/*
 * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.marlin;

import java.util.Arrays;
import com.sun.marlin.DTransformingPathConsumer2D.CurveBasicMonotonizer;
import com.sun.marlin.DTransformingPathConsumer2D.CurveClipSplitter;

The DDasher class takes a series of linear commands (moveTo, lineTo, close and end) and breaks them into smaller segments according to a dash pattern array and a starting dash phase.

Issues: in J2Se, a zero length dash segment as drawn as a very short dash, whereas Pisces does not draw anything. The PostScript semantics are unclear.

/** * The <code>DDasher</code> class takes a series of linear commands * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and * <code>end</code>) and breaks them into smaller segments according to a * dash pattern array and a starting dash phase. * * <p> Issues: in J2Se, a zero length dash segment as drawn as a very * short dash, whereas Pisces does not draw anything. The PostScript * semantics are unclear. * */
public final class DDasher implements DPathConsumer2D, MarlinConst { /* huge circle with radius ~ 2E9 only needs 12 subdivision levels */ static final int REC_LIMIT = 16; static final double CURVE_LEN_ERR = MarlinProperties.getCurveLengthError(); // 0.01 initial static final double MIN_T_INC = 1.0d / (1 << REC_LIMIT); // More than 24 bits of mantissa means we can no longer accurately // measure the number of times cycled through the dash array so we // punt and override the phase to just be 0 past that point. static final double MAX_CYCLES = 16000000.0d; private DPathConsumer2D out; private double[] dash; private int dashLen; private double startPhase; private boolean startDashOn; private int startIdx; private boolean starting; private boolean needsMoveTo; private int idx; private boolean dashOn; private double phase; // The starting point of the path private double sx0, sy0; // the current point private double cx0, cy0; // temporary storage for the current curve private final double[] curCurvepts; // per-thread renderer context final DRendererContext rdrCtx; // flag to recycle dash array copy boolean recycleDashes; // We don't emit the first dash right away. If we did, caps would be // drawn on it, but we need joins to be drawn if there's a closePath() // So, we store the path elements that make up the first dash in the // buffer below. private double[] firstSegmentsBuffer; // dynamic array private int firstSegidx; // dashes ref (dirty) final DoubleArrayCache.Reference dashes_ref; // firstSegmentsBuffer ref (dirty) final DoubleArrayCache.Reference firstSegmentsBuffer_ref; // Bounds of the drawing region, at pixel precision. private double[] clipRect; // the outcode of the current point private int cOutCode = 0; private boolean subdivide = DO_CLIP_SUBDIVIDER; private final LengthIterator li = new LengthIterator(); private final CurveClipSplitter curveSplitter; private double cycleLen; private boolean outside; private double totalSkipLen;
Constructs a DDasher.
Params:
  • rdrCtx – per-thread renderer context
/** * Constructs a <code>DDasher</code>. * @param rdrCtx per-thread renderer context */
DDasher(final DRendererContext rdrCtx) { this.rdrCtx = rdrCtx; dashes_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K firstSegmentsBuffer_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K firstSegmentsBuffer = firstSegmentsBuffer_ref.initial; // we need curCurvepts to be able to contain 2 curves because when // dashing curves, we need to subdivide it curCurvepts = new double[8 * 2]; this.curveSplitter = rdrCtx.curveClipSplitter; }
Initialize the DDasher.
Params:
  • out – an output DPathConsumer2D.
