/*
 * Copyright (C) 2006 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.graphics;

import android.annotation.CheckResult;
import android.annotation.Nullable;
import android.os.Parcel;
import android.os.Parcelable;

import android.text.TextUtils;
import android.util.proto.ProtoOutputStream;
import java.io.PrintWriter;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

Rect holds four integer coordinates for a rectangle. The rectangle is represented by the coordinates of its 4 edges (left, top, right bottom). These fields can be accessed directly. Use width() and height() to retrieve the rectangle's width and height. Note: most methods do not check to see that the coordinates are sorted correctly (i.e. left <= right and top <= bottom).

Note that the right and bottom coordinates are exclusive. This means a Rect being drawn untransformed onto a Canvas will draw into the column and row described by its left and top coordinates, but not those of its bottom and right.

/** * Rect holds four integer coordinates for a rectangle. The rectangle is * represented by the coordinates of its 4 edges (left, top, right bottom). * These fields can be accessed directly. Use width() and height() to retrieve * the rectangle's width and height. Note: most methods do not check to see that * the coordinates are sorted correctly (i.e. left <= right and top <= bottom). * <p> * Note that the right and bottom coordinates are exclusive. This means a Rect * being drawn untransformed onto a {@link android.graphics.Canvas} will draw * into the column and row described by its left and top coordinates, but not * those of its bottom and right. */
public final class Rect implements Parcelable { public int left; public int top; public int right; public int bottom;
A helper class for flattened rectange pattern recognition. A separate class to avoid an initialization dependency on a regular expression causing Rect to not be initializable with an ahead-of-time compilation scheme.
/** * A helper class for flattened rectange pattern recognition. A separate * class to avoid an initialization dependency on a regular expression * causing Rect to not be initializable with an ahead-of-time compilation * scheme. */
private static final class UnflattenHelper { private static final Pattern FLATTENED_PATTERN = Pattern.compile( "(-?\\d+) (-?\\d+) (-?\\d+) (-?\\d+)"); static Matcher getMatcher(String str) { return FLATTENED_PATTERN.matcher(str); } }
Create a new empty Rect. All coordinates are initialized to 0.
/** * Create a new empty Rect. All coordinates are initialized to 0. */
public Rect() {}
Create a new rectangle with the specified coordinates. Note: no range checking is performed, so the caller must ensure that left <= right and top <= bottom.
Params:
  • left – The X coordinate of the left side of the rectangle
  • top – The Y coordinate of the top of the rectangle
  • right – The X coordinate of the right side of the rectangle
  • bottom – The Y coordinate of the bottom of the rectangle
/** * Create a new rectangle with the specified coordinates. Note: no range * checking is performed, so the caller must ensure that left <= right and * top <= bottom. * * @param left The X coordinate of the left side of the rectangle * @param top The Y coordinate of the top of the rectangle * @param right The X coordinate of the right side of the rectangle * @param bottom The Y coordinate of the bottom of the rectangle */
public Rect(int left, int top, int right, int bottom) { this.left = left; this.top = top; this.right = right; this.bottom = bottom; }
Create a new rectangle, initialized with the values in the specified rectangle (which is left unmodified).
Params:
  • r – The rectangle whose coordinates are copied into the new rectangle.
/** * Create a new rectangle, initialized with the values in the specified * rectangle (which is left unmodified). * * @param r The rectangle whose coordinates are copied into the new * rectangle. */
public Rect(Rect r) { if (r == null) { left = top = right = bottom = 0; } else { left = r.left; top = r.top; right = r.right; bottom = r.bottom; } }
Returns a copy of r if r is not null, or null otherwise.
