/*
 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang;

import java.security.AccessController;
import java.security.AccessControlContext;
import java.security.PrivilegedAction;
import java.util.Map;
import java.util.HashMap;
import java.util.Collections;
import java.util.concurrent.locks.LockSupport;
import sun.misc.SoftCache;
import sun.nio.ch.Interruptible;
import sun.reflect.CallerSensitive;
import sun.reflect.Reflection;
import sun.security.util.SecurityConstants;


A thread is a thread of execution in a program. The Java Virtual Machine allows an application to have multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to threads with lower priority. Each thread may or may not also be marked as a daemon. When code running in some thread creates a new Thread object, the new thread has its priority initially set equal to the priority of the creating thread, and is a daemon thread if and only if the creating thread is a daemon.

When a Java Virtual Machine starts up, there is usually a single non-daemon thread (which typically calls the method named main of some designated class). The Java Virtual Machine continues to execute threads until either of the following occurs:

  • The exit method of class Runtime has been called and the security manager has permitted the exit operation to take place.
  • All threads that are not daemon threads have died, either by returning from the call to the run method or by throwing an exception that propagates beyond the run method.

There are two ways to create a new thread of execution. One is to declare a class to be a subclass of Thread. This subclass should override the run method of class Thread. An instance of the subclass can then be allocated and started. For example, a thread that computes primes larger than a stated value could be written as follows:


    class PrimeThread extends Thread {
        long minPrime;
        PrimeThread(long minPrime) {
            this.minPrime = minPrime;
        }
        public void run() {
            // compute primes larger than minPrime
             . . .
        }
    }

The following code would then create a thread and start it running:

    PrimeThread p = new PrimeThread(143);
    p.start();

The other way to create a thread is to declare a class that implements the Runnable interface. That class then implements the run method. An instance of the class can then be allocated, passed as an argument when creating Thread, and started. The same example in this other style looks like the following:


    class PrimeRun implements Runnable {
        long minPrime;
        PrimeRun(long minPrime) {
            this.minPrime = minPrime;
        }
        public void run() {
            // compute primes larger than minPrime
             . . .
        }
    }

The following code would then create a thread and start it running:

    PrimeRun p = new PrimeRun(143);
    new Thread(p).start();

Every thread has a name for identification purposes. More than one thread may have the same name. If a name is not specified when a thread is created, a new name is generated for it.