  • dash – an array of doubles containing the dash pattern
  • dashLen – length of the given dash array
  • phase – a double containing the dash phase
  • recycleDashes – true to indicate to recycle the given dash array
Returns:this instance
/** * Initialize the <code>DDasher</code>. * * @param out an output <code>DPathConsumer2D</code>. * @param dash an array of <code>double</code>s containing the dash pattern * @param dashLen length of the given dash array * @param phase a <code>double</code> containing the dash phase * @param recycleDashes true to indicate to recycle the given dash array * @return this instance */
public DDasher init(final DPathConsumer2D out, final double[] dash, final int dashLen, double phase, final boolean recycleDashes) { this.out = out; // Normalize so 0 <= phase < dash[0] int sidx = 0; dashOn = true; // note: BasicStroke constructor checks dash elements and sum > 0 double sum = 0.0d; for (int i = 0; i < dashLen; i++) { sum += dash[i]; } this.cycleLen = sum; double cycles = phase / sum; if (phase < 0.0d) { if (-cycles >= MAX_CYCLES) { phase = 0.0d; } else { int fullcycles = FloatMath.floor_int(-cycles); if ((fullcycles & dashLen & 1) != 0) { dashOn = !dashOn; } phase += fullcycles * sum; while (phase < 0.0d) { if (--sidx < 0) { sidx = dashLen - 1; } phase += dash[sidx]; dashOn = !dashOn; } } } else if (phase > 0.0d) { if (cycles >= MAX_CYCLES) { phase = 0.0d; } else { int fullcycles = FloatMath.floor_int(cycles); if ((fullcycles & dashLen & 1) != 0) { dashOn = !dashOn; } phase -= fullcycles * sum; double d; while (phase >= (d = dash[sidx])) { phase -= d; sidx = (sidx + 1) % dashLen; dashOn = !dashOn; } } } this.dash = dash; this.dashLen = dashLen; this.phase = phase; this.startPhase = phase; this.startDashOn = dashOn; this.startIdx = sidx; this.starting = true; this.needsMoveTo = false; this.firstSegidx = 0; this.recycleDashes = recycleDashes; if (rdrCtx.doClip) { this.clipRect = rdrCtx.clipRect; } else { this.clipRect = null; this.cOutCode = 0; } return this; // fluent API }
Disposes this dasher: clean up before reusing this instance
/** * Disposes this dasher: * clean up before reusing this instance */
void dispose() { if (DO_CLEAN_DIRTY) { // Force zero-fill dirty arrays: Arrays.fill(curCurvepts, 0.0d); } // Return arrays: if (recycleDashes) { dash = dashes_ref.putArray(dash); } firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer); } public double[] copyDashArray(final float[] dashes) { final int len = dashes.length; final double[] newDashes; if (len <= MarlinConst.INITIAL_ARRAY) { newDashes = dashes_ref.initial; } else { if (DO_STATS) { rdrCtx.stats.stat_array_dasher_dasher.add(len); } newDashes = dashes_ref.getArray(len); } for (int i = 0; i < len; i++) { newDashes[i] = dashes[i]; } return newDashes; } @Override public void moveTo(final double x0, final double y0) { if (firstSegidx != 0) { out.moveTo(sx0, sy0); emitFirstSegments(); } this.needsMoveTo = true; this.idx = startIdx; this.dashOn = this.startDashOn; this.phase = this.startPhase; this.cx0 = x0; this.cy0 = y0; // update starting point: this.sx0 = x0; this.sy0 = y0; this.starting = true; if (clipRect != null) { final int outcode = DHelpers.outcode(x0, y0, clipRect); this.cOutCode = outcode; this.outside = false; this.totalSkipLen = 0.0d; } } private void emitSeg(double[] buf, int off, int type) { switch (type) { case 4: out.lineTo(buf[off], buf[off + 1]); return; case 8: out.curveTo(buf[off ], buf[off + 1], buf[off + 2], buf[off + 3], buf[off + 4], buf[off + 5]); return; case 6: out.quadTo(buf[off ], buf[off + 1], buf[off + 2], buf[off + 3]); return; default: } } private void emitFirstSegments() { final double[] fSegBuf = firstSegmentsBuffer; for (int i = 0, len = firstSegidx; i < len; ) { int type = (int)fSegBuf[i]; emitSeg(fSegBuf, i + 1, type); i += (type - 1); } firstSegidx = 0; } // precondition: pts must be in relative coordinates (relative to x0,y0) private void goTo(final double[] pts, final int off, final int type, final boolean on) { final int index = off + type; final double x = pts[index - 4]; final double y = pts[index - 3]; if (on) { if (starting) { goTo_starting(pts, off, type); } else { if (needsMoveTo) { needsMoveTo = false; out.moveTo(cx0, cy0); } emitSeg(pts, off, type); } } else { if (starting) { // low probability test (hotspot) starting = false; } needsMoveTo = true; } this.cx0 = x; this.cy0 = y; } private void goTo_starting(final double[] pts, final int off, final int type) { int len = type - 1; // - 2 + 1 int segIdx = firstSegidx; double[] buf = firstSegmentsBuffer; if (segIdx + len > buf.length) { if (DO_STATS) { rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer .add(segIdx + len); } firstSegmentsBuffer = buf = firstSegmentsBuffer_ref.widenArray(buf, segIdx, segIdx + len); } buf[segIdx++] = type; len--; // small arraycopy (2, 4 or 6) but with offset: System.arraycopy(pts, off, buf, segIdx, len); firstSegidx = segIdx + len; } @Override public void lineTo(final double x1, final double y1) { final int outcode0 = this.cOutCode; if (clipRect != null) { final int outcode1 = DHelpers.outcode(x1, y1, clipRect); // Should clip final int orCode = (outcode0 | outcode1); if (orCode != 0) { final int sideCode = outcode0 & outcode1; // basic rejection criteria: if (sideCode == 0) { // ovelap clip: if (subdivide) { // avoid reentrance subdivide = false; // subdivide curve => callback with subdivided parts: boolean ret = curveSplitter.splitLine(cx0, cy0, x1, y1, orCode, this); // reentrance is done: subdivide = true; if (ret) { return; } } // already subdivided so render it } else { this.cOutCode = outcode1; skipLineTo(x1, y1); return; } } this.cOutCode = outcode1; if (this.outside) { this.outside = false; // Adjust current index, phase & dash: skipLen(); } } _lineTo(x1, y1); } private void _lineTo(final double x1, final double y1) { final double dx = x1 - cx0; final double dy = y1 - cy0; double len = dx * dx + dy * dy; if (len == 0.0d) { return; } len = Math.sqrt(len); // The scaling factors needed to get the dx and dy of the // transformed dash segments. final double cx = dx / len; final double cy = dy / len; final double[] _curCurvepts = curCurvepts; final double[] _dash = dash; final int _dashLen = this.dashLen; int _idx = idx; boolean _dashOn = dashOn; double _phase = phase; double leftInThisDashSegment, d; while (true) { d = _dash[_idx]; leftInThisDashSegment = d - _phase; if (len <= leftInThisDashSegment) { _curCurvepts[0] = x1; _curCurvepts[1] = y1; goTo(_curCurvepts, 0, 4, _dashOn); // Advance phase within current dash segment _phase += len; // TODO: compare double values using epsilon: if (len == leftInThisDashSegment) { _phase = 0.0d; _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; } break; } if (_phase == 0.0d) { _curCurvepts[0] = cx0 + d * cx; _curCurvepts[1] = cy0 + d * cy; } else { _curCurvepts[0] = cx0 + leftInThisDashSegment * cx; _curCurvepts[1] = cy0 + leftInThisDashSegment * cy; } goTo(_curCurvepts, 0, 4, _dashOn); len -= leftInThisDashSegment; // Advance to next dash segment _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; _phase = 0.0d; } // Save local state: idx = _idx; dashOn = _dashOn; phase = _phase; } private void skipLineTo(final double x1, final double y1) { final double dx = x1 - cx0; final double dy = y1 - cy0; double len = dx * dx + dy * dy; if (len != 0.0d) { len = Math.sqrt(len); } // Accumulate skipped length: this.outside = true; this.totalSkipLen += len; // Fix initial move: this.needsMoveTo = true; this.starting = false; this.cx0 = x1; this.cy0 = y1; } public void skipLen() { double len = this.totalSkipLen; this.totalSkipLen = 0.0d; final double[] _dash = dash; final int _dashLen = this.dashLen; int _idx = idx; boolean _dashOn = dashOn; double _phase = phase; // -2 to ensure having 2 iterations of the post-loop // to compensate the remaining phase final long fullcycles = (long)Math.floor(len / cycleLen) - 2L; if (fullcycles > 0L) { len -= cycleLen * fullcycles; final long iterations = fullcycles * _dashLen; _idx = (int) (iterations + _idx) % _dashLen; _dashOn = (iterations + (_dashOn ? 