@hide
/** * Returns a copy of {@code r} if {@code r} is not {@code null}, or {@code null} otherwise. * * @hide */
@Nullable public static Rect copyOrNull(@Nullable Rect r) { return r == null ? null : new Rect(r); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Rect r = (Rect) o; return left == r.left && top == r.top && right == r.right && bottom == r.bottom; } @Override public int hashCode() { int result = left; result = 31 * result + top; result = 31 * result + right; result = 31 * result + bottom; return result; } @Override public String toString() { StringBuilder sb = new StringBuilder(32); sb.append("Rect("); sb.append(left); sb.append(", "); sb.append(top); sb.append(" - "); sb.append(right); sb.append(", "); sb.append(bottom); sb.append(")"); return sb.toString(); }
Return a string representation of the rectangle in a compact form.
/** * Return a string representation of the rectangle in a compact form. */
public String toShortString() { return toShortString(new StringBuilder(32)); }
Return a string representation of the rectangle in a compact form.
@hide
/** * Return a string representation of the rectangle in a compact form. * @hide */
public String toShortString(StringBuilder sb) { sb.setLength(0); sb.append('['); sb.append(left); sb.append(','); sb.append(top); sb.append("]["); sb.append(right); sb.append(','); sb.append(bottom); sb.append(']'); return sb.toString(); }
Return a string representation of the rectangle in a well-defined format.

You can later recover the Rect from this string through unflattenFromString(String).

Returns:Returns a new String of the form "left top right bottom"
/** * Return a string representation of the rectangle in a well-defined format. * * <p>You can later recover the Rect from this string through * {@link #unflattenFromString(String)}. * * @return Returns a new String of the form "left top right bottom" */
public String flattenToString() { StringBuilder sb = new StringBuilder(32); // WARNING: Do not change the format of this string, it must be // preserved because Rects are saved in this flattened format. sb.append(left); sb.append(' '); sb.append(top); sb.append(' '); sb.append(right); sb.append(' '); sb.append(bottom); return sb.toString(); }
Returns a Rect from a string of the form returned by flattenToString, or null if the string is not of that form.
/** * Returns a Rect from a string of the form returned by {@link #flattenToString}, * or null if the string is not of that form. */
public static Rect unflattenFromString(String str) { if (TextUtils.isEmpty(str)) { return null; } Matcher matcher = UnflattenHelper.getMatcher(str); if (!matcher.matches()) { return null; } return new Rect(Integer.parseInt(matcher.group(1)), Integer.parseInt(matcher.group(2)), Integer.parseInt(matcher.group(3)), Integer.parseInt(matcher.group(4))); }
Print short representation to given writer.
@hide
/** * Print short representation to given writer. * @hide */
public void printShortString(PrintWriter pw) { pw.print('['); pw.print(left); pw.print(','); pw.print(top); pw.print("]["); pw.print(right); pw.print(','); pw.print(bottom); pw.print(']'); }
Write to a protocol buffer output stream. Protocol buffer message definition at RectProto
Params:
  • protoOutputStream – Stream to write the Rect object to.
  • fieldId – Field Id of the Rect as defined in the parent message
@hide
/** * Write to a protocol buffer output stream. * Protocol buffer message definition at {@link android.graphics.RectProto} * * @param protoOutputStream Stream to write the Rect object to. * @param fieldId Field Id of the Rect as defined in the parent message * @hide */
public void writeToProto(ProtoOutputStream protoOutputStream, long fieldId) { final long token = protoOutputStream.start(fieldId); protoOutputStream.write(RectProto.LEFT, left); protoOutputStream.write(RectProto.TOP, top); protoOutputStream.write(RectProto.RIGHT, right); protoOutputStream.write(RectProto.BOTTOM, bottom); protoOutputStream.end(token); }
Returns true if the rectangle is empty (left >= right or top >= bottom)
/** * Returns true if the rectangle is empty (left >= right or top >= bottom) */
public final boolean isEmpty() { return left >= right || top >= bottom; }
Returns:the rectangle's width. This does not check for a valid rectangle (i.e. left <= right) so the result may be negative.