Author: unascribed
See Also:
Since: JDK1.0
/** * A <i>thread</i> is a thread of execution in a program. The Java * Virtual Machine allows an application to have multiple threads of * execution running concurrently. * <p> * Every thread has a priority. Threads with higher priority are * executed in preference to threads with lower priority. Each thread * may or may not also be marked as a daemon. When code running in * some thread creates a new <code>Thread</code> object, the new * thread has its priority initially set equal to the priority of the * creating thread, and is a daemon thread if and only if the * creating thread is a daemon. * <p> * When a Java Virtual Machine starts up, there is usually a single * non-daemon thread (which typically calls the method named * <code>main</code> of some designated class). The Java Virtual * Machine continues to execute threads until either of the following * occurs: * <ul> * <li>The <code>exit</code> method of class <code>Runtime</code> has been * called and the security manager has permitted the exit operation * to take place. * <li>All threads that are not daemon threads have died, either by * returning from the call to the <code>run</code> method or by * throwing an exception that propagates beyond the <code>run</code> * method. * </ul> * <p> * There are two ways to create a new thread of execution. One is to * declare a class to be a subclass of <code>Thread</code>. This * subclass should override the <code>run</code> method of class * <code>Thread</code>. An instance of the subclass can then be * allocated and started. For example, a thread that computes primes * larger than a stated value could be written as follows: * <p><hr><blockquote><pre> * class PrimeThread extends Thread { * long minPrime; * PrimeThread(long minPrime) { * this.minPrime = minPrime; * } * * public void run() { * // compute primes larger than minPrime * &nbsp;.&nbsp;.&nbsp;. * } * } * </pre></blockquote><hr> * <p> * The following code would then create a thread and start it running: * <p><blockquote><pre> * PrimeThread p = new PrimeThread(143); * p.start(); * </pre></blockquote> * <p> * The other way to create a thread is to declare a class that * implements the <code>Runnable</code> interface. That class then * implements the <code>run</code> method. An instance of the class can * then be allocated, passed as an argument when creating * <code>Thread</code>, and started. The same example in this other * style looks like the following: * <p><hr><blockquote><pre> * class PrimeRun implements Runnable { * long minPrime; * PrimeRun(long minPrime) { * this.minPrime = minPrime; * } * * public void run() { * // compute primes larger than minPrime * &nbsp;.&nbsp;.&nbsp;. * } * } * </pre></blockquote><hr> * <p> * The following code would then create a thread and start it running: * <p><blockquote><pre> * PrimeRun p = new PrimeRun(143); * new Thread(p).start(); * </pre></blockquote> * <p> * Every thread has a name for identification purposes. More than * one thread may have the same name. If a name is not specified when * a thread is created, a new name is generated for it. * * @author unascribed * @see Runnable * @see Runtime#exit(int) * @see #run() * @see #stop() * @since JDK1.0 */
public class Thread implements Runnable { /* Make sure registerNatives is the first thing <clinit> does. */ private static native void registerNatives(); static { registerNatives(); } private char name[]; private int priority; private Thread threadQ; private long eetop; /* Whether or not to single_step this thread. */ private boolean single_step; /* Whether or not the thread is a daemon thread. */ private boolean daemon = false; /* JVM state */ private boolean stillborn = false; /* What will be run. */ private Runnable target; /* The group of this thread */ private ThreadGroup group; /* The context ClassLoader for this thread */ private ClassLoader contextClassLoader; /* The inherited AccessControlContext of this thread */ private AccessControlContext inheritedAccessControlContext; /* For autonumbering anonymous threads. */ private static int threadInitNumber; private static synchronized int nextThreadNum() { return threadInitNumber++; } /* ThreadLocal values pertaining to this thread. This map is maintained * by the ThreadLocal class. */ ThreadLocal.ThreadLocalMap threadLocals = null; /* * InheritableThreadLocal values pertaining to this thread. This map is * maintained by the InheritableThreadLocal class. */ ThreadLocal.ThreadLocalMap inheritableThreadLocals = null; /* * The requested stack size for this thread, or 0 if the creator did * not specify a stack size. It is up to the VM to do whatever it * likes with this number; some VMs will ignore it. */ private long stackSize; /* * JVM-private state that persists after native thread termination. */ private long nativeParkEventPointer; /* * Thread ID */ private long tid; /* For generating thread ID */ private static long threadSeqNumber; /* Java thread status for tools, * initialized to indicate thread 'not yet started' */ private int threadStatus = 0; private static synchronized long nextThreadID() { return ++threadSeqNumber; }
The argument supplied to the current call to java.util.concurrent.locks.LockSupport.park. Set by (private) java.util.concurrent.locks.LockSupport.setBlocker Accessed using java.util.concurrent.locks.LockSupport.getBlocker
/** * The argument supplied to the current call to * java.util.concurrent.locks.LockSupport.park. * Set by (private) java.util.concurrent.locks.LockSupport.setBlocker * Accessed using java.util.concurrent.locks.LockSupport.getBlocker */
volatile Object parkBlocker; /* The object in which this thread is blocked in an interruptible I/O * operation, if any. The blocker's interrupt method should be invoked * after setting this thread's interrupt status. */ private volatile Interruptible blocker; private Object blockerLock = new Object(); /* Set the blocker field; invoked via sun.misc.SharedSecrets from java.nio code */ void blockedOn(Interruptible b) { synchronized (blockerLock) { blocker = b; } }
The minimum priority that a thread can have.
/** * The minimum priority that a thread can have. */
public final static int MIN_PRIORITY = 1;
The default priority that is assigned to a thread.
/** * The default priority that is assigned to a thread. */
public final static int NORM_PRIORITY = 5;
The maximum priority that a thread can have.
/** * The maximum priority that a thread can have. */
public final static int MAX_PRIORITY = 10; /* If stop was called before start */ private boolean stopBeforeStart; /* Remembered Throwable from stop before start */ private Throwable throwableFromStop; /* Whether or not the Thread has been completely constructed; * init or clone method has successfully completed */ private volatile Thread me; // null
Returns a reference to the currently executing thread object.
Returns: the currently executing thread.
/** * Returns a reference to the currently executing thread object. * * @return the currently executing thread. */
public static native Thread currentThread();
Causes the currently executing thread object to temporarily pause and allow other threads to execute.
/** * Causes the currently executing thread object to temporarily pause * and allow other threads to execute. */
public static native void yield();
Causes the currently executing thread to sleep (temporarily cease execution) for the specified number of milliseconds, subject to the precision and accuracy of system timers and schedulers. The thread does not lose ownership of any monitors.
Params:
  • millis – the length of time to sleep in milliseconds.
Throws:
  • InterruptedException – if any thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
See Also:
/** * Causes the currently executing thread to sleep (temporarily cease * execution) for the specified number of milliseconds, subject to * the precision and accuracy of system timers and schedulers. The thread * does not lose ownership of any monitors. * * @param millis the length of time to sleep in milliseconds. * @exception InterruptedException if any thread has interrupted * the current thread. The <i>interrupted status</i> of the * current thread is cleared when this exception is thrown. * @see Object#notify() */
public static native void sleep(long millis) throws InterruptedException;
Causes the currently executing thread to sleep (cease execution) for the specified number of milliseconds plus the specified number of nanoseconds, subject to the precision and accuracy of system timers and schedulers. The thread does not lose ownership of any monitors.
Params:
  • millis – the length of time to sleep in milliseconds.
  • nanos – 0-999999 additional nanoseconds to sleep.
Throws:
  • IllegalArgumentException – if the value of millis is negative or the value of nanos is not in the range 0-999999.
  • InterruptedException – if any thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
See Also:
/** * Causes the currently executing thread to sleep (cease execution) * for the specified number of milliseconds plus the specified number * of nanoseconds, subject to the precision and accuracy of system * timers and schedulers. The thread does not lose ownership of any * monitors. * * @param millis the length of time to sleep in milliseconds. * @param nanos 0-999999 additional nanoseconds to sleep. * @exception IllegalArgumentException if the value of millis is * negative or the value of nanos is not in the range * 0-999999. * @exception InterruptedException if any thread has interrupted * the current thread. The <i>interrupted status</i> of the * current thread is cleared when this exception is thrown. * @see Object#notify() */
public static void sleep(long millis, int nanos) throws InterruptedException { if (millis < 0) { throw new IllegalArgumentException("timeout value is negative"); } if (nanos < 0 || nanos > 999999) { throw new IllegalArgumentException( "nanosecond timeout value out of range"); } if (nanos >= 500000 || (nanos != 0 && millis == 0)) { millis++; } sleep(millis); }
Initializes a Thread with the current AccessControlContext.
See Also:
  • init(ThreadGroup, Runnable, String, long, AccessControlContext, boolean)
/** * Initializes a Thread with the current AccessControlContext. * @see #init(ThreadGroup,Runnable,String,long,AccessControlContext,boolean) */
private void init(ThreadGroup g, Runnable target, String name, long stackSize) { init(g, target, name, stackSize, null, true); }
Initializes a Thread.
Params:
  • g – the Thread group
  • target – the object whose run() method gets called
  • name – the name of the new Thread
  • stackSize – the desired stack size for the new thread, or zero to indicate that this parameter is to be ignored.
  • acc – the AccessControlContext to inherit, or AccessController.getContext() if null
  • inheritThreadLocals – if true, inherit initial values for inheritable thread-locals from the constructing thread
/** * Initializes a Thread. * * @param g the Thread group * @param target the object whose run() method gets called * @param name the name of the new Thread * @param stackSize the desired stack size for the new thread, or * zero to indicate that this parameter is to be ignored. * @param acc the AccessControlContext to inherit, or * AccessController.getContext() if null * @param inheritThreadLocals if {@code true}, inherit initial values for * inheritable thread-locals from the constructing thread */
private void init(ThreadGroup g, Runnable target, String name, long stackSize, AccessControlContext acc, boolean inheritThreadLocals) { Thread parent = currentThread(); SecurityManager security = System.getSecurityManager(); if (g == null) { /* Determine if it's an applet or not */ /* If there is a security manager, ask the security manager what to do. */ if (security != null) { g = security.getThreadGroup(); } /* If the security doesn't have a strong opinion of the matter use the parent thread group. */ if (g == null) { g = parent.getThreadGroup(); } } /* checkAccess regardless of whether or not threadgroup is explicitly passed in. */ g.checkAccess(); /* * Do we have the required permissions? */ if (security != null) { if (isCCLOverridden(getClass())) { security.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION); } } g.addUnstarted(); this.group = g; this.daemon = parent.isDaemon(); this.priority = parent.getPriority(); this.name = name.toCharArray(); if (security == null || isCCLOverridden(parent.getClass())) this.contextClassLoader = parent.getContextClassLoader(); else this.contextClassLoader = parent.contextClassLoader; this.inheritedAccessControlContext = acc != null ? acc : AccessController.getContext(); this.target = target; setPriority(priority); if (inheritThreadLocals && parent.inheritableThreadLocals != null) this.inheritableThreadLocals = ThreadLocal.createInheritedMap(parent.inheritableThreadLocals); /* Stash the specified stack size in case the VM cares */ this.stackSize = stackSize; /* Set thread ID */ tid = nextThreadID(); this.me = this; }
Returns a clone if the class of this object is Cloneable.
Throws:
Returns: a clone if the class of this object is Cloneable
/** * Returns a clone if the class of this object is {@link Cloneable Cloneable}. * * @return a clone if the class of this object is {@code Cloneable} * * @throws CloneNotSupportedException * if this method is invoked on a class that does not * support {@code Cloneable} */
@Override protected Object clone() throws CloneNotSupportedException { Thread t; synchronized(this) { t = (Thread) super.clone(); t.tid = nextThreadID(); t.parkBlocker = null; t.blocker = null; t.blockerLock = new Object(); t.threadLocals = null; group.checkAccess(); if (threadStatus == 0) { group.addUnstarted(); } t.setPriority(priority); final Thread current = Thread.currentThread(); if (current.inheritableThreadLocals != null) t.inheritableThreadLocals = ThreadLocal.createInheritedMap(current.inheritableThreadLocals); } t.me = t; return t; }
Creates a new Thread that inherits the given AccessControlContext. This is not a public constructor.
/** * Creates a new Thread that inherits the given AccessControlContext. * This is not a public constructor. */
Thread(Runnable target, AccessControlContext acc) { init(null, target, "Thread-" + nextThreadNum(), 0, acc, false); }
Allocates a new Thread object. This constructor has the same effect as Thread(null, null, gname), where gname is a newly generated name. Automatically generated names are of the form "Thread-"+n, where n is an integer.
See Also:
  • Thread(ThreadGroup, Runnable, String)
/** * Allocates a new <code>Thread</code> object. This constructor has * the same effect as <code>Thread(null, null,</code> * <i>gname</i><code>)</code>, where <b><i>gname</i></b> is * a newly generated name. Automatically generated names are of the * form <code>"Thread-"+</code><i>n</i>, where <i>n</i> is an integer. * * @see #Thread(ThreadGroup, Runnable, String) */
public Thread() { init(null, null, "Thread-" + nextThreadNum(), 0); }
Allocates a new Thread object. This constructor has the same effect as Thread(null, target, gname), where gname is a newly generated name. Automatically generated names are of the form "Thread-"+n, where n is an integer.
Params:
  • target – the object whose run method is called.
See Also:
/** * Allocates a new <code>Thread</code> object. This constructor has * the same effect as <code>Thread(null, target,</code> * <i>gname</i><code>)</code>, where <i>gname</i> is * a newly generated name. Automatically generated names are of the * form <code>"Thread-"+</code><i>n</i>, where <i>n</i> is an integer. * * @param target the object whose <code>run</code> method is called. * @see #Thread(ThreadGroup, Runnable, String) */
public Thread(Runnable target) { init(null, target, "Thread-" + nextThreadNum(), 0); }
Allocates a new Thread object. This constructor has the same effect as Thread(group, target, gname), where gname is a newly generated name. Automatically generated names are of the form "Thread-"+n, where n is an integer.
Params:
  • group – the thread group.
  • target – the object whose run method is called.
Throws:
  • SecurityException – if the current thread cannot create a thread in the specified thread group.
See Also:
/** * Allocates a new <code>Thread</code> object. This constructor has * the same effect as <code>Thread(group, target,</code> * <i>gname</i><code>)</code>, where <i>gname</i> is * a newly generated name. Automatically generated names are of the * form <code>"Thread-"+</code><i>n</i>, where <i>n</i> is an integer. * * @param group the thread group. * @param target the object whose <code>run</code> method is called. * @exception SecurityException if the current thread cannot create a * thread in the specified thread group. * @see #Thread(ThreadGroup, Runnable, String) */
public Thread(ThreadGroup group, Runnable target) { init(group, target, "Thread-" + nextThreadNum(), 0); }
Allocates a new Thread object. This constructor has the same effect as Thread(null, null, name).
Params:
  • name – the name of the new thread.
See Also:
/** * Allocates a new <code>Thread</code> object. This constructor has * the same effect as <code>Thread(null, null, name)</code>. * * @param name the name of the new thread. * @see #Thread(ThreadGroup, Runnable, String) */
public Thread(String name) { init(null, null, name, 0); }
Allocates a new Thread object. This constructor has the same effect as Thread(group, null, name)
Params:
  • group – the thread group.
  • name – the name of the new thread.
Throws:
  • SecurityException – if the current thread cannot create a thread in the specified thread group.
See Also:
/** * Allocates a new <code>Thread</code> object. This constructor has * the same effect as <code>Thread(group, null, name)</code> * * @param group the thread group. * @param name the name of the new thread. * @exception SecurityException if the current thread cannot create a * thread in the specified thread group. * @see #Thread(ThreadGroup, Runnable, String) */
public Thread(ThreadGroup group, String name) { init(group, null, name, 0); }
Allocates a new Thread object. This constructor has the same effect as Thread(null, target, name).
Params:
  • target – the object whose run method is called.
  • name – the name of the new thread.
See Also:
/** * Allocates a new <code>Thread</code> object. This constructor has * the same effect as <code>Thread(null, target, name)</code>. * * @param target the object whose <code>run</code> method is called. * @param name the name of the new thread. * @see #Thread(ThreadGroup, Runnable, String) */
public Thread(Runnable target, String name) { init(null, target, name, 0); }
Allocates a new Thread object so that it has target as its run object, has the specified name as its name, and belongs to the thread group referred to by group.

If group is null and there is a security manager, the group is determined by the security manager's getThreadGroup method. If group is null and there is not a security manager, or the security manager's getThreadGroup method returns null, the group is set to be the same ThreadGroup as the thread that is creating the new thread.

If there is a security manager, its checkAccess method is called with the ThreadGroup as its argument.

In addition, its checkPermission method is called with the RuntimePermission("enableContextClassLoaderOverride") permission when invoked directly or indirectly by the constructor of a subclass which overrides the getContextClassLoader or setContextClassLoader methods. This may result in a SecurityException.

If the target argument is not null, the run method of the target is called when this thread is started. If the target argument is null, this thread's run method is called when this thread is started.

The priority of the newly created thread is set equal to the priority of the thread creating it, that is, the currently running thread. The method setPriority may be used to change the priority to a new value.

The newly created thread is initially marked as being a daemon thread if and only if the thread creating it is currently marked as a daemon thread. The method setDaemon may be used to change whether or not a thread is a daemon.

