 'm' (01 - 12) int i = t.get(ChronoField.MONTH_OF_YEAR); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } // Composites case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS) case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M) char sep = ':'; print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep); print(sb, t, DateTime.MINUTE, l); if (c == DateTime.TIME) { sb.append(sep); print(sb, t, DateTime.SECOND, l); } break; } case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M) char sep = ':'; print(sb, t, DateTime.HOUR_0, l).append(sep); print(sb, t, DateTime.MINUTE, l).append(sep); print(sb, t, DateTime.SECOND, l).append(' '); // this may be in wrong place for some locales StringBuilder tsb = new StringBuilder(); print(tsb, t, DateTime.AM_PM, l); sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US)); break; } case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999) char sep = ' '; print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep); print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); print(sb, t, DateTime.TIME, l).append(sep); print(sb, t, DateTime.ZONE, l).append(sep); print(sb, t, DateTime.YEAR_4, l); break; } case DateTime.DATE: { // 'D' (mm/dd/yy) char sep = '/'; print(sb, t, DateTime.MONTH, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); print(sb, t, DateTime.YEAR_2, l); break; } case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d) char sep = '-'; print(sb, t, DateTime.YEAR_4, l).append(sep); print(sb, t, DateTime.MONTH, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l); break; } default: assert false; } } catch (DateTimeException x) { throw new IllegalFormatConversionException(c, t.getClass()); } return sb; } // -- Methods to support throwing exceptions -- private void failMismatch(Flags f, char c) { String fs = f.toString(); throw new FormatFlagsConversionMismatchException(fs, c); } private void failConversion(char c, Object arg) { throw new IllegalFormatConversionException(c, arg.getClass()); } private char getZero(Locale l) { if ((l != null) && !l.equals(locale())) { DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); return dfs.getZeroDigit(); } return zero; } private StringBuilder localizedMagnitude(StringBuilder sb, long value, Flags f, int width, Locale l) { char[] va = Long.toString(value, 10).toCharArray(); return localizedMagnitude(sb, va, f, width, l); } private StringBuilder localizedMagnitude(StringBuilder sb, char[] value, Flags f, int width, Locale l) { if (sb == null) sb = new StringBuilder(); int begin = sb.length(); char zero = getZero(l); // determine localized grouping separator and size char grpSep = '\0'; int grpSize = -1; char decSep = '\0'; int len = value.length; int dot = len; for (int j = 0; j < len; j++) { if (value[j] == '.') { dot = j; break; } } if (dot < len) { if (l == null || l.equals(Locale.US)) { decSep = '.'; } else { DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); decSep = dfs.getDecimalSeparator(); } } if (f.contains(Flags.GROUP)) { if (l == null || l.equals(Locale.US)) { grpSep = ','; grpSize = 3; } else { DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); grpSep = dfs.getGroupingSeparator(); DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l); grpSize = df.getGroupingSize(); } } // localize the digits inserting group separators as necessary for (int j = 0; j < len; j++) { if (j == dot) { sb.append(decSep); // no more group separators after the decimal separator grpSep = '\0'; continue; } char c = value[j]; sb.append((char) ((c - '0') + zero)); if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) sb.append(grpSep); } // apply zero padding len = sb.length(); if (width != -1 && f.contains(Flags.ZERO_PAD)) for (int k = 0; k < width - len; k++) sb.insert(begin, zero); return sb; } } private static class Flags { private int flags; static final Flags NONE = new Flags(0); // '' // duplicate declarations from Formattable.java static final Flags LEFT_JUSTIFY = new Flags(1<<0); // '-' static