/** * @return the rectangle's width. This does not check for a valid rectangle * (i.e. left <= right) so the result may be negative. */
public final int width() { return right - left; }
Returns:the rectangle's height. This does not check for a valid rectangle (i.e. top <= bottom) so the result may be negative.
/** * @return the rectangle's height. This does not check for a valid rectangle * (i.e. top <= bottom) so the result may be negative. */
public final int height() { return bottom - top; }
Returns:the horizontal center of the rectangle. If the computed value is fractional, this method returns the largest integer that is less than the computed value.
/** * @return the horizontal center of the rectangle. If the computed value * is fractional, this method returns the largest integer that is * less than the computed value. */
public final int centerX() { return (left + right) >> 1; }
Returns:the vertical center of the rectangle. If the computed value is fractional, this method returns the largest integer that is less than the computed value.
/** * @return the vertical center of the rectangle. If the computed value * is fractional, this method returns the largest integer that is * less than the computed value. */
public final int centerY() { return (top + bottom) >> 1; }
Returns:the exact horizontal center of the rectangle as a float.
/** * @return the exact horizontal center of the rectangle as a float. */
public final float exactCenterX() { return (left + right) * 0.5f; }
Returns:the exact vertical center of the rectangle as a float.
/** * @return the exact vertical center of the rectangle as a float. */
public final float exactCenterY() { return (top + bottom) * 0.5f; }
Set the rectangle to (0,0,0,0)
/** * Set the rectangle to (0,0,0,0) */
public void setEmpty() { left = right = top = bottom = 0; }
Set the rectangle's coordinates to the specified values. Note: no range checking is performed, so it is up to the caller to ensure that left <= right and top <= bottom.
Params:
  • left – The X coordinate of the left side of the rectangle
  • top – The Y coordinate of the top of the rectangle
  • right – The X coordinate of the right side of the rectangle
  • bottom – The Y coordinate of the bottom of the rectangle
/** * Set the rectangle's coordinates to the specified values. Note: no range * checking is performed, so it is up to the caller to ensure that * left <= right and top <= bottom. * * @param left The X coordinate of the left side of the rectangle * @param top The Y coordinate of the top of the rectangle * @param right The X coordinate of the right side of the rectangle * @param bottom The Y coordinate of the bottom of the rectangle */
public void set(int left, int top, int right, int bottom) { this.left = left; this.top = top; this.right = right; this.bottom = bottom; }
Copy the coordinates from src into this rectangle.
Params:
  • src – The rectangle whose coordinates are copied into this rectangle.
/** * Copy the coordinates from src into this rectangle. * * @param src The rectangle whose coordinates are copied into this * rectangle. */
public void set(Rect src) { this.left = src.left; this.top = src.top; this.right = src.right; this.bottom = src.bottom; }
Offset the rectangle by adding dx to its left and right coordinates, and adding dy to its top and bottom coordinates.
Params:
  • dx – The amount to add to the rectangle's left and right coordinates
  • dy – The amount to add to the rectangle's top and bottom coordinates
/** * Offset the rectangle by adding dx to its left and right coordinates, and * adding dy to its top and bottom coordinates. * * @param dx The amount to add to the rectangle's left and right coordinates * @param dy The amount to add to the rectangle's top and bottom coordinates */
public void offset(int dx, int dy) { left += dx; top += dy; right += dx; bottom += dy; }
Offset the rectangle to a specific (left, top) position, keeping its width and height the same.
Params:
  • newLeft – The new "left" coordinate for the rectangle
  • newTop – The new "top" coordinate for the rectangle
/** * Offset the rectangle to a specific (left, top) position, * keeping its width and height the same. * * @param newLeft The new "left" coordinate for the rectangle * @param newTop The new "top" coordinate for the rectangle */
public void offsetTo(int newLeft, int newTop) { right += newLeft - left; bottom += newTop - top; left = newLeft; top = newTop; }
Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards, making the rectangle narrower. If dx is negative, then the sides are moved outwards, making the rectangle wider. The same holds true for dy and the top and bottom.