Params:
  • group – the thread group.
  • target – the object whose run method is called.
  • name – the name of the new thread.
Throws:
  • SecurityException – if the current thread cannot create a thread in the specified thread group or cannot override the context class loader methods.
See Also:
/** * Allocates a new <code>Thread</code> object so that it has * <code>target</code> as its run object, has the specified * <code>name</code> as its name, and belongs to the thread group * referred to by <code>group</code>. * <p> * If <code>group</code> is <code>null</code> and there is a * security manager, the group is determined by the security manager's * <code>getThreadGroup</code> method. If <code>group</code> is * <code>null</code> and there is not a security manager, or the * security manager's <code>getThreadGroup</code> method returns * <code>null</code>, the group is set to be the same ThreadGroup * as the thread that is creating the new thread. * * <p>If there is a security manager, its <code>checkAccess</code> * method is called with the ThreadGroup as its argument. * <p>In addition, its <code>checkPermission</code> * method is called with the * <code>RuntimePermission("enableContextClassLoaderOverride")</code> * permission when invoked directly or indirectly by the constructor * of a subclass which overrides the <code>getContextClassLoader</code> * or <code>setContextClassLoader</code> methods. * This may result in a SecurityException. * <p> * If the <code>target</code> argument is not <code>null</code>, the * <code>run</code> method of the <code>target</code> is called when * this thread is started. If the target argument is * <code>null</code>, this thread's <code>run</code> method is called * when this thread is started. * <p> * The priority of the newly created thread is set equal to the * priority of the thread creating it, that is, the currently running * thread. The method <code>setPriority</code> may be used to * change the priority to a new value. * <p> * The newly created thread is initially marked as being a daemon * thread if and only if the thread creating it is currently marked * as a daemon thread. The method <code>setDaemon </code> may be used * to change whether or not a thread is a daemon. * * @param group the thread group. * @param target the object whose <code>run</code> method is called. * @param name the name of the new thread. * @exception SecurityException if the current thread cannot create a * thread in the specified thread group or cannot * override the context class loader methods. * @see Runnable#run() * @see #run() * @see #setDaemon(boolean) * @see #setPriority(int) * @see ThreadGroup#checkAccess() * @see SecurityManager#checkAccess */
public Thread(ThreadGroup group, Runnable target, String name) { init(group, target, name, 0); }
Allocates a new Thread object so that it has target as its run object, has the specified name as its name, belongs to the thread group referred to by group, and has the specified stack size.

This constructor is identical to Thread(ThreadGroup, Runnable, String) with the exception of the fact that it allows the thread stack size to be specified. The stack size is the approximate number of bytes of address space that the virtual machine is to allocate for this thread's stack. The effect of the stackSize parameter, if any, is highly platform dependent.

On some platforms, specifying a higher value for the stackSize parameter may allow a thread to achieve greater recursion depth before throwing a StackOverflowError. Similarly, specifying a lower value may allow a greater number of threads to exist concurrently without throwing an OutOfMemoryError (or other internal error). The details of the relationship between the value of the stackSize parameter and the maximum recursion depth and concurrency level are platform-dependent. On some platforms, the value of the stackSize parameter may have no effect whatsoever.

The virtual machine is free to treat the stackSize parameter as a suggestion. If the specified value is unreasonably low for the platform, the virtual machine may instead use some platform-specific minimum value; if the specified value is unreasonably high, the virtual machine may instead use some platform-specific maximum. Likewise, the virtual machine is free to round the specified value up or down as it sees fit (or to ignore it completely).

Specifying a value of zero for the stackSize parameter will cause this constructor to behave exactly like the Thread(ThreadGroup, Runnable, String) constructor.

Due to the platform-dependent nature of the behavior of this constructor, extreme care should be exercised in its use. The thread stack size necessary to perform a given computation will likely vary from one JRE implementation to another. In light of this variation, careful tuning of the stack size parameter may be required, and the tuning may need to be repeated for each JRE implementation on which an application is to run.

Implementation note: Java platform implementers are encouraged to document their implementation's behavior with respect to the stackSize parameter.

Params:
  • group – the thread group.
  • target – the object whose run method is called.
  • name – the name of the new thread.
  • stackSize – the desired stack size for the new thread, or zero to indicate that this parameter is to be ignored.
Throws:
  • SecurityException – if the current thread cannot create a thread in the specified thread group.
Since:1.4
/** * Allocates a new <code>Thread</code> object so that it has * <code>target</code> as its run object, has the specified * <code>name</code> as its name, belongs to the thread group referred to * by <code>group</code>, and has the specified <i>stack size</i>. * * <p>This constructor is identical to {@link * #Thread(ThreadGroup,Runnable,String)} with the exception of the fact * that it allows the thread stack size to be specified. The stack size * is the approximate number of bytes of address space that the virtual * machine is to allocate for this thread's stack. <b>The effect of the * <tt>stackSize</tt> parameter, if any, is highly platform dependent.</b> * * <p>On some platforms, specifying a higher value for the * <tt>stackSize</tt> parameter may allow a thread to achieve greater * recursion depth before throwing a {@link StackOverflowError}. * Similarly, specifying a lower value may allow a greater number of * threads to exist concurrently without throwing an {@link * OutOfMemoryError} (or other internal error). The details of * the relationship between the value of the <tt>stackSize</tt> parameter * and the maximum recursion depth and concurrency level are * platform-dependent. <b>On some platforms, the value of the * <tt>stackSize</tt> parameter may have no effect whatsoever.</b> * * <p>The virtual machine is free to treat the <tt>stackSize</tt> * parameter as a suggestion. If the specified value is unreasonably low * for the platform, the virtual machine may instead use some * platform-specific minimum value; if the specified value is unreasonably * high, the virtual machine may instead use some platform-specific * maximum. Likewise, the virtual machine is free to round the specified * value up or down as it sees fit (or to ignore it completely). * * <p>Specifying a value of zero for the <tt>stackSize</tt> parameter will * cause this constructor to behave exactly like the * <tt>Thread(ThreadGroup, Runnable, String)</tt> constructor. * * <p><i>Due to the platform-dependent nature of the behavior of this * constructor, extreme care should be exercised in its use. * The thread stack size necessary to perform a given computation will * likely vary from one JRE implementation to another. In light of this * variation, careful tuning of the stack size parameter may be required, * and the tuning may need to be repeated for each JRE implementation on * which an application is to run.</i> * * <p>Implementation note: Java platform implementers are encouraged to * document their implementation's behavior with respect to the * <tt>stackSize parameter</tt>. * * @param group the thread group. * @param target the object whose <code>run</code> method is called. * @param name the name of the new thread. * @param stackSize the desired stack size for the new thread, or * zero to indicate that this parameter is to be ignored. * @exception SecurityException if the current thread cannot create a * thread in the specified thread group. * @since 1.4 */
public Thread(ThreadGroup group, Runnable target, String name, long stackSize) { init(group, target, name, stackSize); }
Causes this thread to begin execution; the Java Virtual Machine calls the run method of this thread.

The result is that two threads are running concurrently: the current thread (which returns from the call to the start method) and the other thread (which executes its run method).

It is never legal to start a thread more than once. In particular, a thread may not be restarted once it has completed execution.

Throws:
  • IllegalThreadStateException – if the thread was already started.
See Also:
/** * Causes this thread to begin execution; the Java Virtual Machine * calls the <code>run</code> method of this thread. * <p> * The result is that two threads are running concurrently: the * current thread (which returns from the call to the * <code>start</code> method) and the other thread (which executes its * <code>run</code> method). * <p> * It is never legal to start a thread more than once. * In particular, a thread may not be restarted once it has completed * execution. * * @exception IllegalThreadStateException if the thread was already * started. * @see #run() * @see #stop() */
public synchronized void start() { /** * This method is not invoked for the main method thread or "system" * group threads created/set up by the VM. Any new functionality added * to this method in the future may have to also be added to the VM. * * A zero status value corresponds to state "NEW". */ if (threadStatus != 0 || this != me) throw new IllegalThreadStateException(); group.add(this); start0(); if (stopBeforeStart) { stop0(throwableFromStop); } } private native void start0();
If this thread was constructed using a separate Runnable run object, then that Runnable object's run method is called; otherwise, this method does nothing and returns.

Subclasses of Thread should override this method.

See Also:
/** * If this thread was constructed using a separate * <code>Runnable</code> run object, then that * <code>Runnable</code> object's <code>run</code> method is called; * otherwise, this method does nothing and returns. * <p> * Subclasses of <code>Thread</code> should override this method. * * @see #start() * @see #stop() * @see #Thread(ThreadGroup, Runnable, String) */
public void run() { if (target != null) { target.run(); } }
This method is called by the system to give a Thread a chance to clean up before it actually exits.
/** * This method is called by the system to give a Thread * a chance to clean up before it actually exits. */
private void exit() { if (group != null) { group.remove(this); group = null; } /* Aggressively null out all reference fields: see bug 4006245 */ target = null; /* Speed the release of some of these resources */ threadLocals = null; inheritableThreadLocals = null; inheritedAccessControlContext = null; blocker = null; uncaughtExceptionHandler = null; }
Forces the thread to stop executing.

If there is a security manager installed, its checkAccess method is called with this as its argument. This may result in a SecurityException being raised (in the current thread).

If this thread is different from the current thread (that is, the current thread is trying to stop a thread other than itself), the security manager's checkPermission method (with a RuntimePermission("stopThread") argument) is called in addition. Again, this may result in throwing a SecurityException (in the current thread).

The thread represented by this thread is forced to stop whatever it is doing abnormally and to throw a newly created ThreadDeath object as an exception.

It is permitted to stop a thread that has not yet been started. If the thread is eventually started, it immediately terminates.

An application should not normally try to catch ThreadDeath unless it must do some extraordinary cleanup operation (note that the throwing of ThreadDeath causes finally clauses of try statements to be executed before the thread officially dies). If a catch clause catches a ThreadDeath object, it is important to rethrow the object so that the thread actually dies.

The top-level error handler that reacts to otherwise uncaught exceptions does not print out a message or otherwise notify the application if the uncaught exception is an instance of ThreadDeath.

