/*
* Copyright (C) 2009 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.glassfish.jersey.internal.guava;
import java.io.Serializable;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractQueue;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReferenceArray;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.Function;
import java.util.logging.Level;
import java.util.logging.Logger;
import static org.glassfish.jersey.internal.guava.MoreExecutors.directExecutor;
import static org.glassfish.jersey.internal.guava.Preconditions.checkNotNull;
import static org.glassfish.jersey.internal.guava.Preconditions.checkState;
import static org.glassfish.jersey.internal.guava.Uninterruptibles.getUninterruptibly;
import static java.util.concurrent.TimeUnit.NANOSECONDS;
The concurrent hash map implementation built by CacheBuilder
.
This implementation is heavily derived from revision 1.96 of ConcurrentHashMap.java.
Author: Charles Fry, Bob Lee (org.glassfish.jersey.internal.guava.MapMaker
), Doug Lea (ConcurrentHashMap
)
/**
* The concurrent hash map implementation built by {@link CacheBuilder}.
* <p>
* <p>This implementation is heavily derived from revision 1.96 of <a
* href="http://tinyurl.com/ConcurrentHashMap">ConcurrentHashMap.java</a>.
*
* @author Charles Fry
* @author Bob Lee ({@code org.glassfish.jersey.internal.guava.MapMaker})
* @author Doug Lea ({@code ConcurrentHashMap})
*/
class LocalCache<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V> {
/*
* The basic strategy is to subdivide the table among Segments, each of which itself is a
* concurrently readable hash table. The map supports non-blocking reads and concurrent writes
* across different segments.
*
* If a maximum size is specified, a best-effort bounding is performed per segment, using a
* page-replacement algorithm to determine which entries to evict when the capacity has been
* exceeded.
*
* The page replacement algorithm's data structures are kept casually consistent with the map. The
* ordering of writes to a segment is sequentially consistent. An update to the map and recording
* of reads may not be immediately reflected on the algorithm's data structures. These structures
* are guarded by a lock and operations are applied in batches to avoid lock contention. The
* penalty of applying the batches is spread across threads so that the amortized cost is slightly
* higher than performing just the operation without enforcing the capacity constraint.
*
* This implementation uses a per-segment queue to record a memento of the additions, removals,
* and accesses that were performed on the map. The queue is drained on writes and when it exceeds
* its capacity threshold.
*
* The Least Recently Used page replacement algorithm was chosen due to its simplicity, high hit
* rate, and ability to be implemented with O(1) time complexity. The initial LRU implementation
* operates per-segment rather than globally for increased implementation simplicity. We expect
* the cache hit rate to be similar to that of a global LRU algorithm.
*/
// Constants
The maximum capacity, used if a higher value is implicitly specified by either of the
constructors with arguments. MUST be a power of two <= 1<<30 to ensure that entries are
indexable using ints.
/**
* The maximum capacity, used if a higher value is implicitly specified by either of the
* constructors with arguments. MUST be a power of two <= 1<<30 to ensure that entries are
* indexable using ints.
*/
private static final int MAXIMUM_CAPACITY = 1 << 30;
The maximum number of segments to allow; used to bound constructor arguments.
/**
* The maximum number of segments to allow; used to bound constructor arguments.
*/
private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
Number of (unsynchronized) retries in the containsValue method.
/**
* Number of (unsynchronized) retries in the containsValue method.
*/
private static final int CONTAINS_VALUE_RETRIES = 3;
Number of cache access operations that can be buffered per segment before the cache's recency
ordering information is updated. This is used to avoid lock contention by recording a memento
of reads and delaying a lock acquisition until the threshold is crossed or a mutation occurs.
This must be a (2^n)-1 as it is used as a mask.
/**
* Number of cache access operations that can be buffered per segment before the cache's recency
* ordering information is updated. This is used to avoid lock contention by recording a memento
* of reads and delaying a lock acquisition until the threshold is crossed or a mutation occurs.
* <p>
* <p>This must be a (2^n)-1 as it is used as a mask.
*/
private static final int DRAIN_THRESHOLD = 0x3F;
Maximum number of entries to be drained in a single cleanup run. This applies independently to
the cleanup queue and both reference queues.
/**
* Maximum number of entries to be drained in a single cleanup run. This applies independently to
* the cleanup queue and both reference queues.
*/
// TODO(fry): empirically optimize this
private static final int DRAIN_MAX = 16;
// Fields
private static final Logger logger = Logger.getLogger(LocalCache.class.getName());
Placeholder. Indicates that the value hasn't been set yet.