Params:
  • dx – The amount to add(subtract) from the rectangle's left(right)
  • dy – The amount to add(subtract) from the rectangle's top(bottom)
/** * Inset the rectangle by (dx,dy). If dx is positive, then the sides are * moved inwards, making the rectangle narrower. If dx is negative, then the * sides are moved outwards, making the rectangle wider. The same holds true * for dy and the top and bottom. * * @param dx The amount to add(subtract) from the rectangle's left(right) * @param dy The amount to add(subtract) from the rectangle's top(bottom) */
public void inset(int dx, int dy) { left += dx; top += dy; right -= dx; bottom -= dy; }
Insets the rectangle on all sides specified by the dimensions of the insets rectangle.
Params:
  • insets – The rectangle specifying the insets on all side.
@hide
/** * Insets the rectangle on all sides specified by the dimensions of the {@code insets} * rectangle. * @hide * @param insets The rectangle specifying the insets on all side. */
public void inset(Rect insets) { left += insets.left; top += insets.top; right -= insets.right; bottom -= insets.bottom; }
Insets the rectangle on all sides specified by the insets.
Params:
  • left – The amount to add from the rectangle's left
  • top – The amount to add from the rectangle's top
  • right – The amount to subtract from the rectangle's right
  • bottom – The amount to subtract from the rectangle's bottom
@hide
/** * Insets the rectangle on all sides specified by the insets. * @hide * @param left The amount to add from the rectangle's left * @param top The amount to add from the rectangle's top * @param right The amount to subtract from the rectangle's right * @param bottom The amount to subtract from the rectangle's bottom */
public void inset(int left, int top, int right, int bottom) { this.left += left; this.top += top; this.right -= right; this.bottom -= bottom; }
Returns true if (x,y) is inside the rectangle. The left and top are considered to be inside, while the right and bottom are not. This means that for a x,y to be contained: left <= x < right and top <= y < bottom. An empty rectangle never contains any point.
Params:
  • x – The X coordinate of the point being tested for containment
  • y – The Y coordinate of the point being tested for containment
Returns:true iff (x,y) are contained by the rectangle, where containment means left <= x < right and top <= y < bottom
/** * Returns true if (x,y) is inside the rectangle. The left and top are * considered to be inside, while the right and bottom are not. This means * that for a x,y to be contained: left <= x < right and top <= y < bottom. * An empty rectangle never contains any point. * * @param x The X coordinate of the point being tested for containment * @param y The Y coordinate of the point being tested for containment * @return true iff (x,y) are contained by the rectangle, where containment * means left <= x < right and top <= y < bottom */
public boolean contains(int x, int y) { return left < right && top < bottom // check for empty first && x >= left && x < right && y >= top && y < bottom; }
Returns true iff the 4 specified sides of a rectangle are inside or equal to this rectangle. i.e. is this rectangle a superset of the specified rectangle. An empty rectangle never contains another rectangle.
Params:
  • left – The left side of the rectangle being tested for containment
  • top – The top of the rectangle being tested for containment
  • right – The right side of the rectangle being tested for containment
  • bottom – The bottom of the rectangle being tested for containment
Returns:true iff the the 4 specified sides of a rectangle are inside or equal to this rectangle
/** * Returns true iff the 4 specified sides of a rectangle are inside or equal * to this rectangle. i.e. is this rectangle a superset of the specified * rectangle. An empty rectangle never contains another rectangle. * * @param left The left side of the rectangle being tested for containment * @param top The top of the rectangle being tested for containment * @param right The right side of the rectangle being tested for containment * @param bottom The bottom of the rectangle being tested for containment * @return true iff the the 4 specified sides of a rectangle are inside or * equal to this rectangle */
public boolean contains(int left, int top, int right, int bottom) { // check for empty first return this.left < this.right && this.top < this.bottom // now check for containment && this.left <= left && this.top <= top && this.right >= right && this.bottom >= bottom; }
Returns true iff the specified rectangle r is inside or equal to this rectangle. An empty rectangle never contains another rectangle.
