/*
 * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.marlin;

import java.util.Arrays;
import com.sun.marlin.stats.Histogram;
import com.sun.marlin.stats.StatLong;

final class DHelpers implements MarlinConst {

    private DHelpers() {
        throw new Error("This is a non instantiable class");
    }

    static boolean within(final double x, final double y, final double err) {
        final double d = y - x;
        return (d <= err && d >= -err);
    }

    static double evalCubic(final double a, final double b,
                            final double c, final double d,
                            final double t)
    {
        return t * (t * (t * a + b) + c) + d;
    }

    static double evalQuad(final double a, final double b,
                           final double c, final double t)
    {
        return t * (t * a + b) + c;
    }

    static int quadraticRoots(final double a, final double b, final double c,
                              final double[] zeroes, final int off)
    {
        int ret = off;
        if (a != 0.0d) {
            final double dis = b*b - 4.0d * a * c;
            if (dis > 0.0d) {
                final double sqrtDis = Math.sqrt(dis);
                // depending on the sign of b we use a slightly different
                // algorithm than the traditional one to find one of the roots
                // so we can avoid adding numbers of different signs (which
                // might result in loss of precision).
                if (b >= 0.0d) {
                    zeroes[ret++] = (2.0d * c) / (-b - sqrtDis);
                    zeroes[ret++] = (-b - sqrtDis) / (2.0d * a);
                } else {
                    zeroes[ret++] = (-b + sqrtDis) / (2.0d * a);
                    zeroes[ret++] = (2.0d * c) / (-b + sqrtDis);
                }
            } else if (dis == 0.0d) {
                zeroes[ret++] = -b / (2.0d * a);
            }
        } else if (b != 0.0d) {
            zeroes[ret++] = -c / b;
        }
        return ret - off;
    }

    // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
    static int cubicRootsInAB(final double d, double a, double b, double c,
                              final double[] pts, final int off,
                              final double A, final double B)
    {
        if (d == 0.0d) {
            final int num = quadraticRoots(a, b, c, pts, off);
            return filterOutNotInAB(pts, off, num, A, B) - off;
        }
        // From Graphics Gems:
        // https://github.com/erich666/GraphicsGems/blob/master/gems/Roots3And4.c
        // (also from awt.geom.CubicCurve2D. But here we don't need as
        // much accuracy and we don't want to create arrays so we use
        // our own customized version).

        // normal form: x^3 + ax^2 + bx + c = 0

        /*
         * TODO: cleanup all that code after reading Roots3And4.c
         */
        a /= d;
        b /= d;
        c /= d;

        //  substitute x = y - A/3 to eliminate quadratic term:
        //     x^3 +Px + Q = 0
        //
        // Since we actually need P/3 and Q/2 for all of the
        // calculations that follow, we will calculate
        // p = P/3
        // q = Q/2
        // instead and use those values for simplicity of the code.
        final double sub = (1.0d / 3.0d) * a;
        final double sq_A = a * a;
        final double p = (1.0d / 3.0d) * ((-1.0d / 3.0d) * sq_A + b);
        final double q = (1.0d / 2.0d) * ((2.0d / 27.0d) * a * sq_A - sub * b + c);

        // use Cardano's formula

        final double cb_p = p * p * p;
        final double D = q * q + cb_p;

        int num;
        if (D < 0.0d) {
            // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
            final double phi = (1.0d / 3.0d) * Math.acos(-q / Math.sqrt(-cb_p));
            final double t = 2.0d * Math.sqrt(-p);

            pts[off    ] = ( t * Math.cos(phi) - sub);
            pts[off + 1] = (-t * Math.cos(phi + (Math.PI / 3.0d)) - sub);
            pts[off + 2] = (-t * Math.cos(phi - (Math.PI / 3.0d)) - sub);
            num = 3;
        } else {
            final double sqrt_D = Math.sqrt(D);
            final double u =   Math.cbrt(sqrt_D - q);
            final double v = - Math.cbrt(sqrt_D + q);

            pts[off    ] = (u + v - sub);
            num = 1;

            if (within(D, 0.0d, 1e-8d)) {
                pts[off + 1] = ((-1.0d / 2.0d) * (u + v) - sub);
                num = 2;
            }
        }

        return filterOutNotInAB(pts, off, num, A, B) - off;
    }

    // returns the index 1 past the last valid element remaining after filtering
    static int filterOutNotInAB(final double[] nums, final int off, final int len,
                                final double a, final double b)
    {
        int ret = off;
        for (int i = off, end = off + len; i < end; i++) {
            if (nums[i] >= a && nums[i] < b) {
                nums[ret++] = nums[i];
            }
        }
        return ret;
    }

    static double fastLineLen(final double x0, final double y0,
                              final double x1, final double y1)
    {
        final double dx = x1 - x0;
        final double dy = y1 - y0;