Throws:
  • SecurityException – if the current thread cannot modify this thread.
See Also:
Deprecated:This method is inherently unsafe. Stopping a thread with Thread.stop causes it to unlock all of the monitors that it has locked (as a natural consequence of the unchecked ThreadDeath exception propagating up the stack). If any of the objects previously protected by these monitors were in an inconsistent state, the damaged objects become visible to other threads, potentially resulting in arbitrary behavior. Many uses of stop should be replaced by code that simply modifies some variable to indicate that the target thread should stop running. The target thread should check this variable regularly, and return from its run method in an orderly fashion if the variable indicates that it is to stop running. If the target thread waits for long periods (on a condition variable, for example), the interrupt method should be used to interrupt the wait. For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
/** * Forces the thread to stop executing. * <p> * If there is a security manager installed, its <code>checkAccess</code> * method is called with <code>this</code> * as its argument. This may result in a * <code>SecurityException</code> being raised (in the current thread). * <p> * If this thread is different from the current thread (that is, the current * thread is trying to stop a thread other than itself), the * security manager's <code>checkPermission</code> method (with a * <code>RuntimePermission("stopThread")</code> argument) is called in * addition. * Again, this may result in throwing a * <code>SecurityException</code> (in the current thread). * <p> * The thread represented by this thread is forced to stop whatever * it is doing abnormally and to throw a newly created * <code>ThreadDeath</code> object as an exception. * <p> * It is permitted to stop a thread that has not yet been started. * If the thread is eventually started, it immediately terminates. * <p> * An application should not normally try to catch * <code>ThreadDeath</code> unless it must do some extraordinary * cleanup operation (note that the throwing of * <code>ThreadDeath</code> causes <code>finally</code> clauses of * <code>try</code> statements to be executed before the thread * officially dies). If a <code>catch</code> clause catches a * <code>ThreadDeath</code> object, it is important to rethrow the * object so that the thread actually dies. * <p> * The top-level error handler that reacts to otherwise uncaught * exceptions does not print out a message or otherwise notify the * application if the uncaught exception is an instance of * <code>ThreadDeath</code>. * * @exception SecurityException if the current thread cannot * modify this thread. * @see #interrupt() * @see #checkAccess() * @see #run() * @see #start() * @see ThreadDeath * @see ThreadGroup#uncaughtException(Thread,Throwable) * @see SecurityManager#checkAccess(Thread) * @see SecurityManager#checkPermission * @deprecated This method is inherently unsafe. Stopping a thread with * Thread.stop causes it to unlock all of the monitors that it * has locked (as a natural consequence of the unchecked * <code>ThreadDeath</code> exception propagating up the stack). If * any of the objects previously protected by these monitors were in * an inconsistent state, the damaged objects become visible to * other threads, potentially resulting in arbitrary behavior. Many * uses of <code>stop</code> should be replaced by code that simply * modifies some variable to indicate that the target thread should * stop running. The target thread should check this variable * regularly, and return from its run method in an orderly fashion * if the variable indicates that it is to stop running. If the * target thread waits for long periods (on a condition variable, * for example), the <code>interrupt</code> method should be used to * interrupt the wait. * For more information, see * <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">Why * are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>. */
@Deprecated public final void stop() { // If the thread is already dead, return. // A zero status value corresponds to "NEW". if ((threadStatus != 0) && !isAlive()) { return; } stop1(new ThreadDeath()); }
Forces the thread to stop executing.

If there is a security manager installed, the checkAccess method of this thread is called, which may result in a SecurityException being raised (in the current thread).

If this thread is different from the current thread (that is, the current thread is trying to stop a thread other than itself) or obj is not an instance of ThreadDeath, the security manager's checkPermission method (with the RuntimePermission("stopThread") argument) is called in addition. Again, this may result in throwing a SecurityException (in the current thread).

If the argument obj is null, a NullPointerException is thrown (in the current thread).

The thread represented by this thread is forced to stop whatever it is doing abnormally and to throw the Throwable object obj as an exception. This is an unusual action to take; normally, the stop method that takes no arguments should be used.

It is permitted to stop a thread that has not yet been started. If the thread is eventually started, it immediately terminates.

Params:
  • obj – the Throwable object to be thrown.
Throws:
See Also:
Deprecated:This method is inherently unsafe. See stop() for details. An additional danger of this method is that it may be used to generate exceptions that the target thread is unprepared to handle (including checked exceptions that the thread could not possibly throw, were it not for this method). For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
/** * Forces the thread to stop executing. * <p> * If there is a security manager installed, the <code>checkAccess</code> * method of this thread is called, which may result in a * <code>SecurityException</code> being raised (in the current thread). * <p> * If this thread is different from the current thread (that is, the current * thread is trying to stop a thread other than itself) or * <code>obj</code> is not an instance of <code>ThreadDeath</code>, the * security manager's <code>checkPermission</code> method (with the * <code>RuntimePermission("stopThread")</code> argument) is called in * addition. * Again, this may result in throwing a * <code>SecurityException</code> (in the current thread). * <p> * If the argument <code>obj</code> is null, a * <code>NullPointerException</code> is thrown (in the current thread). * <p> * The thread represented by this thread is forced to stop * whatever it is doing abnormally and to throw the * <code>Throwable</code> object <code>obj</code> as an exception. This * is an unusual action to take; normally, the <code>stop</code> method * that takes no arguments should be used. * <p> * It is permitted to stop a thread that has not yet been started. * If the thread is eventually started, it immediately terminates. * * @param obj the Throwable object to be thrown. * @exception SecurityException if the current thread cannot modify * this thread. * @throws NullPointerException if obj is <tt>null</tt>. * @see #interrupt() * @see #checkAccess() * @see #run() * @see #start() * @see #stop() * @see SecurityManager#checkAccess(Thread) * @see SecurityManager#checkPermission * @deprecated This method is inherently unsafe. See {@link #stop()} * for details. An additional danger of this * method is that it may be used to generate exceptions that the * target thread is unprepared to handle (including checked * exceptions that the thread could not possibly throw, were it * not for this method). * For more information, see * <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">Why * are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>. */
@Deprecated public final synchronized void stop(Throwable obj) { stop1(obj); }
Common impl for stop() and stop(Throwable).
/** * Common impl for stop() and stop(Throwable). */
private final synchronized void stop1(Throwable th) { SecurityManager security = System.getSecurityManager(); if (security != null) { checkAccess(); if ((this != Thread.currentThread()) || (!(th instanceof ThreadDeath))) { security.checkPermission(SecurityConstants.STOP_THREAD_PERMISSION); } } // A zero status value corresponds to "NEW" if (threadStatus != 0) { resume(); // Wake up thread if it was suspended; no-op otherwise stop0(th); } else { // Must do the null arg check that the VM would do with stop0 if (th == null) { throw new NullPointerException(); } // Remember this stop attempt for if/when start is used stopBeforeStart = true; throwableFromStop = th; } }
Interrupts this thread.

Unless the current thread is interrupting itself, which is always permitted, the checkAccess method of this thread is invoked, which may cause a SecurityException to be thrown.

If this thread is blocked in an invocation of the wait(), wait(long), or wait(long, int) methods of the Object class, or of the join(), join(long), join(long, int), sleep(long), or sleep(long, int), methods of this class, then its interrupt status will be cleared and it will receive an InterruptedException.

If this thread is blocked in an I/O operation upon an interruptible channel then the channel will be closed, the thread's interrupt status will be set, and the thread will receive a ClosedByInterruptException.

If this thread is blocked in a Selector then the thread's interrupt status will be set and it will return immediately from the selection operation, possibly with a non-zero value, just as if the selector's wakeup method were invoked.

If none of the previous conditions hold then this thread's interrupt status will be set.

Interrupting a thread that is not alive need not have any effect.

Throws:
@revised6.0
@specJSR-51
/** * Interrupts this thread. * * <p> Unless the current thread is interrupting itself, which is * always permitted, the {@link #checkAccess() checkAccess} method * of this thread is invoked, which may cause a {@link * SecurityException} to be thrown. * * <p> If this thread is blocked in an invocation of the {@link * Object#wait() wait()}, {@link Object#wait(long) wait(long)}, or {@link * Object#wait(long, int) wait(long, int)} methods of the {@link Object} * class, or of the {@link #join()}, {@link #join(long)}, {@link * #join(long, int)}, {@link #sleep(long)}, or {@link #sleep(long, int)}, * methods of this class, then its interrupt status will be cleared and it * will receive an {@link InterruptedException}. * * <p> If this thread is blocked in an I/O operation upon an {@link * java.nio.channels.InterruptibleChannel </code>interruptible * channel<code>} then the channel will be closed, the thread's interrupt * status will be set, and the thread will receive a {@link * java.nio.channels.ClosedByInterruptException}. * * <p> If this thread is blocked in a {@link java.nio.channels.Selector} * then the thread's interrupt status will be set and it will return * immediately from the selection operation, possibly with a non-zero * value, just as if the selector's {@link * java.nio.channels.Selector#wakeup wakeup} method were invoked. * * <p> If none of the previous conditions hold then this thread's interrupt * status will be set. </p> * * <p> Interrupting a thread that is not alive need not have any effect. * * @throws SecurityException * if the current thread cannot modify this thread * * @revised 6.0 * @spec JSR-51 */
public void interrupt() { if (this != Thread.currentThread()) checkAccess(); synchronized (blockerLock) { Interruptible b = blocker; if (b != null) { interrupt0(); // Just to set the interrupt flag b.interrupt(); return; } } interrupt0(); }
Tests whether the current thread has been interrupted. The interrupted status of the thread is cleared by this method. In other words, if this method were to be called twice in succession, the second call would return false (unless the current thread were interrupted again, after the first call had cleared its interrupted status and before the second call had examined it).

A thread interruption ignored because a thread was not alive at the time of the interrupt will be reflected by this method returning false.