Params:
  • r – The rectangle being tested for containment.
Returns:true iff the specified rectangle r is inside or equal to this rectangle
/** * Returns true iff the specified rectangle r is inside or equal to this * rectangle. An empty rectangle never contains another rectangle. * * @param r The rectangle being tested for containment. * @return true iff the specified rectangle r is inside or equal to this * rectangle */
public boolean contains(Rect r) { // check for empty first return this.left < this.right && this.top < this.bottom // now check for containment && left <= r.left && top <= r.top && right >= r.right && bottom >= r.bottom; }
If the rectangle specified by left,top,right,bottom intersects this rectangle, return true and set this rectangle to that intersection, otherwise return false and do not change this rectangle. No check is performed to see if either rectangle is empty. Note: To just test for intersection, use intersects(Rect, Rect).
Params:
  • left – The left side of the rectangle being intersected with this rectangle
  • top – The top of the rectangle being intersected with this rectangle
  • right – The right side of the rectangle being intersected with this rectangle.
  • bottom – The bottom of the rectangle being intersected with this rectangle.
Returns:true if the specified rectangle and this rectangle intersect (and this rectangle is then set to that intersection) else return false and do not change this rectangle.
/** * If the rectangle specified by left,top,right,bottom intersects this * rectangle, return true and set this rectangle to that intersection, * otherwise return false and do not change this rectangle. No check is * performed to see if either rectangle is empty. Note: To just test for * intersection, use {@link #intersects(Rect, Rect)}. * * @param left The left side of the rectangle being intersected with this * rectangle * @param top The top of the rectangle being intersected with this rectangle * @param right The right side of the rectangle being intersected with this * rectangle. * @param bottom The bottom of the rectangle being intersected with this * rectangle. * @return true if the specified rectangle and this rectangle intersect * (and this rectangle is then set to that intersection) else * return false and do not change this rectangle. */
@CheckResult public boolean intersect(int left, int top, int right, int bottom) { if (this.left < right && left < this.right && this.top < bottom && top < this.bottom) { if (this.left < left) this.left = left; if (this.top < top) this.top = top; if (this.right > right) this.right = right; if (this.bottom > bottom) this.bottom = bottom; return true; } return false; }
If the specified rectangle intersects this rectangle, return true and set this rectangle to that intersection, otherwise return false and do not change this rectangle. No check is performed to see if either rectangle is empty. To just test for intersection, use intersects()
Params:
  • r – The rectangle being intersected with this rectangle.
Returns:true if the specified rectangle and this rectangle intersect (and this rectangle is then set to that intersection) else return false and do not change this rectangle.
/** * If the specified rectangle intersects this rectangle, return true and set * this rectangle to that intersection, otherwise return false and do not * change this rectangle. No check is performed to see if either rectangle * is empty. To just test for intersection, use intersects() * * @param r The rectangle being intersected with this rectangle. * @return true if the specified rectangle and this rectangle intersect * (and this rectangle is then set to that intersection) else * return false and do not change this rectangle. */
@CheckResult public boolean intersect(Rect r) { return intersect(r.left, r.top, r.right, r.bottom); }
If the specified rectangle intersects this rectangle, set this rectangle to that intersection, otherwise set this rectangle to the empty rectangle.
See Also:
  • but without checking if the rects overlap.
@hide
/** * If the specified rectangle intersects this rectangle, set this rectangle to that * intersection, otherwise set this rectangle to the empty rectangle. * @see #inset(int, int, int, int) but without checking if the rects overlap. * @hide */
public void intersectUnchecked(Rect other) { left = Math.max(left, other.left); top = Math.max(top, other.top); right = Math.min(right, other.right); bottom = Math.min(bottom, other.bottom); }
If rectangles a and b intersect, return true and set this rectangle to that intersection, otherwise return false and do not change this rectangle. No check is performed to see if either rectangle is empty. To just test for intersection, use intersects()
Params:
  • a – The first rectangle being intersected with
  • b – The second rectangle being intersected with
Returns:true iff the two specified rectangles intersect. If they do, set this rectangle to that intersection. If they do not, return false and do not change this rectangle.