        // use manhattan norm:
        return Math.abs(dx) + Math.abs(dy);
    }

    static double linelen(final double x0, final double y0,
                          final double x1, final double y1)
    {
        final double dx = x1 - x0;
        final double dy = y1 - y0;
        return Math.sqrt(dx * dx + dy * dy);
    }

    static double fastQuadLen(final double x0, final double y0,
                              final double x1, final double y1,
                              final double x2, final double y2)
    {
        final double dx1 = x1 - x0;
        final double dx2 = x2 - x1;
        final double dy1 = y1 - y0;
        final double dy2 = y2 - y1;

        // use manhattan norm:
        return Math.abs(dx1) + Math.abs(dx2)
             + Math.abs(dy1) + Math.abs(dy2);
    }

    static double quadlen(final double x0, final double y0,
                          final double x1, final double y1,
                          final double x2, final double y2)
    {
        return (linelen(x0, y0, x1, y1)
                + linelen(x1, y1, x2, y2)
                + linelen(x0, y0, x2, y2)) / 2.0d;
    }

    static double fastCurvelen(final double x0, final double y0,
                               final double x1, final double y1,
                               final double x2, final double y2,
                               final double x3, final double y3)
    {
        final double dx1 = x1 - x0;
        final double dx2 = x2 - x1;
        final double dx3 = x3 - x2;
        final double dy1 = y1 - y0;
        final double dy2 = y2 - y1;
        final double dy3 = y3 - y2;

        // use manhattan norm:
        return Math.abs(dx1) + Math.abs(dx2) + Math.abs(dx3)
             + Math.abs(dy1) + Math.abs(dy2) + Math.abs(dy3);
    }

    static double curvelen(final double x0, final double y0,
                           final double x1, final double y1,
                           final double x2, final double y2,
                           final double x3, final double y3)
    {
        return (linelen(x0, y0, x1, y1)
              + linelen(x1, y1, x2, y2)
              + linelen(x2, y2, x3, y3)
              + linelen(x0, y0, x3, y3)) / 2.0d;
    }

    // finds values of t where the curve in pts should be subdivided in order
    // to get good offset curves a distance of w away from the middle curve.
    // Stores the points in ts, and returns how many of them there were.
    static int findSubdivPoints(final DCurve c, final double[] pts,
                                final double[] ts, final int type,
                                final double w2)
    {
        final double x12 = pts[2] - pts[0];
        final double y12 = pts[3] - pts[1];
        // if the curve is already parallel to either axis we gain nothing
        // from rotating it.
        if ((y12 != 0.0d && x12 != 0.0d)) {
            // we rotate it so that the first vector in the control polygon is
            // parallel to the x-axis. This will ensure that rotated quarter
            // circles won't be subdivided.
            final double hypot = Math.sqrt(x12 * x12 + y12 * y12);
            final double cos = x12 / hypot;
            final double sin = y12 / hypot;
            final double x1 = cos * pts[0] + sin * pts[1];
            final double y1 = cos * pts[1] - sin * pts[0];
            final double x2 = cos * pts[2] + sin * pts[3];
            final double y2 = cos * pts[3] - sin * pts[2];
            final double x3 = cos * pts[4] + sin * pts[5];
            final double y3 = cos * pts[5] - sin * pts[4];

            switch(type) {
            case 8:
                final double x4 = cos * pts[6] + sin * pts[7];
                final double y4 = cos * pts[7] - sin * pts[6];
                c.set(x1, y1, x2, y2, x3, y3, x4, y4);
                break;
            case 6:
                c.set(x1, y1, x2, y2, x3, y3);
                break;
            default:
            }
        } else {
            c.set(pts, type);
        }

        int ret = 0;
        // we subdivide at values of t such that the remaining rotated
        // curves are monotonic in x and y.
        ret += c.dxRoots(ts, ret);
        ret += c.dyRoots(ts, ret);