final Flags UPPERCASE = new Flags(1<<1); // '^' static final Flags ALTERNATE = new Flags(1<<2); // '#' // numerics static final Flags PLUS = new Flags(1<<3); // '+' static final Flags LEADING_SPACE = new Flags(1<<4); // ' ' static final Flags ZERO_PAD = new Flags(1<<5); // '0' static final Flags GROUP = new Flags(1<<6); // ',' static final Flags PARENTHESES = new Flags(1<<7); // '(' // indexing static final Flags PREVIOUS = new Flags(1<<8); // '<' private Flags(int f) { flags = f; } public int valueOf() { return flags; } public boolean contains(Flags f) { return (flags & f.valueOf()) == f.valueOf(); } public Flags dup() { return new Flags(flags); } private Flags add(Flags f) { flags |= f.valueOf(); return this; } public Flags remove(Flags f) { flags &= ~f.valueOf(); return this; } public static Flags parse(String s) { char[] ca = s.toCharArray(); Flags f = new Flags(0); for (int i = 0; i < ca.length; i++) { Flags v = parse(ca[i]); if (f.contains(v)) throw new DuplicateFormatFlagsException(v.toString()); f.add(v); } return f; } // parse those flags which may be provided by users private static Flags parse(char c) { switch (c) { case '-': return LEFT_JUSTIFY; case '#': return ALTERNATE; case '+': return PLUS; case ' ': return LEADING_SPACE; case '0': return ZERO_PAD; case ',': return GROUP; case '(': return PARENTHESES; case '<': return PREVIOUS; default: throw new UnknownFormatFlagsException(String.valueOf(c)); } } // Returns a string representation of the current {@code Flags}. public static String toString(Flags f) { return f.toString(); } public String toString() { StringBuilder sb = new StringBuilder(); if (contains(LEFT_JUSTIFY)) sb.append('-'); if (contains(UPPERCASE)) sb.append('^'); if (contains(ALTERNATE)) sb.append('#'); if (contains(PLUS)) sb.append('+'); if (contains(LEADING_SPACE)) sb.append(' '); if (contains(ZERO_PAD)) sb.append('0'); if (contains(GROUP)) sb.append(','); if (contains(PARENTHESES)) sb.append('('); if (contains(PREVIOUS)) sb.append('<'); return sb.toString(); } } private static class Conversion { // Byte, Short, Integer, Long, BigInteger // (and associated primitives due to autoboxing) static final char DECIMAL_INTEGER = 'd'; static final char OCTAL_INTEGER = 'o'; static final char HEXADECIMAL_INTEGER = 'x'; static final char HEXADECIMAL_INTEGER_UPPER = 'X'; // Float, Double, BigDecimal // (and associated primitives due to autoboxing) static final char SCIENTIFIC = 'e'; static final char SCIENTIFIC_UPPER = 'E'; static final char GENERAL = 'g'; static final char GENERAL_UPPER = 'G'; static final char DECIMAL_FLOAT = 'f'; static final char HEXADECIMAL_FLOAT = 'a'; static final char HEXADECIMAL_FLOAT_UPPER = 'A'; // Character, Byte, Short, Integer // (and associated primitives due to autoboxing) static final char CHARACTER = 'c'; static final char CHARACTER_UPPER = 'C'; // java.util.Date, java.util.Calendar, long static final char DATE_TIME = 't'; static final char DATE_TIME_UPPER = 'T'; // if (arg.TYPE != boolean) return boolean // if (arg != null) return true; else return false; static final char BOOLEAN = 'b'; static final char BOOLEAN_UPPER = 'B'; // if (arg instanceof Formattable) arg.formatTo() // else arg.toString(); static final char STRING = 's'; static final char STRING_UPPER = 'S'; // arg.hashCode() static final char HASHCODE = 'h'; static final char HASHCODE_UPPER = 'H'; static final char LINE_SEPARATOR = 'n'; static final char PERCENT_SIGN = '%'; static boolean isValid(char c) { return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c) || c == 't' || isCharacter(c)); } // Returns true iff the Conversion is applicable to all objects. static boolean isGeneral(char c) { switch (c) { case BOOLEAN: case BOOLEAN_UPPER: case STRING: case STRING_UPPER: case HASHCODE: case HASHCODE_UPPER: return true; default: return false; } } // Returns true iff the Conversion is applicable to character. static boolean isCharacter(char c) { switch (c) { case CHARACTER: case CHARACTER_UPPER: return