/** * If rectangles a and b intersect, return true and set this rectangle to * that intersection, otherwise return false and do not change this * rectangle. No check is performed to see if either rectangle is empty. * To just test for intersection, use intersects() * * @param a The first rectangle being intersected with * @param b The second rectangle being intersected with * @return true iff the two specified rectangles intersect. If they do, set * this rectangle to that intersection. If they do not, return * false and do not change this rectangle. */
@CheckResult public boolean setIntersect(Rect a, Rect b) { if (a.left < b.right && b.left < a.right && a.top < b.bottom && b.top < a.bottom) { left = Math.max(a.left, b.left); top = Math.max(a.top, b.top); right = Math.min(a.right, b.right); bottom = Math.min(a.bottom, b.bottom); return true; } return false; }
Returns true if this rectangle intersects the specified rectangle. In no event is this rectangle modified. No check is performed to see if either rectangle is empty. To record the intersection, use intersect() or setIntersect().
Params:
  • left – The left side of the rectangle being tested for intersection
  • top – The top of the rectangle being tested for intersection
  • right – The right side of the rectangle being tested for intersection
  • bottom – The bottom of the rectangle being tested for intersection
Returns:true iff the specified rectangle intersects this rectangle. In no event is this rectangle modified.
/** * Returns true if this rectangle intersects the specified rectangle. * In no event is this rectangle modified. No check is performed to see * if either rectangle is empty. To record the intersection, use intersect() * or setIntersect(). * * @param left The left side of the rectangle being tested for intersection * @param top The top of the rectangle being tested for intersection * @param right The right side of the rectangle being tested for * intersection * @param bottom The bottom of the rectangle being tested for intersection * @return true iff the specified rectangle intersects this rectangle. In * no event is this rectangle modified. */
public boolean intersects(int left, int top, int right, int bottom) { return this.left < right && left < this.right && this.top < bottom && top < this.bottom; }
Returns true iff the two specified rectangles intersect. In no event are either of the rectangles modified. To record the intersection, use intersect(Rect) or setIntersect(Rect, Rect).
Params:
  • a – The first rectangle being tested for intersection
  • b – The second rectangle being tested for intersection
Returns:true iff the two specified rectangles intersect. In no event are either of the rectangles modified.
/** * Returns true iff the two specified rectangles intersect. In no event are * either of the rectangles modified. To record the intersection, * use {@link #intersect(Rect)} or {@link #setIntersect(Rect, Rect)}. * * @param a The first rectangle being tested for intersection * @param b The second rectangle being tested for intersection * @return true iff the two specified rectangles intersect. In no event are * either of the rectangles modified. */
public static boolean intersects(Rect a, Rect b) { return a.left < b.right && b.left < a.right && a.top < b.bottom && b.top < a.bottom; }
Update this Rect to enclose itself and the specified rectangle. If the specified rectangle is empty, nothing is done. If this rectangle is empty it is set to the specified rectangle.
Params:
  • left – The left edge being unioned with this rectangle
  • top – The top edge being unioned with this rectangle
  • right – The right edge being unioned with this rectangle
  • bottom – The bottom edge being unioned with this rectangle
/** * Update this Rect to enclose itself and the specified rectangle. If the * specified rectangle is empty, nothing is done. If this rectangle is empty * it is set to the specified rectangle. * * @param left The left edge being unioned with this rectangle * @param top The top edge being unioned with this rectangle * @param right The right edge being unioned with this rectangle * @param bottom The bottom edge being unioned with this rectangle */
public void union(int left, int top, int right, int bottom) { if ((left < right) && (top < bottom)) { if ((this.left < this.right) && (this.top < this.bottom)) { if (this.left > left) this.left = left; if (this.top > top) this.top = top; if (this.right < right) this.right = right; if (this.bottom < bottom) this.bottom = bottom; } else { this.left = left; this.top = top; this.right = right; this.bottom = bottom; } } }
Update this Rect to enclose itself and the specified rectangle. If the specified rectangle is empty, nothing is done. If this rectangle is empty it is set to the specified rectangle.