/**
* Placeholder. Indicates that the value hasn't been set yet.
*/
private static final ValueReference<Object, Object> UNSET = new ValueReference<Object, Object>() {
@Override
public Object get() {
return null;
}
@Override
public int getWeight() {
return 0;
}
@Override
public ReferenceEntry<Object, Object> getEntry() {
return null;
}
@Override
public ValueReference<Object, Object> copyFor(ReferenceQueue<Object> queue,
Object value, ReferenceEntry<Object, Object> entry) {
return this;
}
@Override
public boolean isLoading() {
return false;
}
@Override
public boolean isActive() {
return false;
}
@Override
public Object waitForValue() {
return null;
}
@Override
public void notifyNewValue(Object newValue) {
}
};
private static final Queue<?> DISCARDING_QUEUE = new AbstractQueue<Object>() {
@Override
public boolean offer(Object o) {
return true;
}
@Override
public Object peek() {
return null;
}
@Override
public Object poll() {
return null;
}
@Override
public int size() {
return 0;
}
@Override
public Iterator<Object> iterator() {
return Iterators.emptyIterator();
}
};
Mask value for indexing into segments. The upper bits of a key's hash code are used to choose
the segment.
/**
* Mask value for indexing into segments. The upper bits of a key's hash code are used to choose
* the segment.
*/
private final int segmentMask;
Shift value for indexing within segments. Helps prevent entries that end up in the same segment
from also ending up in the same bucket.
/**
* Shift value for indexing within segments. Helps prevent entries that end up in the same segment
* from also ending up in the same bucket.
*/
private final int segmentShift;
The segments, each of which is a specialized hash table.
/**
* The segments, each of which is a specialized hash table.
*/
private final Segment<K, V>[] segments;
The concurrency level.
/**
* The concurrency level.
*/
private final int concurrencyLevel;
Strategy for comparing keys.
/**
* Strategy for comparing keys.
*/
private final Equivalence<Object> keyEquivalence;
Strategy for comparing values.
/**
* Strategy for comparing values.
*/
private final Equivalence<Object> valueEquivalence;
Strategy for referencing keys.
/**
* Strategy for referencing keys.
*/
private final Strength keyStrength;
Strategy for referencing values.
/**
* Strategy for referencing values.
*/
private final Strength valueStrength;
The maximum weight of this map. UNSET_INT if there is no maximum.
/**
* The maximum weight of this map. UNSET_INT if there is no maximum.
*/
private final long maxWeight;
How long after the last access to an entry the map will retain that entry.
/**
* How long after the last access to an entry the map will retain that entry.
*/
private final long expireAfterAccessNanos;
How long after the last write to an entry the map will retain that entry.
/**
* How long after the last write to an entry the map will retain that entry.
*/
private final long expireAfterWriteNanos;
How long after the last write an entry becomes a candidate for refresh.
/**
* How long after the last write an entry becomes a candidate for refresh.
*/
private final long refreshNanos;
Entries waiting to be consumed by the removal listener.
/**
* Entries waiting to be consumed by the removal listener.
*/
// TODO(fry): define a new type which creates event objects and automates the clear logic
private final Queue<RemovalNotification<K, V>> removalNotificationQueue;
Measures time in a testable way.
/**
* Measures time in a testable way.
*/
private final Ticker ticker;
Factory used to create new entries.
/**
* Factory used to create new entries.
*/
private final EntryFactory entryFactory;
The default cache loader to use on loading operations.
/**
* The default cache loader to use on loading operations.
*/
private final CacheLoader<? super K, V> defaultLoader;
private Set<K> keySet;
private Collection<V> values;
private Set<Entry<K, V>> entrySet;
Creates a new, empty map with the specified strategy, initial capacity and concurrency level.
/**
* Creates a new, empty map with the specified strategy, initial capacity and concurrency level.