true; default: return false; } } // Returns true iff the Conversion is an integer type. static boolean isInteger(char c) { switch (c) { case DECIMAL_INTEGER: case OCTAL_INTEGER: case HEXADECIMAL_INTEGER: case HEXADECIMAL_INTEGER_UPPER: return true; default: return false; } } // Returns true iff the Conversion is a floating-point type. static boolean isFloat(char c) { switch (c) { case SCIENTIFIC: case SCIENTIFIC_UPPER: case GENERAL: case GENERAL_UPPER: case DECIMAL_FLOAT: case HEXADECIMAL_FLOAT: case HEXADECIMAL_FLOAT_UPPER: return true; default: return false; } } // Returns true iff the Conversion does not require an argument static boolean isText(char c) { switch (c) { case LINE_SEPARATOR: case PERCENT_SIGN: return true; default: return false; } } } private static class DateTime { static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23) static final char HOUR_0 = 'I'; // (01 - 12) static final char HOUR_OF_DAY = 'k'; // (0 - 23) -- like H static final char HOUR = 'l'; // (1 - 12) -- like I static final char MINUTE = 'M'; // (00 - 59) static final char NANOSECOND = 'N'; // (000000000 - 999999999) static final char MILLISECOND = 'L'; // jdk, not in gnu (000 - 999) static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?) static final char AM_PM = 'p'; // (am or pm) static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?) static final char SECOND = 'S'; // (00 - 60 - leap second) static final char TIME = 'T'; // (24 hour hh:mm:ss) static final char ZONE_NUMERIC = 'z'; // (-1200 - +1200) - ls minus? static final char ZONE = 'Z'; // (symbol) // Date static final char NAME_OF_DAY_ABBREV = 'a'; // 'a' static final char NAME_OF_DAY = 'A'; // 'A' static final char NAME_OF_MONTH_ABBREV = 'b'; // 'b' static final char NAME_OF_MONTH = 'B'; // 'B' static final char CENTURY = 'C'; // (00 - 99) static final char DAY_OF_MONTH_0 = 'd'; // (01 - 31) static final char DAY_OF_MONTH = 'e'; // (1 - 31) -- like d // * static final char ISO_WEEK_OF_YEAR_2 = 'g'; // cross %y %V // * static final char ISO_WEEK_OF_YEAR_4 = 'G'; // cross %Y %V static final char NAME_OF_MONTH_ABBREV_X = 'h'; // -- same b static final char DAY_OF_YEAR = 'j'; // (001 - 366) static final char MONTH = 'm'; // (01 - 12) // * static final char DAY_OF_WEEK_1 = 'u'; // (1 - 7) Monday // * static final char WEEK_OF_YEAR_SUNDAY = 'U'; // (0 - 53) Sunday+ // * static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+ // * static final char DAY_OF_WEEK_0 = 'w'; // (0 - 6) Sunday // * static final char WEEK_OF_YEAR_MONDAY = 'W'; // (00 - 53) Monday static final char YEAR_2 = 'y'; // (00 - 99) static final char YEAR_4 = 'Y'; // (0000 - 9999) // Composites static final char TIME_12_HOUR = 'r'; // (hh:mm:ss [AP]M) static final char TIME_24_HOUR = 'R'; // (hh:mm same as %H:%M) // * static final char LOCALE_TIME = 'X'; // (%H:%M:%S) - parse format? static final char DATE_TIME = 'c'; // (Sat Nov 04 12:02:33 EST 1999) static final char DATE = 'D'; // (mm/dd/yy) static final char ISO_STANDARD_DATE = 'F'; // (%Y-%m-%d) // * static final char LOCALE_DATE = 'x'; // (mm/dd/yy) static boolean isValid(char c) { switch (c) { case HOUR_OF_DAY_0: case HOUR_0: case HOUR_OF_DAY: case HOUR: case MINUTE: case NANOSECOND: case MILLISECOND: case MILLISECOND_SINCE_EPOCH: case AM_PM: case SECONDS_SINCE_EPOCH: case SECOND: case TIME: case ZONE_NUMERIC: case ZONE: // Date case NAME_OF_DAY_ABBREV: case NAME_OF_DAY: case NAME_OF_MONTH_ABBREV: case NAME_OF_MONTH: case CENTURY: case DAY_OF_MONTH_0: case DAY_OF_MONTH: // * case ISO_WEEK_OF_YEAR_2: // * case ISO_WEEK_OF_YEAR_4: case NAME_OF_MONTH_ABBREV_X: case DAY_OF_YEAR: case MONTH: // * case DAY_OF_WEEK_1: // * case WEEK_OF_YEAR_SUNDAY: // * case WEEK_OF_YEAR_MONDAY_01: // * case DAY_OF_WEEK_0: // * case WEEK_OF_YEAR_MONDAY: case YEAR_2: case YEAR_4: // Composites case TIME_12_HOUR: case TIME_24_HOUR: // * case LOCALE_TIME: case DATE_TIME: case DATE: case ISO_STANDARD_DATE: // * case LOCALE_DATE: return true; default: return false; } } } }