See Also:
Returns: true if the current thread has been interrupted; false otherwise.
@revised6.0
/** * Tests whether the current thread has been interrupted. The * <i>interrupted status</i> of the thread is cleared by this method. In * other words, if this method were to be called twice in succession, the * second call would return false (unless the current thread were * interrupted again, after the first call had cleared its interrupted * status and before the second call had examined it). * * <p>A thread interruption ignored because a thread was not alive * at the time of the interrupt will be reflected by this method * returning false. * * @return <code>true</code> if the current thread has been interrupted; * <code>false</code> otherwise. * @see #isInterrupted() * @revised 6.0 */
public static boolean interrupted() { return currentThread().isInterrupted(true); }
Tests whether this thread has been interrupted. The interrupted status of the thread is unaffected by this method.

A thread interruption ignored because a thread was not alive at the time of the interrupt will be reflected by this method returning false.

See Also:
Returns: true if this thread has been interrupted; false otherwise.
@revised6.0
/** * Tests whether this thread has been interrupted. The <i>interrupted * status</i> of the thread is unaffected by this method. * * <p>A thread interruption ignored because a thread was not alive * at the time of the interrupt will be reflected by this method * returning false. * * @return <code>true</code> if this thread has been interrupted; * <code>false</code> otherwise. * @see #interrupted() * @revised 6.0 */
public boolean isInterrupted() { return isInterrupted(false); }
Tests if some Thread has been interrupted. The interrupted state is reset or not based on the value of ClearInterrupted that is passed.
/** * Tests if some Thread has been interrupted. The interrupted state * is reset or not based on the value of ClearInterrupted that is * passed. */
private native boolean isInterrupted(boolean ClearInterrupted);
Throws:
Deprecated:This method was originally designed to destroy this thread without any cleanup. Any monitors it held would have remained locked. However, the method was never implemented. If if were to be implemented, it would be deadlock-prone in much the manner of suspend. If the target thread held a lock protecting a critical system resource when it was destroyed, no thread could ever access this resource again. If another thread ever attempted to lock this resource, deadlock would result. Such deadlocks typically manifest themselves as "frozen" processes. For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
/** * Throws {@link NoSuchMethodError}. * * @deprecated This method was originally designed to destroy this * thread without any cleanup. Any monitors it held would have * remained locked. However, the method was never implemented. * If if were to be implemented, it would be deadlock-prone in * much the manner of {@link #suspend}. If the target thread held * a lock protecting a critical system resource when it was * destroyed, no thread could ever access this resource again. * If another thread ever attempted to lock this resource, deadlock * would result. Such deadlocks typically manifest themselves as * "frozen" processes. For more information, see * <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html"> * Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>. * @throws NoSuchMethodError always */
@Deprecated public void destroy() { throw new NoSuchMethodError(); }
Tests if this thread is alive. A thread is alive if it has been started and has not yet died.
Returns: true if this thread is alive; false otherwise.
/** * Tests if this thread is alive. A thread is alive if it has * been started and has not yet died. * * @return <code>true</code> if this thread is alive; * <code>false</code> otherwise. */
public final native boolean isAlive();
Suspends this thread.

First, the checkAccess method of this thread is called with no arguments. This may result in throwing a SecurityException (in the current thread).

If the thread is alive, it is suspended and makes no further progress unless and until it is resumed.

Throws:
  • SecurityException – if the current thread cannot modify this thread.
See Also:
Deprecated: This method has been deprecated, as it is inherently deadlock-prone. If the target thread holds a lock on the monitor protecting a critical system resource when it is suspended, no thread can access this resource until the target thread is resumed. If the thread that would resume the target thread attempts to lock this monitor prior to calling resume, deadlock results. Such deadlocks typically manifest themselves as "frozen" processes. For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
/** * Suspends this thread. * <p> * First, the <code>checkAccess</code> method of this thread is called * with no arguments. This may result in throwing a * <code>SecurityException </code>(in the current thread). * <p> * If the thread is alive, it is suspended and makes no further * progress unless and until it is resumed. * * @exception SecurityException if the current thread cannot modify * this thread. * @see #checkAccess * @deprecated This method has been deprecated, as it is * inherently deadlock-prone. If the target thread holds a lock on the * monitor protecting a critical system resource when it is suspended, no * thread can access this resource until the target thread is resumed. If * the thread that would resume the target thread attempts to lock this * monitor prior to calling <code>resume</code>, deadlock results. Such * deadlocks typically manifest themselves as "frozen" processes. * For more information, see * <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">Why * are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>. */
@Deprecated public final void suspend() { checkAccess(); suspend0(); }
Resumes a suspended thread.

First, the checkAccess method of this thread is called with no arguments. This may result in throwing a SecurityException (in the current thread).

If the thread is alive but suspended, it is resumed and is permitted to make progress in its execution.

Throws:
  • SecurityException – if the current thread cannot modify this thread.
See Also:
Deprecated:This method exists solely for use with suspend, which has been deprecated because it is deadlock-prone. For more information, see Why are Thread.stop, Thread.suspend and Thread.resume Deprecated?.
/** * Resumes a suspended thread. * <p> * First, the <code>checkAccess</code> method of this thread is called * with no arguments. This may result in throwing a * <code>SecurityException</code> (in the current thread). * <p> * If the thread is alive but suspended, it is resumed and is * permitted to make progress in its execution. * * @exception SecurityException if the current thread cannot modify this * thread. * @see #checkAccess * @see #suspend() * @deprecated This method exists solely for use with {@link #suspend}, * which has been deprecated because it is deadlock-prone. * For more information, see * <a href="{@docRoot}/../technotes/guides/concurrency/threadPrimitiveDeprecation.html">Why * are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>. */
@Deprecated public final void resume() { checkAccess(); resume0(); }
Changes the priority of this thread.

First the checkAccess method of this thread is called with no arguments. This may result in throwing a SecurityException.

Otherwise, the priority of this thread is set to the smaller of the specified newPriority and the maximum permitted priority of the thread's thread group.

Params:
  • newPriority – priority to set this thread to
Throws:
See Also:
/** * Changes the priority of this thread. * <p> * First the <code>checkAccess</code> method of this thread is called * with no arguments. This may result in throwing a * <code>SecurityException</code>. * <p> * Otherwise, the priority of this thread is set to the smaller of * the specified <code>newPriority</code> and the maximum permitted * priority of the thread's thread group. * * @param newPriority priority to set this thread to * @exception IllegalArgumentException If the priority is not in the * range <code>MIN_PRIORITY</code> to * <code>MAX_PRIORITY</code>. * @exception SecurityException if the current thread cannot modify * this thread. * @see #getPriority * @see #checkAccess() * @see #getThreadGroup() * @see #MAX_PRIORITY * @see #MIN_PRIORITY * @see ThreadGroup#getMaxPriority() */
public final void setPriority(int newPriority) { ThreadGroup g; checkAccess(); if (newPriority > MAX_PRIORITY || newPriority < MIN_PRIORITY) { throw new IllegalArgumentException(); } if((g = getThreadGroup()) != null) { if (newPriority > g.getMaxPriority()) { newPriority = g.getMaxPriority(); } setPriority0(priority = newPriority); } }
Returns this thread's priority.
See Also:
Returns: this thread's priority.
/** * Returns this thread's priority. * * @return this thread's priority. * @see #setPriority */
public final int getPriority() { return priority; }
Changes the name of this thread to be equal to the argument name.

First the checkAccess method of this thread is called with no arguments. This may result in throwing a SecurityException.

Params:
  • name – the new name for this thread.
Throws:
See Also:
/** * Changes the name of this thread to be equal to the argument * <code>name</code>. * <p> * First the <code>checkAccess</code> method of this thread is called * with no arguments. This may result in throwing a * <code>SecurityException</code>. * * @param name the new name for this thread. * @exception SecurityException if the current thread cannot modify this * thread. * @see #getName * @see #checkAccess() */
public final void setName(String name) { checkAccess(); this.name = name.toCharArray(); }
Returns this thread's name.
See Also:
Returns: this thread's name.
/** * Returns this thread's name. * * @return this thread's name. * @see #setName(String) */
public final String getName() { return String.valueOf(name); }
Returns the thread group to which this thread belongs. This method returns null if this thread has died (been stopped).
Returns: this thread's thread group.
/** * Returns the thread group to which this thread belongs. * This method returns null if this thread has died * (been stopped). * * @return this thread's thread group. */
public final ThreadGroup getThreadGroup() { return group; }
Returns the number of active threads in the current thread's thread group.
Returns: the number of active threads in the current thread's thread group.
/** * Returns the number of active threads in the current thread's thread * group. * * @return the number of active threads in the current thread's thread * group. */
public static int activeCount() { return currentThread().getThreadGroup().activeCount(); }
Copies into the specified array every active thread in the current thread's thread group and its subgroups. This method simply calls the enumerate method of the current thread's thread group with the array argument.

First, if there is a security manager, that enumerate method calls the security manager's checkAccess method with the thread group as its argument. This may result in throwing a SecurityException.