1L : 0L) & 1L) == 1L; } double leftInThisDashSegment, d; while (true) { d = _dash[_idx]; leftInThisDashSegment = d - _phase; if (len <= leftInThisDashSegment) { // Advance phase within current dash segment _phase += len; // TODO: compare double values using epsilon: if (len == leftInThisDashSegment) { _phase = 0.0d; _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; } break; } len -= leftInThisDashSegment; // Advance to next dash segment _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; _phase = 0.0d; } // Save local state: idx = _idx; dashOn = _dashOn; phase = _phase; } // preconditions: curCurvepts must be an array of length at least 2 * type, // that contains the curve we want to dash in the first type elements private void somethingTo(final int type) { final double[] _curCurvepts = curCurvepts; if (pointCurve(_curCurvepts, type)) { return; } final LengthIterator _li = li; final double[] _dash = dash; final int _dashLen = this.dashLen; _li.initializeIterationOnCurve(_curCurvepts, type); int _idx = idx; boolean _dashOn = dashOn; double _phase = phase; // initially the current curve is at curCurvepts[0...type] int curCurveoff = 0; double prevT = 0.0d; double t; double leftInThisDashSegment = _dash[_idx] - _phase; while ((t = _li.next(leftInThisDashSegment)) < 1.0d) { if (t != 0.0d) { DHelpers.subdivideAt((t - prevT) / (1.0d - prevT), _curCurvepts, curCurveoff, _curCurvepts, 0, type); prevT = t; goTo(_curCurvepts, 2, type, _dashOn); curCurveoff = type; } // Advance to next dash segment _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; _phase = 0.0d; leftInThisDashSegment = _dash[_idx]; } goTo(_curCurvepts, curCurveoff + 2, type, _dashOn); _phase += _li.lastSegLen(); if (_phase >= _dash[_idx]) { _phase = 0.0d; _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; } // Save local state: idx = _idx; dashOn = _dashOn; phase = _phase; // reset LengthIterator: _li.reset(); } private void skipSomethingTo(final int type) { final double[] _curCurvepts = curCurvepts; if (pointCurve(_curCurvepts, type)) { return; } final LengthIterator _li = li; _li.initializeIterationOnCurve(_curCurvepts, type); // In contrary to somethingTo(), // just estimate properly the curve length: final double len = _li.totalLength(); // Accumulate skipped length: this.outside = true; this.totalSkipLen += len; // Fix initial move: this.needsMoveTo = true; this.starting = false; } private static boolean pointCurve(final double[] curve, final int type) { for (int i = 2; i < type; i++) { if (curve[i] != curve[i-2]) { return false; } } return true; } // Objects of this class are used to iterate through curves. They return // t values where the left side of the curve has a specified length. // It does this by subdividing the input curve until a certain error // condition has been met. A recursive subdivision procedure would // return as many as 1<<limit curves, but this is an iterator and we // don't need all the curves all at once, so what we carry out a // lazy inorder traversal of the recursion tree (meaning we only move // through the tree when we need the next subdivided curve). This saves // us a lot of memory because at any one time we only need to store // limit+1 curves - one for each level of the tree + 1. // NOTE: the way we do things here is not enough to traverse a general // tree; however, the trees we are interested in have the property that // every non leaf node has exactly 2 children static final class LengthIterator { // Holds the curves at various levels of the recursion. The root // (i.e. the original curve) is at recCurveStack[0] (but then it // gets subdivided, the left half is put at 1, so most of the time // only the right half of the original curve is at 0) private final double[][] recCurveStack; // dirty // sidesRight[i] indicates whether the node at level i+1 in the path from // the root to the current leaf is a left or right child of its parent. private final boolean[] sidesRight; // dirty private int curveType; // lastT and nextT delimit the current leaf. private double nextT; private double lenAtNextT; private double lastT; private double lenAtLastT; private double lenAtLastSplit; private double lastSegLen; // the current level in the recursion tree. 0 is the root. limit // is the deepest possible leaf. private int recLevel; private boolean done; // the lengths of the lines of the control polygon. Only its first // curveType/2 - 1 elements are valid. This is an optimization. See // next() for more detail. private final double[] curLeafCtrlPolyLengths = new double[3]; LengthIterator() { this.recCurveStack = new double[REC_LIMIT + 1][8]; this.sidesRight = new boolean[REC_LIMIT]; // if any methods are called without first initializing this object // on a curve, we want it to fail ASAP. this.nextT = Double.MAX_VALUE; this.lenAtNextT = Double.MAX_VALUE; this.lenAtLastSplit = Double.MIN_VALUE; this.recLevel = Integer.MIN_VALUE; this.lastSegLen = Double.MAX_VALUE; this.done = true; }
Reset this LengthIterator.