*/
private LocalCache(
CacheBuilder<? super K, ? super V> builder, CacheLoader<? super K, V> loader) {
concurrencyLevel = Math.min(builder.getConcurrencyLevel(), MAX_SEGMENTS);
keyStrength = Strength.STRONG;
valueStrength = Strength.STRONG;
keyEquivalence = keyStrength.defaultEquivalence();
valueEquivalence = valueStrength.defaultEquivalence();
maxWeight = CacheBuilder.UNSET_INT;
expireAfterAccessNanos = builder.getExpireAfterAccessNanos();
expireAfterWriteNanos = CacheBuilder.DEFAULT_EXPIRATION_NANOS;
refreshNanos = CacheBuilder.DEFAULT_REFRESH_NANOS;
removalNotificationQueue = LocalCache.discardingQueue();
ticker = recordsTime() ? Ticker.systemTicker() : CacheBuilder.NULL_TICKER;
entryFactory = EntryFactory.getFactory(keyStrength, usesAccessEntries(), usesWriteEntries());
defaultLoader = loader;
int initialCapacity = Math.min(CacheBuilder.DEFAULT_INITIAL_CAPACITY, MAXIMUM_CAPACITY);
if (evictsBySize()) {
initialCapacity = Math.min(initialCapacity, (int) maxWeight);
}
// Find the lowest power-of-two segmentCount that exceeds concurrencyLevel, unless
// maximumSize/Weight is specified in which case ensure that each segment gets at least 10
// entries. The special casing for size-based eviction is only necessary because that eviction
// happens per segment instead of globally, so too many segments compared to the maximum size
// will result in random eviction behavior.
int segmentShift = 0;
int segmentCount = 1;
while (segmentCount < concurrencyLevel
&& (!evictsBySize() || segmentCount * 20 <= maxWeight)) {
++segmentShift;
segmentCount <<= 1;
}
this.segmentShift = 32 - segmentShift;
segmentMask = segmentCount - 1;
this.segments = newSegmentArray(segmentCount);
int segmentCapacity = initialCapacity / segmentCount;
if (segmentCapacity * segmentCount < initialCapacity) {
++segmentCapacity;
}
int segmentSize = 1;
while (segmentSize < segmentCapacity) {
segmentSize <<= 1;
}
if (evictsBySize()) {
// Ensure sum of segment max weights = overall max weights
long maxSegmentWeight = maxWeight / segmentCount + 1;
long remainder = maxWeight % segmentCount;
for (int i = 0; i < this.segments.length; ++i) {
if (i == remainder) {
maxSegmentWeight--;
}
this.segments[i] =
createSegment(segmentSize, maxSegmentWeight);
}
} else {
for (int i = 0; i < this.segments.length; ++i) {
this.segments[i] =
createSegment(segmentSize, CacheBuilder.UNSET_INT);
}
}
}
Singleton placeholder that indicates a value is being loaded.
/**
* Singleton placeholder that indicates a value is being loaded.
*/
@SuppressWarnings("unchecked") // impl never uses a parameter or returns any non-null value
private static <K, V> ValueReference<K, V> unset() {
return (ValueReference<K, V>) UNSET;
}
@SuppressWarnings("unchecked") // impl never uses a parameter or returns any non-null value
private static <K, V> ReferenceEntry<K, V> nullEntry() {
return (ReferenceEntry<K, V>) NullEntry.INSTANCE;
}
Queue that discards all elements.
/**
* Queue that discards all elements.
*/
@SuppressWarnings("unchecked") // impl never uses a parameter or returns any non-null value
private static <E> Queue<E> discardingQueue() {
return (Queue) DISCARDING_QUEUE;
}
Applies a supplemental hash function to a given hash code, which defends against poor quality
hash functions. This is critical when the concurrent hash map uses power-of-two length hash
tables, that otherwise encounter collisions for hash codes that do not differ in lower or
upper bits.
Params: - h – hash code
/**
* Applies a supplemental hash function to a given hash code, which defends against poor quality
* hash functions. This is critical when the concurrent hash map uses power-of-two length hash
* tables, that otherwise encounter collisions for hash codes that do not differ in lower or
* upper bits.
*
* @param h hash code
*/
private static int rehash(int h) {
// Spread bits to regularize both segment and index locations,
// using variant of single-word Wang/Jenkins hash.
// TODO(kevinb): use Hashing/move this to Hashing?