Params:
  • tarray – an array of Thread objects to copy to
Throws:
  • SecurityException – if a security manager exists and its checkAccess method doesn't allow the operation.
See Also:
Returns: the number of threads put into the array
/** * Copies into the specified array every active thread in * the current thread's thread group and its subgroups. This method simply * calls the <code>enumerate</code> method of the current thread's thread * group with the array argument. * <p> * First, if there is a security manager, that <code>enumerate</code> * method calls the security * manager's <code>checkAccess</code> method * with the thread group as its argument. This may result * in throwing a <code>SecurityException</code>. * * @param tarray an array of Thread objects to copy to * @return the number of threads put into the array * @exception SecurityException if a security manager exists and its * <code>checkAccess</code> method doesn't allow the operation. * @see ThreadGroup#enumerate(Thread[]) * @see SecurityManager#checkAccess(ThreadGroup) */
public static int enumerate(Thread tarray[]) { return currentThread().getThreadGroup().enumerate(tarray); }
Counts the number of stack frames in this thread. The thread must be suspended.
Throws:
Returns: the number of stack frames in this thread.
Deprecated:The definition of this call depends on suspend, which is deprecated. Further, the results of this call were never well-defined.
/** * Counts the number of stack frames in this thread. The thread must * be suspended. * * @return the number of stack frames in this thread. * @exception IllegalThreadStateException if this thread is not * suspended. * @deprecated The definition of this call depends on {@link #suspend}, * which is deprecated. Further, the results of this call * were never well-defined. */
@Deprecated public native int countStackFrames();
Waits at most millis milliseconds for this thread to die. A timeout of 0 means to wait forever.
Params:
  • millis – the time to wait in milliseconds.
Throws:
  • InterruptedException – if any thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
/** * Waits at most <code>millis</code> milliseconds for this thread to * die. A timeout of <code>0</code> means to wait forever. * * @param millis the time to wait in milliseconds. * @exception InterruptedException if any thread has interrupted * the current thread. The <i>interrupted status</i> of the * current thread is cleared when this exception is thrown. */
public final synchronized void join(long millis) throws InterruptedException { long base = System.currentTimeMillis(); long now = 0; if (millis < 0) { throw new IllegalArgumentException("timeout value is negative"); } if (millis == 0) { while (isAlive()) { wait(0); } } else { while (isAlive()) { long delay = millis - now; if (delay <= 0) { break; } wait(delay); now = System.currentTimeMillis() - base; } } }
Waits at most millis milliseconds plus nanos nanoseconds for this thread to die.
Params:
  • millis – the time to wait in milliseconds.
  • nanos – 0-999999 additional nanoseconds to wait.
Throws:
  • IllegalArgumentException – if the value of millis is negative the value of nanos is not in the range 0-999999.
  • InterruptedException – if any thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
/** * Waits at most <code>millis</code> milliseconds plus * <code>nanos</code> nanoseconds for this thread to die. * * @param millis the time to wait in milliseconds. * @param nanos 0-999999 additional nanoseconds to wait. * @exception IllegalArgumentException if the value of millis is negative * the value of nanos is not in the range 0-999999. * @exception InterruptedException if any thread has interrupted * the current thread. The <i>interrupted status</i> of the * current thread is cleared when this exception is thrown. */
public final synchronized void join(long millis, int nanos) throws InterruptedException { if (millis < 0) { throw new IllegalArgumentException("timeout value is negative"); } if (nanos < 0 || nanos > 999999) { throw new IllegalArgumentException( "nanosecond timeout value out of range"); } if (nanos >= 500000 || (nanos != 0 && millis == 0)) { millis++; } join(millis); }
Waits for this thread to die.
Throws:
  • InterruptedException – if any thread has interrupted the current thread. The interrupted status of the current thread is cleared when this exception is thrown.
/** * Waits for this thread to die. * * @exception InterruptedException if any thread has interrupted * the current thread. The <i>interrupted status</i> of the * current thread is cleared when this exception is thrown. */
public final void join() throws InterruptedException { join(0); }
Prints a stack trace of the current thread to the standard error stream. This method is used only for debugging.
See Also:
  • printStackTrace.printStackTrace()
/** * Prints a stack trace of the current thread to the standard error stream. * This method is used only for debugging. * * @see Throwable#printStackTrace() */
public static void dumpStack() { new Exception("Stack trace").printStackTrace(); }
Marks this thread as either a daemon thread or a user thread. The Java Virtual Machine exits when the only threads running are all daemon threads.

This method must be called before the thread is started.

This method first calls the checkAccess method of this thread with no arguments. This may result in throwing a SecurityException (in the current thread).

Params:
  • on – if true, marks this thread as a daemon thread.
Throws:
See Also:
/** * Marks this thread as either a daemon thread or a user thread. The * Java Virtual Machine exits when the only threads running are all * daemon threads. * <p> * This method must be called before the thread is started. * <p> * This method first calls the <code>checkAccess</code> method * of this thread * with no arguments. This may result in throwing a * <code>SecurityException </code>(in the current thread). * * @param on if <code>true</code>, marks this thread as a * daemon thread. * @exception IllegalThreadStateException if this thread is active. * @exception SecurityException if the current thread cannot modify * this thread. * @see #isDaemon() * @see #checkAccess */
public final void setDaemon(boolean on) { checkAccess(); if (isAlive()) { throw new IllegalThreadStateException(); } daemon = on; }
Tests if this thread is a daemon thread.
See Also:
Returns: true if this thread is a daemon thread; false otherwise.
/** * Tests if this thread is a daemon thread. * * @return <code>true</code> if this thread is a daemon thread; * <code>false</code> otherwise. * @see #setDaemon(boolean) */
public final boolean isDaemon() { return daemon; }
Determines if the currently running thread has permission to modify this thread.

If there is a security manager, its checkAccess method is called with this thread as its argument. This may result in throwing a SecurityException.

Throws:
  • SecurityException – if the current thread is not allowed to access this thread.
See Also:
/** * Determines if the currently running thread has permission to * modify this thread. * <p> * If there is a security manager, its <code>checkAccess</code> method * is called with this thread as its argument. This may result in * throwing a <code>SecurityException</code>. * * @exception SecurityException if the current thread is not allowed to * access this thread. * @see SecurityManager#checkAccess(Thread) */
public final void checkAccess() { SecurityManager security = System.getSecurityManager(); if (security != null) { security.checkAccess(this); } }
Returns a string representation of this thread, including the thread's name, priority, and thread group.
Returns: a string representation of this thread.
/** * Returns a string representation of this thread, including the * thread's name, priority, and thread group. * * @return a string representation of this thread. */
public String toString() { ThreadGroup group = getThreadGroup(); if (group != null) { return "Thread[" + getName() + "," + getPriority() + "," + group.getName() + "]"; } else { return "Thread[" + getName() + "," + getPriority() + "," + "" + "]"; } }
Returns the context ClassLoader for this Thread. The context ClassLoader is provided by the creator of the thread for use by code running in this thread when loading classes and resources. If not set, the default is the ClassLoader context of the parent Thread. The context ClassLoader of the primordial thread is typically set to the class loader used to load the application.

First, if there is a security manager, and the caller's class loader is not null and the caller's class loader is not the same as or an ancestor of the context class loader for the thread whose context class loader is being requested, then the security manager's checkPermission method is called with a RuntimePermission("getClassLoader") permission to see if it's ok to get the context ClassLoader..

Throws:
  • SecurityException – if a security manager exists and its checkPermission method doesn't allow getting the context ClassLoader.
See Also:
Returns:the context ClassLoader for this Thread
Since:1.2
/** * Returns the context ClassLoader for this Thread. The context * ClassLoader is provided by the creator of the thread for use * by code running in this thread when loading classes and resources. * If not set, the default is the ClassLoader context of the parent * Thread. The context ClassLoader of the primordial thread is * typically set to the class loader used to load the application. * * <p>First, if there is a security manager, and the caller's class * loader is not null and the caller's class loader is not the same as or * an ancestor of the context class loader for the thread whose * context class loader is being requested, then the security manager's * <code>checkPermission</code> * method is called with a * <code>RuntimePermission("getClassLoader")</code> permission * to see if it's ok to get the context ClassLoader.. * * @return the context ClassLoader for this Thread * * @throws SecurityException * if a security manager exists and its * <code>checkPermission</code> method doesn't allow * getting the context ClassLoader. * @see #setContextClassLoader * @see SecurityManager#checkPermission * @see RuntimePermission * * @since 1.2 */
@CallerSensitive public ClassLoader getContextClassLoader() { if (contextClassLoader == null) return null; SecurityManager sm = System.getSecurityManager(); if (sm != null) { ClassLoader.checkClassLoaderPermission(contextClassLoader, Reflection.getCallerClass()); } return contextClassLoader; }
Sets the context ClassLoader for this Thread. The context ClassLoader can be set when a thread is created, and allows the creator of the thread to provide the appropriate class loader to code running in the thread when loading classes and resources.

First, if there is a security manager, its checkPermission method is called with a RuntimePermission("setContextClassLoader") permission to see if it's ok to set the context ClassLoader..

Params:
  • cl – the context ClassLoader for this Thread
Throws:
See Also:
Since:1.2
/** * Sets the context ClassLoader for this Thread. The context * ClassLoader can be set when a thread is created, and allows * the creator of the thread to provide the appropriate class loader * to code running in the thread when loading classes and resources. * * <p>First, if there is a security manager, its <code>checkPermission</code> * method is called with a * <code>RuntimePermission("setContextClassLoader")</code> permission * to see if it's ok to set the context ClassLoader.. * * @param cl the context ClassLoader for this Thread * * @exception SecurityException if the current thread cannot set the * context ClassLoader. * @see #getContextClassLoader * @see SecurityManager#checkPermission * @see RuntimePermission * * @since 1.2 */
public void setContextClassLoader(ClassLoader cl) { SecurityManager sm = System.getSecurityManager(); if (sm != null) { sm.checkPermission(new RuntimePermission("setContextClassLoader")); } contextClassLoader = cl; }
Returns true if and only if the current thread holds the monitor lock on the specified object.

This method is designed to allow a program to assert that the current thread already holds a specified lock:

    assert Thread.holdsLock(obj);
Params:
  • obj – the object on which to test lock ownership
Throws:
Returns:true if the current thread holds the monitor lock on the specified object.
Since:1.4
/** * Returns <tt>true</tt> if and only if the current thread holds the * monitor lock on the specified object. * * <p>This method is designed to allow a program to assert that * the current thread already holds a specified lock: * <pre> * assert Thread.holdsLock(obj); * </pre> * * @param obj the object on which to test lock ownership * @throws NullPointerException if obj is <tt>null</tt> * @return <tt>true</tt> if the current thread holds the monitor lock on * the specified object. * @since 1.4 */
public static native boolean holdsLock(Object obj); private static final StackTraceElement[] EMPTY_STACK_TRACE = new StackTraceElement[0];
Returns an array of stack trace elements representing the stack dump of this thread. This method will return a zero-length array if this thread has not started or has terminated. If the returned array is of non-zero length then the first element of the array represents the top of the stack, which is the most recent method invocation in the sequence. The last element of the array represents the bottom of the stack, which is the least recent method invocation in the sequence.