/** * Reset this LengthIterator. */
void reset() { // keep data dirty // as it appears not useful to reset data: if (DO_CLEAN_DIRTY) { final int recLimit = recCurveStack.length - 1; for (int i = recLimit; i >= 0; i--) { Arrays.fill(recCurveStack[i], 0.0d); } Arrays.fill(sidesRight, false); Arrays.fill(curLeafCtrlPolyLengths, 0.0d); Arrays.fill(nextRoots, 0.0d); Arrays.fill(flatLeafCoefCache, 0.0d); flatLeafCoefCache[2] = -1.0d; } } void initializeIterationOnCurve(final double[] pts, final int type) { // optimize arraycopy (8 values faster than 6 = type): System.arraycopy(pts, 0, recCurveStack[0], 0, 8); this.curveType = type; this.recLevel = 0; this.lastT = 0.0d; this.lenAtLastT = 0.0d; this.nextT = 0.0d; this.lenAtNextT = 0.0d; goLeft(); // initializes nextT and lenAtNextT properly this.lenAtLastSplit = 0.0d; if (recLevel > 0) { this.sidesRight[0] = false; this.done = false; } else { // the root of the tree is a leaf so we're done. this.sidesRight[0] = true; this.done = true; } this.lastSegLen = 0.0d; } // 0 == false, 1 == true, -1 == invalid cached value. private int cachedHaveLowAcceleration = -1; private boolean haveLowAcceleration(final double err) { if (cachedHaveLowAcceleration == -1) { final double len1 = curLeafCtrlPolyLengths[0]; final double len2 = curLeafCtrlPolyLengths[1]; // the test below is equivalent to !within(len1/len2, 1, err). // It is using a multiplication instead of a division, so it // should be a bit faster. if (!DHelpers.within(len1, len2, err * len2)) { cachedHaveLowAcceleration = 0; return false; } if (curveType == 8) { final double len3 = curLeafCtrlPolyLengths[2]; // if len1 is close to 2 and 2 is close to 3, that probably // means 1 is close to 3 so the second part of this test might // not be needed, but it doesn't hurt to include it. final double errLen3 = err * len3; if (!(DHelpers.within(len2, len3, errLen3) && DHelpers.within(len1, len3, errLen3))) { cachedHaveLowAcceleration = 0; return false; } } cachedHaveLowAcceleration = 1; return true; } return (cachedHaveLowAcceleration == 1); } // we want to avoid allocations/gc so we keep this array so we // can put roots in it, private final double[] nextRoots = new double[4]; // caches the coefficients of the current leaf in its flattened // form (see inside next() for what that means). The cache is // invalid when it's third element is negative, since in any // valid flattened curve, this would be >= 0. private final double[] flatLeafCoefCache = new double[]{0.0d, 0.0d, -1.0d, 0.0d}; // returns the t value where the remaining curve should be split in // order for the left subdivided curve to have length len. If len // is >= than the length of the uniterated curve, it returns 1. double next(final double len) { final double targetLength = lenAtLastSplit + len; while (lenAtNextT < targetLength) { if (done) { lastSegLen = lenAtNextT - lenAtLastSplit; return 1.0d; } goToNextLeaf(); } lenAtLastSplit = targetLength; final double leaflen = lenAtNextT - lenAtLastT; double t = (targetLength - lenAtLastT) / leaflen; // cubicRootsInAB is a fairly expensive call, so we just don't do it // if the acceleration in this section of the curve is small enough. if (!haveLowAcceleration(0.05d)) { // We flatten the current leaf along the x axis, so that we're // left with a, b, c which define a 1D Bezier curve. We then // solve this to get the parameter of the original leaf that // gives us the desired length. final double[] _flatLeafCoefCache = flatLeafCoefCache; if (_flatLeafCoefCache[2] < 0.0d) { double x = curLeafCtrlPolyLengths[0], y = x + curLeafCtrlPolyLengths[1]; if (curveType == 8) { double z = y + curLeafCtrlPolyLengths[2]; _flatLeafCoefCache[0] = 3.0d * (x - y) + z; _flatLeafCoefCache[1] = 3.0d * (y - 