Params:
  • r – The rectangle being unioned with this rectangle
/** * Update this Rect to enclose itself and the specified rectangle. If the * specified rectangle is empty, nothing is done. If this rectangle is empty * it is set to the specified rectangle. * * @param r The rectangle being unioned with this rectangle */
public void union(Rect r) { union(r.left, r.top, r.right, r.bottom); }
Update this Rect to enclose itself and the [x,y] coordinate. There is no check to see that this rectangle is non-empty.
Params:
  • x – The x coordinate of the point to add to the rectangle
  • y – The y coordinate of the point to add to the rectangle
/** * Update this Rect to enclose itself and the [x,y] coordinate. There is no * check to see that this rectangle is non-empty. * * @param x The x coordinate of the point to add to the rectangle * @param y The y coordinate of the point to add to the rectangle */
public void union(int x, int y) { if (x < left) { left = x; } else if (x > right) { right = x; } if (y < top) { top = y; } else if (y > bottom) { bottom = y; } }
Swap top/bottom or left/right if there are flipped (i.e. left > right and/or top > bottom). This can be called if the edges are computed separately, and may have crossed over each other. If the edges are already correct (i.e. left <= right and top <= bottom) then nothing is done.
/** * Swap top/bottom or left/right if there are flipped (i.e. left > right * and/or top > bottom). This can be called if * the edges are computed separately, and may have crossed over each other. * If the edges are already correct (i.e. left <= right and top <= bottom) * then nothing is done. */
public void sort() { if (left > right) { int temp = left; left = right; right = temp; } if (top > bottom) { int temp = top; top = bottom; bottom = temp; } }
Parcelable interface methods
/** * Parcelable interface methods */
public int describeContents() { return 0; }
Write this rectangle to the specified parcel. To restore a rectangle from a parcel, use readFromParcel()
Params:
  • out – The parcel to write the rectangle's coordinates into
/** * Write this rectangle to the specified parcel. To restore a rectangle from * a parcel, use readFromParcel() * @param out The parcel to write the rectangle's coordinates into */
public void writeToParcel(Parcel out, int flags) { out.writeInt(left); out.writeInt(top); out.writeInt(right); out.writeInt(bottom); } public static final Parcelable.Creator<Rect> CREATOR = new Parcelable.Creator<Rect>() {
Return a new rectangle from the data in the specified parcel.
/** * Return a new rectangle from the data in the specified parcel. */
public Rect createFromParcel(Parcel in) { Rect r = new Rect(); r.readFromParcel(in); return r; }
Return an array of rectangles of the specified size.
/** * Return an array of rectangles of the specified size. */
public Rect[] newArray(int size) { return new Rect[size]; } };
Set the rectangle's coordinates from the data stored in the specified parcel. To write a rectangle to a parcel, call writeToParcel().
Params:
  • in – The parcel to read the rectangle's coordinates from
/** * Set the rectangle's coordinates from the data stored in the specified * parcel. To write a rectangle to a parcel, call writeToParcel(). * * @param in The parcel to read the rectangle's coordinates from */
public void readFromParcel(Parcel in) { left = in.readInt(); top = in.readInt(); right = in.readInt(); bottom = in.readInt(); }
Scales up the rect by the given scale.
@hide
/** * Scales up the rect by the given scale. * @hide */
public void scale(float scale) { if (scale != 1.0f) { left = (int) (left * scale + 0.5f); top = (int) (top * scale + 0.5f); right = (int) (right * scale + 0.5f); bottom = (int) (bottom * scale + 0.5f); } } }