        // subdivide at inflection points.
        if (type == 8) {
            // quadratic curves can't have inflection points
            ret += c.infPoints(ts, ret);
        }

        // now we must subdivide at points where one of the offset curves will have
        // a cusp. This happens at ts where the radius of curvature is equal to w.
        ret += c.rootsOfROCMinusW(ts, ret, w2, 0.0001d);

        ret = filterOutNotInAB(ts, 0, ret, 0.0001d, 0.9999d);
        isort(ts, ret);
        return ret;
    }

    // finds values of t where the curve in pts should be subdivided in order
    // to get intersections with the given clip rectangle.
    // Stores the points in ts, and returns how many of them there were.
    static int findClipPoints(final DCurve curve, final double[] pts,
                              final double[] ts, final int type,
                              final int outCodeOR,
                              final double[] clipRect)
    {
        curve.set(pts, type);

        // clip rectangle (ymin, ymax, xmin, xmax)
        int ret = 0;

        if ((outCodeOR & OUTCODE_LEFT) != 0) {
            ret += curve.xPoints(ts, ret, clipRect[2]);
        }
        if ((outCodeOR & OUTCODE_RIGHT) != 0) {
            ret += curve.xPoints(ts, ret, clipRect[3]);
        }
        if ((outCodeOR & OUTCODE_TOP) != 0) {
            ret += curve.yPoints(ts, ret, clipRect[0]);
        }
        if ((outCodeOR & OUTCODE_BOTTOM) != 0) {
            ret += curve.yPoints(ts, ret, clipRect[1]);
        }
        isort(ts, ret);
        return ret;
    }

    static void subdivide(final double[] src,
                          final double[] left, final double[] right,
                          final int type)
    {
        switch(type) {
        case 8:
            subdivideCubic(src, left, right);
            return;
        case 6:
            subdivideQuad(src, left, right);
            return;
        default:
            throw new InternalError("Unsupported curve type");
        }
    }

    static void isort(final double[] a, final int len) {
        for (int i = 1, j; i < len; i++) {
            final double ai = a[i];
            j = i - 1;
            for (; j >= 0 && a[j] > ai; j--) {
                a[j + 1] = a[j];
            }
            a[j + 1] = ai;
        }
    }

    // Most of these are copied from classes in java.awt.geom because we need
    // both single and double precision variants of these functions, and Line2D,
    // CubicCurve2D, QuadCurve2D don't provide them.
    