If there is a security manager, and this thread is not the current thread, then the security manager's checkPermission method is called with a RuntimePermission("getStackTrace") permission to see if it's ok to get the stack trace.

Some virtual machines may, under some circumstances, omit one or more stack frames from the stack trace. In the extreme case, a virtual machine that has no stack trace information concerning this thread is permitted to return a zero-length array from this method.

Throws:
  • SecurityException – if a security manager exists and its checkPermission method doesn't allow getting the stack trace of thread.
See Also:
Returns:an array of StackTraceElement, each represents one stack frame.
Since:1.5
/** * Returns an array of stack trace elements representing the stack dump * of this thread. This method will return a zero-length array if * this thread has not started or has terminated. * If the returned array is of non-zero length then the first element of * the array represents the top of the stack, which is the most recent * method invocation in the sequence. The last element of the array * represents the bottom of the stack, which is the least recent method * invocation in the sequence. * * <p>If there is a security manager, and this thread is not * the current thread, then the security manager's * <tt>checkPermission</tt> method is called with a * <tt>RuntimePermission("getStackTrace")</tt> permission * to see if it's ok to get the stack trace. * * <p>Some virtual machines may, under some circumstances, omit one * or more stack frames from the stack trace. In the extreme case, * a virtual machine that has no stack trace information concerning * this thread is permitted to return a zero-length array from this * method. * * @return an array of <tt>StackTraceElement</tt>, * each represents one stack frame. * * @throws SecurityException * if a security manager exists and its * <tt>checkPermission</tt> method doesn't allow * getting the stack trace of thread. * @see SecurityManager#checkPermission * @see RuntimePermission * @see Throwable#getStackTrace * * @since 1.5 */
public StackTraceElement[] getStackTrace() { if (this != Thread.currentThread()) { // check for getStackTrace permission SecurityManager security = System.getSecurityManager(); if (security != null) { security.checkPermission( SecurityConstants.GET_STACK_TRACE_PERMISSION); } // optimization so we do not call into the vm for threads that // have not yet started or have terminated if (!isAlive()) { return EMPTY_STACK_TRACE; } StackTraceElement[][] stackTraceArray = dumpThreads(new Thread[] {this}); StackTraceElement[] stackTrace = stackTraceArray[0]; // a thread that was alive during the previous isAlive call may have // since terminated, therefore not having a stacktrace. if (stackTrace == null) { stackTrace = EMPTY_STACK_TRACE; } return stackTrace; } else { // Don't need JVM help for current thread return (new Exception()).getStackTrace(); } }
Returns a map of stack traces for all live threads. The map keys are threads and each map value is an array of StackTraceElement that represents the stack dump of the corresponding Thread. The returned stack traces are in the format specified for the getStackTrace method.

The threads may be executing while this method is called. The stack trace of each thread only represents a snapshot and each stack trace may be obtained at different time. A zero-length array will be returned in the map value if the virtual machine has no stack trace information about a thread.

If there is a security manager, then the security manager's checkPermission method is called with a RuntimePermission("getStackTrace") permission as well as RuntimePermission("modifyThreadGroup") permission to see if it is ok to get the stack trace of all threads.

Throws:
  • SecurityException – if a security manager exists and its checkPermission method doesn't allow getting the stack trace of thread.
See Also:
Returns:a Map from Thread to an array of StackTraceElement that represents the stack trace of the corresponding thread.
Since:1.5
/** * Returns a map of stack traces for all live threads. * The map keys are threads and each map value is an array of * <tt>StackTraceElement</tt> that represents the stack dump * of the corresponding <tt>Thread</tt>. * The returned stack traces are in the format specified for * the {@link #getStackTrace getStackTrace} method. * * <p>The threads may be executing while this method is called. * The stack trace of each thread only represents a snapshot and * each stack trace may be obtained at different time. A zero-length * array will be returned in the map value if the virtual machine has * no stack trace information about a thread. * * <p>If there is a security manager, then the security manager's * <tt>checkPermission</tt> method is called with a * <tt>RuntimePermission("getStackTrace")</tt> permission as well as * <tt>RuntimePermission("modifyThreadGroup")</tt> permission * to see if it is ok to get the stack trace of all threads. * * @return a <tt>Map</tt> from <tt>Thread</tt> to an array of * <tt>StackTraceElement</tt> that represents the stack trace of * the corresponding thread. * * @throws SecurityException * if a security manager exists and its * <tt>checkPermission</tt> method doesn't allow * getting the stack trace of thread. * @see #getStackTrace * @see SecurityManager#checkPermission * @see RuntimePermission * @see Throwable#getStackTrace * * @since 1.5 */
public static Map<Thread, StackTraceElement[]> getAllStackTraces() { // check for getStackTrace permission SecurityManager security = System.getSecurityManager(); if (security != null) { security.checkPermission( SecurityConstants.GET_STACK_TRACE_PERMISSION); security.checkPermission( SecurityConstants.MODIFY_THREADGROUP_PERMISSION); } // Get a snapshot of the list of all threads Thread[] threads = getThreads(); StackTraceElement[][] traces = dumpThreads(threads); Map<Thread, StackTraceElement[]> m = new HashMap<Thread, StackTraceElement[]>(threads.length); for (int i = 0; i < threads.length; i++) { StackTraceElement[] stackTrace = traces[i]; if (stackTrace != null) { m.put(threads[i], stackTrace); } // else terminated so we don't put it in the map } return m; } private static final RuntimePermission SUBCLASS_IMPLEMENTATION_PERMISSION = new RuntimePermission("enableContextClassLoaderOverride");
cache of subclass security audit results
/** cache of subclass security audit results */
private static final SoftCache subclassAudits = new SoftCache(10);
Verifies that this (possibly subclass) instance can be constructed without violating security constraints: the subclass must not override security-sensitive non-final methods, or else the "enableContextClassLoaderOverride" RuntimePermission is checked.
/** * Verifies that this (possibly subclass) instance can be constructed * without violating security constraints: the subclass must not override * security-sensitive non-final methods, or else the * "enableContextClassLoaderOverride" RuntimePermission is checked. */
private static boolean isCCLOverridden(Class cl) { if (cl == Thread.class) return false; Boolean result = null; synchronized (subclassAudits) { result = (Boolean) subclassAudits.get(cl); if (result == null) { /* * Note: only new Boolean instances (i.e., not Boolean.TRUE or * Boolean.FALSE) must be used as cache values, otherwise cache * entry will pin associated class. */ result = new Boolean(auditSubclass(cl)); subclassAudits.put(cl, result); } } return result.booleanValue(); }
Performs reflective checks on given subclass to verify that it doesn't override security-sensitive non-final methods. Returns true if the subclass overrides any of the methods, false otherwise.
/** * Performs reflective checks on given subclass to verify that it doesn't * override security-sensitive non-final methods. Returns true if the * subclass overrides any of the methods, false otherwise. */
private static boolean auditSubclass(final Class subcl) { Boolean result = AccessController.doPrivileged( new PrivilegedAction<Boolean>() { public Boolean run() { for (Class cl = subcl; cl != Thread.class; cl = cl.getSuperclass()) { try { cl.getDeclaredMethod("getContextClassLoader", new Class[0]); return Boolean.TRUE; } catch (NoSuchMethodException ex) { } try { Class[] params = {ClassLoader.class}; cl.getDeclaredMethod("setContextClassLoader", params); return Boolean.TRUE; } catch (NoSuchMethodException ex) { } } return Boolean.FALSE; } } ); return result.booleanValue(); } private native static StackTraceElement[][] dumpThreads(Thread[] threads); private native static Thread[] getThreads();
Returns the identifier of this Thread. The thread ID is a positive long number generated when this thread was created. The thread ID is unique and remains unchanged during its lifetime. When a thread is terminated, this thread ID may be reused.
Returns:this thread's ID.
Since:1.5
/** * Returns the identifier of this Thread. The thread ID is a positive * <tt>long</tt> number generated when this thread was created. * The thread ID is unique and remains unchanged during its lifetime. * When a thread is terminated, this thread ID may be reused. * * @return this thread's ID. * @since 1.5 */
public long getId() { return tid; }
A thread state. A thread can be in one of the following states:
  • NEW
    A thread that has not yet started is in this state.
  • RUNNABLE
    A thread executing in the Java virtual machine is in this state.
  • BLOCKED
    A thread that is blocked waiting for a monitor lock is in this state.
  • WAITING
    A thread that is waiting indefinitely for another thread to perform a particular action is in this state.
  • TIMED_WAITING
    A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state.
  • TERMINATED
    A thread that has exited is in this state.

A thread can be in only one state at a given point in time. These states are virtual machine states which do not reflect any operating system thread states.

See Also:
  • getState
Since: 1.5
/** * A thread state. A thread can be in one of the following states: * <ul> * <li>{@link #NEW}<br> * A thread that has not yet started is in this state. * </li> * <li>{@link #RUNNABLE}<br> * A thread executing in the Java virtual machine is in this state. * </li> * <li>{@link #BLOCKED}<br> * A thread that is blocked waiting for a monitor lock * is in this state. * </li> * <li>{@link #WAITING}<br> * A thread that is waiting indefinitely for another thread to * perform a particular action is in this state. * </li> * <li>{@link #TIMED_WAITING}<br> * A thread that is waiting for another thread to perform an action * for up to a specified waiting time is in this state. * </li> * <li>{@link #TERMINATED}<br> * A thread that has exited is in this state. * </li> * </ul> * * <p> * A thread can be in only one state at a given point in time. * These states are virtual machine states which do not reflect * any operating system thread states. * * @since 1.5 * @see #getState */
public enum State {
Thread state for a thread which has not yet started.
/** * Thread state for a thread which has not yet started. */
NEW,
Thread state for a runnable thread. A thread in the runnable state is executing in the Java virtual machine but it may be waiting for other resources from the operating system such as processor.
/** * Thread state for a runnable thread. A thread in the runnable * state is executing in the Java virtual machine but it may * be waiting for other resources from the operating system * such as processor. */
RUNNABLE,
Thread state for a thread blocked waiting for a monitor lock. A thread in the blocked state is waiting for a monitor lock to enter a synchronized block/method or reenter a synchronized block/method after calling Object.wait.
/** * Thread state for a thread blocked waiting for a monitor lock. * A thread in the blocked state is waiting for a monitor lock * to enter a synchronized block/method or * reenter a synchronized block/method after calling * {@link Object#wait() Object.wait}. */
BLOCKED,
Thread state for a waiting thread. A thread is in the waiting state due to calling one of the following methods:

A thread in the waiting state is waiting for another thread to perform a particular action. For example, a thread that has called Object.wait() on an object is waiting for another thread to call Object.notify() or Object.notifyAll() on that object. A thread that has called Thread.join() is waiting for a specified thread to terminate.

