/*
 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.misc;

import java.util.Arrays;

public class FormattedFloatingDecimal{

    public enum Form { SCIENTIFIC, COMPATIBLE, DECIMAL_FLOAT, GENERAL };


    public static FormattedFloatingDecimal valueOf(double d, int precision, Form form){
        FloatingDecimal.BinaryToASCIIConverter fdConverter =
                FloatingDecimal.getBinaryToASCIIConverter(d, form == Form.COMPATIBLE);
        return new FormattedFloatingDecimal(precision,form, fdConverter);
    }

    private int decExponentRounded;
    private char[] mantissa;
    private char[] exponent;

    private static final ThreadLocal<Object> threadLocalCharBuffer =
            new ThreadLocal<Object>() {
                @Override
                protected Object initialValue() {
                    return new char[20];
                }
            };

    private static char[] getBuffer(){
        return (char[]) threadLocalCharBuffer.get();
    }

    private FormattedFloatingDecimal(int precision, Form form, FloatingDecimal.BinaryToASCIIConverter fdConverter) {
        if (fdConverter.isExceptional()) {
            this.mantissa = fdConverter.toJavaFormatString().toCharArray();
            this.exponent = null;
            return;
        }
        char[] digits = getBuffer();
        int nDigits = fdConverter.getDigits(digits);
        int decExp = fdConverter.getDecimalExponent();
        int exp;
        boolean isNegative = fdConverter.isNegative();
        switch (form) {
            case COMPATIBLE:
                exp = decExp;
                this.decExponentRounded = exp;
                fillCompatible(precision, digits, nDigits, exp, isNegative);
                break;
            case DECIMAL_FLOAT:
                exp = applyPrecision(decExp, digits, nDigits, decExp + precision);
                fillDecimal(precision, digits, nDigits, exp, isNegative);
                this.decExponentRounded = exp;
                break;
            case SCIENTIFIC:
                exp = applyPrecision(decExp, digits, nDigits, precision + 1);
                fillScientific(precision, digits, nDigits, exp, isNegative);
                this.decExponentRounded = exp;
                break;
            case GENERAL:
                exp = applyPrecision(decExp, digits, nDigits, precision);
                // adjust precision to be the number of digits to right of decimal
                // the real exponent to be output is actually exp - 1, not exp
                if (exp - 1 < -4 || exp - 1 >= precision) {
                    // form = Form.SCIENTIFIC;
                    precision--;
                    fillScientific(precision, digits, nDigits, exp, isNegative);
                } else {
                    // form = Form.DECIMAL_FLOAT;
                    precision = precision - exp;
                    fillDecimal(precision, digits, nDigits, exp, isNegative);
                }
                this.decExponentRounded = exp;
                break;
            default:
                assert false;
        }
    }

    // returns the exponent after rounding has been done by applyPrecision
    public int getExponentRounded() {
        return decExponentRounded - 1;
    }