Subdivides the cubic curve specified by the coordinates stored in the src array at indices srcoff through (srcoff + 7) and stores the resulting two subdivided curves into the two result arrays at the corresponding indices. Either or both of the left and right arrays may be null or a reference to the same array as the src array. Note that the last point in the first subdivided curve is the same as the first point in the second subdivided curve. Thus, it is possible to pass the same array for left and right and to use offsets, such as rightoff equals (leftoff + 6), in order to avoid allocating extra storage for this common point.
Params:
  • src – the array holding the coordinates for the source curve
  • left – the array for storing the coordinates for the first half of the subdivided curve
  • right – the array for storing the coordinates for the second half of the subdivided curve
Since:1.7
/** * Subdivides the cubic curve specified by the coordinates * stored in the <code>src</code> array at indices <code>srcoff</code> * through (<code>srcoff</code>&nbsp;+&nbsp;7) and stores the * resulting two subdivided curves into the two result arrays at the * corresponding indices. * Either or both of the <code>left</code> and <code>right</code> * arrays may be <code>null</code> or a reference to the same array * as the <code>src</code> array. * Note that the last point in the first subdivided curve is the * same as the first point in the second subdivided curve. Thus, * it is possible to pass the same array for <code>left</code> * and <code>right</code> and to use offsets, such as <code>rightoff</code> * equals (<code>leftoff</code> + 6), in order * to avoid allocating extra storage for this common point. * @param src the array holding the coordinates for the source curve * @param left the array for storing the coordinates for the first * half of the subdivided curve * @param right the array for storing the coordinates for the second * half of the subdivided curve * @since 1.7 */
static void subdivideCubic(final double[] src, final double[] left, final double[] right) { double x1 = src[0]; double y1 = src[1]; double cx1 = src[2]; double cy1 = src[3]; double cx2 = src[4]; double cy2 = src[5]; double x2 = src[6]; double y2 = src[7]; left[0] = x1; left[1] = y1; right[6] = x2; right[7] = y2; x1 = (x1 + cx1) / 2.0d; y1 = (y1 + cy1) / 2.0d; x2 = (x2 + cx2) / 2.0d; y2 = (y2 + cy2) / 2.0d; double cx = (cx1 + cx2) / 2.0d; double cy = (cy1 + cy2) / 2.0d; cx1 = (x1 + cx) / 2.0d; cy1 = (y1 + cy) / 2.0d; cx2 = (x2 + cx) / 2.0d; cy2 = (y2 + cy) / 2.0d; cx = (cx1 + cx2) / 2.0d; cy = (cy1 + cy2) / 2.0d; left[2] = x1; left[3] = y1; left[4] = cx1; left[5] = cy1; left[6] = cx; left[7] = cy; right[0] = cx; right[1] = cy; right[2] = cx2; right[3] = cy2; right[4] = x2; right[5] = y2; } static void subdivideCubicAt(final double t, final double[] src, final int offS, final double[] pts, final int offL, final int offR) { double x1 = src[offS ]; double y1 = src[offS + 1]; double cx1 = src[offS + 2]; double cy1 = src[offS + 3]; double cx2 = src[offS + 4]; double cy2 = src[offS + 5]; double x2 = src[offS + 6]; double y2 = src[offS + 7]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 6] = x2; pts[offR + 7] = y2; x1 = x1 + t * (cx1 - x1); y1 = y1 + t * (cy1 - y1); x2 = cx2 + t * (x2 - cx2); y2 = cy2 + t * (y2 - cy2); double cx = cx1 + t * (cx2 - cx1); double cy = cy1 + t * (cy2 - cy1); cx1 = x1 + t * (cx - x1); cy1 = y1 + t * (cy - y1); cx2 = cx + t * (x2 - cx); cy2 = cy + t * (y2 - cy); cx = cx1 + t * (cx2 - cx1); cy = cy1 + t * (cy2 - cy1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offL + 4] = cx1; pts[offL + 5] = cy1; pts[offL + 6] = cx; pts[offL + 7] = cy; pts[offR ] = cx; pts[offR + 1] = cy; pts[offR + 2] = cx2; pts[offR + 3] = cy2; pts[offR + 4] = x2; pts[offR + 5] = y2; } static void subdivideQuad(final double[] src, final double[] left, final double[] right) { double x1 = src[0]; double y1 = src[1]; double cx = src[2]; double cy = src[3]; double x2 = src[4]; double y2 = src[5]; left[0] = x1; left[1] = y1; right[4] = x2; right[5] = y2; x1 = (x1 + cx) / 2.0d; y1 = (y1 + cy) / 2.0d; x2 = (x2 + cx) / 2.0d; y2 = (y2 + cy) / 2.0d; cx = (x1 + x2) / 2.0d; cy = (y1 + y2) / 2.0d; left[2] = x1; left[3] = y1; left[4] = cx; left[5] = cy; right[0] = cx; right[1] = cy; right[2] = x2; right[3] = y2; } static void subdivideQuadAt(final double t, final double[] src, final int offS, final double[] pts, final int offL, final int offR) { double x1 = src[offS ]; double y1 = src[offS + 1]; double cx = src[offS + 2]; double cy = src[offS + 3]; double x2 = src[offS + 4]; double y2 = src[offS + 