/** * Thread state for a waiting thread. * A thread is in the waiting state due to calling one of the * following methods: * <ul> * <li>{@link Object#wait() Object.wait} with no timeout</li> * <li>{@link #join() Thread.join} with no timeout</li> * <li>{@link LockSupport#park() LockSupport.park}</li> * </ul> * * <p>A thread in the waiting state is waiting for another thread to * perform a particular action. * * For example, a thread that has called <tt>Object.wait()</tt> * on an object is waiting for another thread to call * <tt>Object.notify()</tt> or <tt>Object.notifyAll()</tt> on * that object. A thread that has called <tt>Thread.join()</tt> * is waiting for a specified thread to terminate. */
WAITING,
Thread state for a waiting thread with a specified waiting time. A thread is in the timed waiting state due to calling one of the following methods with a specified positive waiting time:
/** * Thread state for a waiting thread with a specified waiting time. * A thread is in the timed waiting state due to calling one of * the following methods with a specified positive waiting time: * <ul> * <li>{@link #sleep Thread.sleep}</li> * <li>{@link Object#wait(long) Object.wait} with timeout</li> * <li>{@link #join(long) Thread.join} with timeout</li> * <li>{@link LockSupport#parkNanos LockSupport.parkNanos}</li> * <li>{@link LockSupport#parkUntil LockSupport.parkUntil}</li> * </ul> */
TIMED_WAITING,
Thread state for a terminated thread. The thread has completed execution.
/** * Thread state for a terminated thread. * The thread has completed execution. */
TERMINATED; }
Returns the state of this thread. This method is designed for use in monitoring of the system state, not for synchronization control.
Returns:this thread's state.
Since:1.5
/** * Returns the state of this thread. * This method is designed for use in monitoring of the system state, * not for synchronization control. * * @return this thread's state. * @since 1.5 */
public State getState() { // get current thread state return sun.misc.VM.toThreadState(threadStatus); } // Added in JSR-166
Interface for handlers invoked when a Thread abruptly terminates due to an uncaught exception.

When a thread is about to terminate due to an uncaught exception the Java Virtual Machine will query the thread for its UncaughtExceptionHandler using getUncaughtExceptionHandler and will invoke the handler's uncaughtException method, passing the thread and the exception as arguments. If a thread has not had its UncaughtExceptionHandler explicitly set, then its ThreadGroup object acts as its UncaughtExceptionHandler. If the ThreadGroup object has no special requirements for dealing with the exception, it can forward the invocation to the default uncaught exception handler.

See Also:
Since:1.5
/** * Interface for handlers invoked when a <tt>Thread</tt> abruptly * terminates due to an uncaught exception. * <p>When a thread is about to terminate due to an uncaught exception * the Java Virtual Machine will query the thread for its * <tt>UncaughtExceptionHandler</tt> using * {@link #getUncaughtExceptionHandler} and will invoke the handler's * <tt>uncaughtException</tt> method, passing the thread and the * exception as arguments. * If a thread has not had its <tt>UncaughtExceptionHandler</tt> * explicitly set, then its <tt>ThreadGroup</tt> object acts as its * <tt>UncaughtExceptionHandler</tt>. If the <tt>ThreadGroup</tt> object * has no * special requirements for dealing with the exception, it can forward * the invocation to the {@linkplain #getDefaultUncaughtExceptionHandler * default uncaught exception handler}. * * @see #setDefaultUncaughtExceptionHandler * @see #setUncaughtExceptionHandler * @see ThreadGroup#uncaughtException * @since 1.5 */
public interface UncaughtExceptionHandler {
Method invoked when the given thread terminates due to the given uncaught exception.

Any exception thrown by this method will be ignored by the Java Virtual Machine.

Params:
  • t – the thread
  • e – the exception
/** * Method invoked when the given thread terminates due to the * given uncaught exception. * <p>Any exception thrown by this method will be ignored by the * Java Virtual Machine. * @param t the thread * @param e the exception */
void uncaughtException(Thread t, Throwable e); } // null unless explicitly set private volatile UncaughtExceptionHandler uncaughtExceptionHandler; // null unless explicitly set private static volatile UncaughtExceptionHandler defaultUncaughtExceptionHandler;
Set the default handler invoked when a thread abruptly terminates due to an uncaught exception, and no other handler has been defined for that thread.

Uncaught exception handling is controlled first by the thread, then by the thread's ThreadGroup object and finally by the default uncaught exception handler. If the thread does not have an explicit uncaught exception handler set, and the thread's thread group (including parent thread groups) does not specialize its uncaughtException method, then the default handler's uncaughtException method will be invoked.

By setting the default uncaught exception handler, an application can change the way in which uncaught exceptions are handled (such as logging to a specific device, or file) for those threads that would already accept whatever "default" behavior the system provided.

Note that the default uncaught exception handler should not usually defer to the thread's ThreadGroup object, as that could cause infinite recursion.

Params:
  • eh – the object to use as the default uncaught exception handler. If null then there is no default handler.
Throws:
See Also:
Since:1.5
/** * Set the default handler invoked when a thread abruptly terminates * due to an uncaught exception, and no other handler has been defined * for that thread. * * <p>Uncaught exception handling is controlled first by the thread, then * by the thread's {@link ThreadGroup} object and finally by the default * uncaught exception handler. If the thread does not have an explicit * uncaught exception handler set, and the thread's thread group * (including parent thread groups) does not specialize its * <tt>uncaughtException</tt> method, then the default handler's * <tt>uncaughtException</tt> method will be invoked. * <p>By setting the default uncaught exception handler, an application * can change the way in which uncaught exceptions are handled (such as * logging to a specific device, or file) for those threads that would * already accept whatever &quot;default&quot; behavior the system * provided. * * <p>Note that the default uncaught exception handler should not usually * defer to the thread's <tt>ThreadGroup</tt> object, as that could cause * infinite recursion. * * @param eh the object to use as the default uncaught exception handler. * If <tt>null</tt> then there is no default handler. * * @throws SecurityException if a security manager is present and it * denies <tt>{@link RuntimePermission} * (&quot;setDefaultUncaughtExceptionHandler&quot;)</tt> * * @see #setUncaughtExceptionHandler * @see #getUncaughtExceptionHandler * @see ThreadGroup#uncaughtException * @since 1.5 */
public static void setDefaultUncaughtExceptionHandler(UncaughtExceptionHandler eh) { SecurityManager sm = System.getSecurityManager(); if (sm != null) { sm.checkPermission( new RuntimePermission("setDefaultUncaughtExceptionHandler") ); } defaultUncaughtExceptionHandler = eh; }
Returns the default handler invoked when a thread abruptly terminates due to an uncaught exception. If the returned value is null, there is no default.
See Also:
Since:1.5
/** * Returns the default handler invoked when a thread abruptly terminates * due to an uncaught exception. If the returned value is <tt>null</tt>, * there is no default. * @since 1.5 * @see #setDefaultUncaughtExceptionHandler */
public static UncaughtExceptionHandler getDefaultUncaughtExceptionHandler(){ return defaultUncaughtExceptionHandler; }
Returns the handler invoked when this thread abruptly terminates due to an uncaught exception. If this thread has not had an uncaught exception handler explicitly set then this thread's ThreadGroup object is returned, unless this thread has terminated, in which case null is returned.
Since:1.5
/** * Returns the handler invoked when this thread abruptly terminates * due to an uncaught exception. If this thread has not had an * uncaught exception handler explicitly set then this thread's * <tt>ThreadGroup</tt> object is returned, unless this thread * has terminated, in which case <tt>null</tt> is returned. * @since 1.5 */
public UncaughtExceptionHandler getUncaughtExceptionHandler() { return uncaughtExceptionHandler != null ? uncaughtExceptionHandler : group; }
Set the handler invoked when this thread abruptly terminates due to an uncaught exception.

A thread can take full control of how it responds to uncaught exceptions by having its uncaught exception handler explicitly set. If no such handler is set then the thread's ThreadGroup object acts as its handler.

Params:
  • eh – the object to use as this thread's uncaught exception handler. If null then this thread has no explicit handler.
Throws:
See Also:
Since:1.5
/** * Set the handler invoked when this thread abruptly terminates * due to an uncaught exception. * <p>A thread can take full control of how it responds to uncaught * exceptions by having its uncaught exception handler explicitly set. * If no such handler is set then the thread's <tt>ThreadGroup</tt> * object acts as its handler. * @param eh the object to use as this thread's uncaught exception * handler. If <tt>null</tt> then this thread has no explicit handler. * @throws SecurityException if the current thread is not allowed to * modify this thread. * @see #setDefaultUncaughtExceptionHandler * @see ThreadGroup#uncaughtException * @since 1.5 */
public void setUncaughtExceptionHandler(UncaughtExceptionHandler eh) { checkAccess(); uncaughtExceptionHandler = eh; }
Dispatch an uncaught exception to the handler. This method is intended to be called only by the JVM.
/** * Dispatch an uncaught exception to the handler. This method is * intended to be called only by the JVM. */
private void dispatchUncaughtException(Throwable e) { getUncaughtExceptionHandler().uncaughtException(this, e); } /* Some private helper methods */ private native void setPriority0(int newPriority); private native void stop0(Object o); private native void suspend0(); private native void resume0(); private native void interrupt0(); }