2.0d * x); _flatLeafCoefCache[2] = 3.0d * x; _flatLeafCoefCache[3] = -z; } else if (curveType == 6) { _flatLeafCoefCache[0] = 0.0d; _flatLeafCoefCache[1] = y - 2.0d * x; _flatLeafCoefCache[2] = 2.0d * x; _flatLeafCoefCache[3] = -y; } } double a = _flatLeafCoefCache[0]; double b = _flatLeafCoefCache[1]; double c = _flatLeafCoefCache[2]; double d = t * _flatLeafCoefCache[3]; // we use cubicRootsInAB here, because we want only roots in 0, 1, // and our quadratic root finder doesn't filter, so it's just a // matter of convenience. final int n = DHelpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0d, 1.0d); if (n == 1 && !Double.isNaN(nextRoots[0])) { t = nextRoots[0]; } } // t is relative to the current leaf, so we must make it a valid parameter // of the original curve. t = t * (nextT - lastT) + lastT; if (t >= 1.0d) { t = 1.0d; done = true; } // even if done = true, if we're here, that means targetLength // is equal to, or very, very close to the total length of the // curve, so lastSegLen won't be too high. In cases where len // overshoots the curve, this method will exit in the while // loop, and lastSegLen will still be set to the right value. lastSegLen = len; return t; } double totalLength() { while (!done) { goToNextLeaf(); } // reset LengthIterator: reset(); return lenAtNextT; } double lastSegLen() { return lastSegLen; } // go to the next leaf (in an inorder traversal) in the recursion tree // preconditions: must be on a leaf, and that leaf must not be the root. private void goToNextLeaf() { // We must go to the first ancestor node that has an unvisited // right child. final boolean[] _sides = sidesRight; int _recLevel = recLevel; _recLevel--; while(_sides[_recLevel]) { if (_recLevel == 0) { recLevel = 0; done = true; return; } _recLevel--; } _sides[_recLevel] = true; // optimize arraycopy (8 values faster than 6 = type): System.arraycopy(recCurveStack[_recLevel++], 0, recCurveStack[_recLevel], 0, 8); recLevel = _recLevel; goLeft(); } // go to the leftmost node from the current node. Return its length. private void goLeft() { final double len = onLeaf(); if (len >= 0.0d) { lastT = nextT; lenAtLastT = lenAtNextT; nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC; lenAtNextT += len; // invalidate caches flatLeafCoefCache[2] = -1.0d; cachedHaveLowAcceleration = -1; } else { DHelpers.subdivide(recCurveStack[recLevel], recCurveStack[recLevel + 1], recCurveStack[recLevel], curveType); sidesRight[recLevel] = false; recLevel++; goLeft(); } } // this is a bit of a hack. It returns -1 if we're not on a leaf, and // the length of the leaf if we are on a leaf. private double onLeaf() { final double[] curve = recCurveStack[recLevel]; final int _curveType = curveType; double polyLen = 0.0d; double x0 = curve[0], y0 = curve[1]; for (int i = 2; i < _curveType; i += 2) { final double x1 = curve[i], y1 = curve[i + 1]; final double len = DHelpers.linelen(x0, y0, x1, y1); polyLen += len; curLeafCtrlPolyLengths[(i >> 1) - 1] = len; x0 = x1; y0 = y1; } final double lineLen = DHelpers.linelen(curve[0], curve[1], x0, y0); if ((polyLen - lineLen) < CURVE_LEN_ERR || recLevel == REC_LIMIT) { return (polyLen + lineLen) / 2.0d; } return -1.0d; } } @Override public void curveTo(final double x1, final double y1, final double x2, final double y2, final double x3, final double y3) { final int outcode0 = this.cOutCode; if (clipRect != null) { final int outcode1 = DHelpers.outcode(x1, y1, clipRect); final int outcode2 = DHelpers.outcode(x2, y2, clipRect); final int outcode3 = DHelpers.outcode(x3, y3, clipRect); // Should clip final int orCode = (outcode0 | outcode1 | outcode2 | outcode3); if (orCode != 0) { final int sideCode = outcode0 & outcode1 & outcode2 & outcode3; // basic rejection