5]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 4] = x2; pts[offR + 5] = y2; x1 = x1 + t * (cx - x1); y1 = y1 + t * (cy - y1); x2 = cx + t * (x2 - cx); y2 = cy + t * (y2 - cy); cx = x1 + t * (x2 - x1); cy = y1 + t * (y2 - y1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offL + 4] = cx; pts[offL + 5] = cy; pts[offR ] = cx; pts[offR + 1] = cy; pts[offR + 2] = x2; pts[offR + 3] = y2; } static void subdivideLineAt(final double t, final double[] src, final int offS, final double[] pts, final int offL, final int offR) { double x1 = src[offS ]; double y1 = src[offS + 1]; double x2 = src[offS + 2]; double y2 = src[offS + 3]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 2] = x2; pts[offR + 3] = y2; x1 = x1 + t * (x2 - x1); y1 = y1 + t * (y2 - y1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offR ] = x1; pts[offR + 1] = y1; } static void subdivideAt(final double t, final double[] src, final int offS, final double[] pts, final int offL, final int type) { // if instead of switch (perf + most probable cases first) if (type == 8) { subdivideCubicAt(t, src, offS, pts, offL, offL + type); } else if (type == 4) { subdivideLineAt(t, src, offS, pts, offL, offL + type); } else { subdivideQuadAt(t, src, offS, pts, offL, offL + type); } } // From sun.java2d.loops.GeneralRenderer: static int outcode(final double x, final double y, final double[] clipRect) { int code; if (y < clipRect[0]) { code = OUTCODE_TOP; } else if (y >= clipRect[1]) { code = OUTCODE_BOTTOM; } else { code = 0; } if (x < clipRect[2]) { code |= OUTCODE_LEFT; } else if (x >= clipRect[3]) { code |= OUTCODE_RIGHT; } return code; } // a stack of polynomial curves where each curve shares endpoints with // adjacent ones. static final class PolyStack { private static final byte TYPE_LINETO = (byte) 0; private static final byte TYPE_QUADTO = (byte) 1; private static final byte TYPE_CUBICTO = (byte) 2; // curves capacity = edges count (8192) = edges x 2 (coords) private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1; // types capacity = edges count (4096) private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT; double[] curves; int end; byte[] curveTypes; int numCurves; // curves ref (dirty) final DoubleArrayCache.Reference curves_ref; // curveTypes ref (dirty) final ByteArrayCache.Reference curveTypes_ref; // used marks (stats only) int curveTypesUseMark; int curvesUseMark; private final StatLong stat_polystack_types; private final StatLong stat_polystack_curves; private final Histogram hist_polystack_curves; private final StatLong stat_array_polystack_curves; private final StatLong stat_array_polystack_curveTypes; PolyStack(final DRendererContext rdrCtx) { this(rdrCtx, null, null, null, null, null); } PolyStack(final DRendererContext rdrCtx, final StatLong stat_polystack_types, final StatLong stat_polystack_curves, final Histogram hist_polystack_curves, final StatLong stat_array_polystack_curves, final StatLong stat_array_polystack_curveTypes) { curves_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_CURVES_COUNT); // 32K curves = curves_ref.initial; curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K curveTypes = curveTypes_ref.initial; numCurves = 0; end = 0; if (DO_STATS) { curveTypesUseMark = 0; curvesUseMark = 0; } this.stat_polystack_types = stat_polystack_types; this.stat_polystack_curves = stat_polystack_curves; this.hist_polystack_curves = hist_polystack_curves; this.stat_array_polystack_curves = stat_array_polystack_curves; this.stat_array_polystack_curveTypes = stat_array_polystack_curveTypes; }
Disposes this PolyStack: clean up before reusing this instance
/** * Disposes this PolyStack: * clean up before reusing this instance */
void dispose() { end = 0; numCurves = 0; if (DO_STATS) { stat_polystack_types.add(curveTypesUseMark); stat_polystack_curves.add(curvesUseMark); hist_polystack_curves.add(curvesUseMark); // reset marks curveTypesUseMark = 0; curvesUseMark = 0; } // Return arrays: // curves and curveTypes are kept dirty curves = curves_ref.putArray(curves); curveTypes = curveTypes_ref.putArray(curveTypes); } private void ensureSpace(final int n) { // use substraction to avoid integer overflow: if (curves.length - end < n) { if (DO_STATS) { stat_array_polystack_curves.add(end + n); } curves = curves_ref.widenArray(curves, end, end + n); } if (curveTypes.length <= numCurves) { if (DO_STATS) { stat_array_polystack_curveTypes.add(numCurves + 1); } curveTypes = curveTypes_ref.widenArray(curveTypes, numCurves, numCurves + 1); } } void pushCubic(double x0, double y0, double x1, double y1, double x2, double y2) { ensureSpace(6); curveTypes[numCurves++] = TYPE_CUBICTO; // we