    public char[] getMantissa(){
        return mantissa;
    }

    public char[] getExponent(){
        return exponent;
    }

    
Returns new decExp in case of overflow.
/** * Returns new decExp in case of overflow. */
private static int applyPrecision(int decExp, char[] digits, int nDigits, int prec) { if (prec >= nDigits || prec < 0) { // no rounding necessary return decExp; } if (prec == 0) { // only one digit (0 or 1) is returned because the precision // excludes all significant digits if (digits[0] >= '5') { digits[0] = '1'; Arrays.fill(digits, 1, nDigits, '0'); return decExp + 1; } else { Arrays.fill(digits, 0, nDigits, '0'); return decExp; } } int q = digits[prec]; if (q >= '5') { int i = prec; q = digits[--i]; if ( q == '9' ) { while ( q == '9' && i > 0 ){ q = digits[--i]; } if ( q == '9' ){ // carryout! High-order 1, rest 0s, larger exp. digits[0] = '1'; Arrays.fill(digits, 1, nDigits, '0'); return decExp+1; } } digits[i] = (char)(q + 1); Arrays.fill(digits, i+1, nDigits, '0'); } else { Arrays.fill(digits, prec, nDigits, '0'); } return decExp; }
Fills mantissa and exponent char arrays for compatible format.
/** * Fills mantissa and exponent char arrays for compatible format. */
private void fillCompatible(int precision, char[] digits, int nDigits, int exp, boolean isNegative) { int startIndex = isNegative ? 1 : 0; if (exp > 0 && exp < 8) { // print digits.digits. if (nDigits < exp) { int extraZeros = exp - nDigits; mantissa = create(isNegative, nDigits + extraZeros + 2); System.arraycopy(digits, 0, mantissa, startIndex, nDigits); Arrays.fill(mantissa, startIndex + nDigits, startIndex + nDigits + extraZeros, '0'); mantissa[startIndex + nDigits + extraZeros] = '.'; mantissa[startIndex + nDigits + extraZeros+1] = '0'; } else if (exp < nDigits) { int t = Math.min(nDigits - exp, precision); mantissa = create(isNegative, exp + 1 + t); System.arraycopy(digits, 0, mantissa, startIndex, exp); mantissa[startIndex + exp ] = '.'; System.arraycopy(digits, exp, mantissa, startIndex+exp+1, t); } else { // exp == digits.length mantissa = create(isNegative, nDigits + 2); System.arraycopy(digits, 0, mantissa, startIndex, nDigits); mantissa[startIndex + nDigits ] = '.'; mantissa[startIndex + nDigits +1] = '0'; } } else if (exp <= 0 && exp > -3) { int zeros = Math.max(0, Math.min(-exp, precision)); int t = Math.max(0, Math.min(nDigits, precision + exp)); // write '0' s before the significant digits if (zeros > 0) { mantissa = create(isNegative, zeros + 2 + t); mantissa[startIndex] = '0'; mantissa[startIndex+1] = '.'; Arrays.fill(mantissa, startIndex + 2, startIndex + 2 + zeros, '0'); if (t > 0) { // copy only when significant digits are within the precision System.arraycopy(digits, 0, mantissa, startIndex + 2 + zeros, t); } } else if (t > 0) { mantissa = create(isNegative, zeros + 2 + t); mantissa[startIndex] = '0'; mantissa[startIndex + 1] = '.'; // copy only when significant digits are within the precision System.arraycopy(digits, 0, mantissa, startIndex + 2, t); } else { this.mantissa = create(isNegative, 1); this.mantissa[startIndex] = '0'; } } else { if (nDigits > 1) { mantissa = create(isNegative, nDigits + 1); mantissa[startIndex] = digits[0]; mantissa[startIndex + 1] = '.'; System.arraycopy(digits, 1, mantissa, startIndex + 2, nDigits - 1); } else { mantissa = create(isNegative, 3); mantissa[startIndex] = digits[0]; mantissa[startIndex + 1] = '.'; mantissa[startIndex + 2] = '0'; } int e, expStartIntex; boolean isNegExp = (exp <= 0); if (isNegExp) { e = -exp + 1; expStartIntex = 1; } else { e = exp - 1; expStartIntex = 0; } // decExponent has 1, 2, or 3, digits if (e <= 9) { exponent = create(isNegExp,1); exponent[expStartIntex] = (char) (e + '0'); } else if (e <= 99) { exponent = create(isNegExp,2); exponent[expStartIntex] = (char) (e / 10 + '0'); exponent[expStartIntex+1] = (char) (e % 10 + '0'); } else { exponent = create(isNegExp,3); exponent[expStartIntex] = (char) (e / 100 + '0'); e %= 100; exponent[expStartIntex+1] = (char) (e / 10 + '0'); exponent[expStartIntex+2] = (char) (e % 10 + '0'); } } } private static char[] create(boolean isNegative, int size) { if(isNegative) { char[] r = new char[size +1]; r[0] = '-'; return r; } else { return new char[size]; } } /* * Fills mantissa char arrays for DECIMAL_FLOAT format. * Exponent should be equal to null. */ private void fillDecimal(int precision, char[] digits, int nDigits, int exp, boolean isNegative) { int startIndex = isNegative ? 1 : 0; if (exp > 0) { // print digits.digits. if (nDigits < exp) { mantissa = create(isNegative,exp); System.arraycopy(digits, 0, mantissa, startIndex, nDigits); Arrays.fill(mantissa, startIndex + nDigits, startIndex + exp, '0'); // Do not append ".0" for formatted floats since the user // may request that it be omitted. It is added as necessary // by the Formatter. } else { int t = Math.min(nDigits - exp, precision); mantissa = create(isNegative, exp + (t > 0 ? (t + 1) : 0)); System.arraycopy(digits, 0, mantissa, startIndex, exp); // Do not append ".0" for formatted floats since the user // may request that it be omitted. It is added as necessary // by the Formatter. if (t > 0) { mantissa[startIndex + exp] = '.'; System.arraycopy(digits, exp, mantissa, startIndex + exp + 1, t); } } } else if (exp <= 0) { int zeros = Math.max(0, Math.min(-exp, precision)); int t = Math.max(0, Math.min(nDigits, precision + exp)); // write '0' s before the significant digits if (zeros > 0) { mantissa = create(isNegative, zeros + 2 + t); mantissa[startIndex] = '0'; mantissa[startIndex+1] = '.'; Arrays.fill(mantissa, startIndex + 2, startIndex + 2 + zeros, '0'); if (t > 0) { // copy only when significant digits are within the precision System.arraycopy(digits, 0, mantissa, startIndex + 2 + zeros, t); } } else if (t > 0) { mantissa = create(isNegative, zeros + 2 + t); mantissa[startIndex] = '0'; mantissa[startIndex + 1] = '.'; // copy only when significant digits are within the precision System.arraycopy(digits, 0, mantissa, startIndex + 2, t); } else { this.mantissa = create(isNegative, 1); this.mantissa[startIndex] = '0'; } } }
Fills mantissa and exponent char arrays for SCIENTIFIC format.
/** * Fills mantissa and exponent char arrays for SCIENTIFIC format. */
private void fillScientific(int precision, char[] digits, int nDigits, int exp, boolean isNegative) { int startIndex = isNegative ? 1 : 0; int t = Math.max(0, Math.min(nDigits - 1, precision)); if (t > 0) { mantissa = create(isNegative, t + 2); mantissa[startIndex] = digits[0]; mantissa[startIndex + 1] = '.'; System.arraycopy(digits, 1, mantissa, startIndex + 2, t); } else { mantissa = create(isNegative, 1); mantissa[startIndex] = digits[0]; } char expSign; int e; if (exp <= 0) { expSign = '-'; e = -exp + 1; } else { expSign = '+' ; e = exp - 1; } // decExponent has 1, 2, or 3, digits if (e <= 9) { exponent = new char[] { expSign, '0', (char) (e + '0') }; } else if (e <= 99) { exponent = new char[] { expSign, (char) (e / 10 + '0'), (char) (e % 10 + '0') }; } else { char hiExpChar = (char) (e / 100 + '0'); e %= 100; exponent = new char[] { expSign, hiExpChar, (char) (e / 10 + '0'), (char) (e % 10 + '0') }; } } }