criteria: if (sideCode == 0) { // ovelap clip: if (subdivide) { // avoid reentrance subdivide = false; // subdivide curve => callback with subdivided parts: boolean ret = curveSplitter.splitCurve(cx0, cy0, x1, y1, x2, y2, x3, y3, orCode, this); // reentrance is done: subdivide = true; if (ret) { return; } } // already subdivided so render it } else { this.cOutCode = outcode3; skipCurveTo(x1, y1, x2, y2, x3, y3); return; } } this.cOutCode = outcode3; if (this.outside) { this.outside = false; // Adjust current index, phase & dash: skipLen(); } } _curveTo(x1, y1, x2, y2, x3, y3); } private void _curveTo(final double x1, final double y1, final double x2, final double y2, final double x3, final double y3) { final double[] _curCurvepts = curCurvepts; // monotonize curve: final CurveBasicMonotonizer monotonizer = rdrCtx.monotonizer.curve(cx0, cy0, x1, y1, x2, y2, x3, y3); final int nSplits = monotonizer.nbSplits; final double[] mid = monotonizer.middle; for (int i = 0, off = 0; i <= nSplits; i++, off += 6) { // optimize arraycopy (8 values faster than 6 = type): System.arraycopy(mid, off, _curCurvepts, 0, 8); somethingTo(8); } } private void skipCurveTo(final double x1, final double y1, final double x2, final double y2, final double x3, final double y3) { final double[] _curCurvepts = curCurvepts; _curCurvepts[0] = cx0; _curCurvepts[1] = cy0; _curCurvepts[2] = x1; _curCurvepts[3] = y1; _curCurvepts[4] = x2; _curCurvepts[5] = y2; _curCurvepts[6] = x3; _curCurvepts[7] = y3; skipSomethingTo(8); this.cx0 = x3; this.cy0 = y3; } @Override public void quadTo(final double x1, final double y1, final double x2, final double y2) { final int outcode0 = this.cOutCode; if (clipRect != null) { final int outcode1 = DHelpers.outcode(x1, y1, clipRect); final int outcode2 = DHelpers.outcode(x2, y2, clipRect); // Should clip final int orCode = (outcode0 | outcode1 | outcode2); if (orCode != 0) { final int sideCode = outcode0 & outcode1 & outcode2; // basic rejection criteria: if (sideCode == 0) { // ovelap clip: if (subdivide) { // avoid reentrance subdivide = false; // subdivide curve => call lineTo() with subdivided curves: boolean ret = curveSplitter.splitQuad(cx0, cy0, x1, y1, x2, y2, orCode, this); // reentrance is done: subdivide = true; if (ret) { return; } } // already subdivided so render it } else { this.cOutCode = outcode2; skipQuadTo(x1, y1, x2, y2); return; } } this.cOutCode = outcode2; if (this.outside) { this.outside = false; // Adjust current index, phase & dash: skipLen(); } } _quadTo(x1, y1, x2, y2); } private void _quadTo(final double x1, final double y1, final double x2, final double y2) { final double[] _curCurvepts = curCurvepts; // monotonize quad: final CurveBasicMonotonizer monotonizer = rdrCtx.monotonizer.quad(cx0, cy0, x1, y1, x2, y2); final int nSplits = monotonizer.nbSplits; final double[] mid = monotonizer.middle; for (int i = 0, off = 0; i <= nSplits; i++, off += 4) { // optimize arraycopy (8 values faster than 6 = type): System.arraycopy(mid, off, _curCurvepts, 0, 8); somethingTo(6); } } private void skipQuadTo(final double x1, final double y1, final double x2, final double y2) { final double[] _curCurvepts = curCurvepts; _curCurvepts[0] = cx0; _curCurvepts[1] = cy0; _curCurvepts[2] = x1; _curCurvepts[3] = y1; _curCurvepts[4] = x2; _curCurvepts[5] = y2; skipSomethingTo(6); this.cx0 = x2; this.cy0 = y2; } @Override public void closePath() { if (cx0 != sx0 || cy0 != sy0) { lineTo(sx0, sy0); } if (firstSegidx != 0) { if (!dashOn || needsMoveTo) { out.moveTo(sx0, sy0); } emitFirstSegments(); } moveTo(sx0, sy0); } @Override public void pathDone() { if (firstSegidx != 0) { out.moveTo(sx0, sy0); emitFirstSegments(); } out.pathDone(); // Dispose this instance: dispose(); } }