reverse the coordinate order to make popping easier final double[] _curves = curves; int e = end; _curves[e++] = x2; _curves[e++] = y2; _curves[e++] = x1; _curves[e++] = y1; _curves[e++] = x0; _curves[e++] = y0; end = e; } void pushQuad(double x0, double y0, double x1, double y1) { ensureSpace(4); curveTypes[numCurves++] = TYPE_QUADTO; final double[] _curves = curves; int e = end; _curves[e++] = x1; _curves[e++] = y1; _curves[e++] = x0; _curves[e++] = y0; end = e; } void pushLine(double x, double y) { ensureSpace(2); curveTypes[numCurves++] = TYPE_LINETO; curves[end++] = x; curves[end++] = y; } void pullAll(final DPathConsumer2D io) { final int nc = numCurves; if (nc == 0) { return; } if (DO_STATS) { // update used marks: if (numCurves > curveTypesUseMark) { curveTypesUseMark = numCurves; } if (end > curvesUseMark) { curvesUseMark = end; } } final byte[] _curveTypes = curveTypes; final double[] _curves = curves; int e = 0; for (int i = 0; i < nc; i++) { switch(_curveTypes[i]) { case TYPE_LINETO: io.lineTo(_curves[e], _curves[e+1]); e += 2; continue; case TYPE_CUBICTO: io.curveTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); e += 6; continue; case TYPE_QUADTO: io.quadTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3]); e += 4; continue; default: } } numCurves = 0; end = 0; } void popAll(final DPathConsumer2D io) { int nc = numCurves; if (nc == 0) { return; } if (DO_STATS) { // update used marks: if (numCurves > curveTypesUseMark) { curveTypesUseMark = numCurves; } if (end > curvesUseMark) { curvesUseMark = end; } } final byte[] _curveTypes = curveTypes; final double[] _curves = curves; int e = end; while (nc != 0) { switch(_curveTypes[--nc]) { case TYPE_LINETO: e -= 2; io.lineTo(_curves[e], _curves[e+1]); continue; case TYPE_CUBICTO: e -= 6; io.curveTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); continue; case TYPE_QUADTO: e -= 4; io.quadTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3]); continue; default: } } numCurves = 0; end = 0; } @Override public String toString() { String ret = ""; int nc = numCurves; int last = end; int len; while (nc != 0) { switch(curveTypes[--nc]) { case TYPE_LINETO: len = 2; ret += "line: "; break; case TYPE_QUADTO: len = 4; ret += "quad: "; break; case TYPE_CUBICTO: len = 6; ret += "cubic: "; break; default: len = 0; } last -= len; ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len)) + "\n"; } return ret; } } // a stack of integer indices static final class IndexStack { // integer capacity = edges count / 4 ~ 1024 private static final int INITIAL_COUNT = INITIAL_EDGES_COUNT >> 2; private int end; private int[] indices; // indices ref (dirty) private final IntArrayCache.Reference indices_ref; // used marks (stats only) private int indicesUseMark; private final StatLong stat_idxstack_indices; private final Histogram hist_idxstack_indices; private final StatLong stat_array_idxstack_indices; IndexStack(final DRendererContext rdrCtx) { this(rdrCtx, null, null, null); } IndexStack(final DRendererContext rdrCtx, final StatLong stat_idxstack_indices, final Histogram hist_idxstack_indices, final StatLong stat_array_idxstack_indices) { indices_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_COUNT); // 4K indices = indices_ref.initial; end = 0; if (DO_STATS) { indicesUseMark = 0; } this.stat_idxstack_indices = stat_idxstack_indices; this.hist_idxstack_indices = hist_idxstack_indices; this.stat_array_idxstack_indices = stat_array_idxstack_indices; }
Disposes this PolyStack: clean up before reusing this instance
/** * Disposes this PolyStack: * clean up before reusing this instance */
void dispose() { end = 0; if (DO_STATS) { stat_idxstack_indices.add(indicesUseMark); hist_idxstack_indices.add(indicesUseMark); // reset marks indicesUseMark = 0; } // Return arrays: // values is kept dirty indices = indices_ref.putArray(indices); } boolean isEmpty() { return (end == 0); } void reset() { end = 0; } void push(final int v) { // remove redundant values (reverse order): int[] _values = indices; final int nc = end; if (nc != 0) { if (_values[nc - 1] == v) { // remove both duplicated values: end--; return; } } if (_values.length <= nc) { if (DO_STATS) { stat_array_idxstack_indices.add(nc + 1); } indices = _values = indices_ref.widenArray(_values, nc, nc + 1); } _values[end++] = v; if (DO_STATS) { // update used marks: if (end > indicesUseMark) { indicesUseMark = end; } } } void pullAll(final double[] points, final DPathConsumer2D io) { final int nc = end; if (nc == 0) { return; } final int[] _values = indices; for (int i = 0, j; i < nc; i++) { j = _values[i] << 1; io.lineTo(points[j], points[j + 1]); } end = 0; } } }