h += (h << 15) ^ 0xffffcd7d;
h ^= (h >>> 10);
h += (h << 3);
h ^= (h >>> 6);
h += (h << 2) + (h << 14);
return h ^ (h >>> 16);
}
// Guarded By Segment.this
private static <K, V> void connectAccessOrder(ReferenceEntry<K, V> previous, ReferenceEntry<K, V> next) {
previous.setNextInAccessQueue(next);
next.setPreviousInAccessQueue(previous);
}
// Guarded By Segment.this
private static <K, V> void nullifyAccessOrder(ReferenceEntry<K, V> nulled) {
ReferenceEntry<K, V> nullEntry = nullEntry();
nulled.setNextInAccessQueue(nullEntry);
nulled.setPreviousInAccessQueue(nullEntry);
}
// Guarded By Segment.this
private static <K, V> void connectWriteOrder(ReferenceEntry<K, V> previous, ReferenceEntry<K, V> next) {
previous.setNextInWriteQueue(next);
next.setPreviousInWriteQueue(previous);
}
// Guarded By Segment.this
private static <K, V> void nullifyWriteOrder(ReferenceEntry<K, V> nulled) {
ReferenceEntry<K, V> nullEntry = nullEntry();
nulled.setNextInWriteQueue(nullEntry);
nulled.setPreviousInWriteQueue(nullEntry);
}
boolean evictsBySize() {
return maxWeight >= 0;
}
private boolean expiresAfterWrite() {
return expireAfterWriteNanos > 0;
}
private boolean expiresAfterAccess() {
return expireAfterAccessNanos > 0;
}
boolean refreshes() {
return refreshNanos > 0;
}
boolean usesAccessQueue() {
return expiresAfterAccess() || evictsBySize();
}
boolean usesWriteQueue() {
return expiresAfterWrite();
}
boolean recordsWrite() {
return expiresAfterWrite() || refreshes();
}
boolean recordsAccess() {
return expiresAfterAccess();
}
private boolean recordsTime() {
return recordsWrite() || recordsAccess();
}
private boolean usesWriteEntries() {
return usesWriteQueue() || recordsWrite();
}
private boolean usesAccessEntries() {
return usesAccessQueue() || recordsAccess();
}
/*
* Note: All of this duplicate code sucks, but it saves a lot of memory. If only Java had mixins!
* To maintain this code, make a change for the strong reference type. Then, cut and paste, and
* replace "Strong" with "Soft" or "Weak" within the pasted text. The primary difference is that
* strong entries store the key reference directly while soft and weak entries delegate to their
* respective superclasses.
*/
boolean usesKeyReferences() {
return keyStrength != Strength.STRONG;
}
boolean usesValueReferences() {
return valueStrength != Strength.STRONG;
}
private int hash(Object key) {
int h = keyEquivalence.hash(key);
return rehash(h);
}
void reclaimValue(ValueReference<K, V> valueReference) {
ReferenceEntry<K, V> entry = valueReference.getEntry();
int hash = entry.getHash();
segmentFor(hash).reclaimValue(entry.getKey(), hash, valueReference);
}
void reclaimKey(ReferenceEntry<K, V> entry) {
int hash = entry.getHash();
segmentFor(hash).reclaimKey(entry, hash);
}
Returns the segment that should be used for a key with the given hash.
Params: - hash – the hash code for the key
Returns: the segment
/**
* Returns the segment that should be used for a key with the given hash.
*
* @param hash the hash code for the key
* @return the segment
*/
private Segment<K, V> segmentFor(int hash) {
// TODO(fry): Lazily create segments?
return segments[(hash >>> segmentShift) & segmentMask];
}
private Segment<K, V> createSegment(
int initialCapacity, long maxSegmentWeight) {
return new Segment<K, V>(this, initialCapacity, maxSegmentWeight);
}
Gets the value from an entry. Returns null if the entry is invalid, partially-collected, loading, or expired. Unlike Segment.getLiveValue
this method does not attempt to cleanup stale entries. As such it should only be called outside of a segment context, such as during iteration. /**
* Gets the value from an entry. Returns null if the entry is invalid, partially-collected,
* loading, or expired. Unlike {@link Segment#getLiveValue} this method does not attempt to
* cleanup stale entries. As such it should only be called outside of a segment context, such as
* during iteration.
*/
private V getLiveValue(ReferenceEntry<K, V> entry, long now) {
if (entry.getKey() == null) {
return null;
}
V value = entry.getValueReference().get();
if (value == null) {
return null;
}
if (isExpired(entry, now)) {
return null;
}
return value;
}
Returns true if the entry has expired.
/**
* Returns true if the entry has expired.
*/
boolean isExpired(ReferenceEntry<K, V> entry, long now) {
checkNotNull(entry);
if (expiresAfterAccess()
&& (now - entry.getAccessTime() >= expireAfterAccessNanos)) {
return true;
}
if (expiresAfterWrite()
&& (now - entry.getWriteTime() >= expireAfterWriteNanos)) {
return true;
}
return false;
}
@SuppressWarnings("unchecked")
private Segment<K, V>[] newSegmentArray(int ssize) {
return new Segment[ssize];
}
@Override
public boolean isEmpty() {
/*
* Sum per-segment modCounts to avoid mis-reporting when elements are concurrently added and
* removed in one segment while checking another, in which case the table was never actually
* empty at any point. (The sum ensures accuracy up through at least 1<<31 per-segment
* modifications before recheck.) Method containsValue() uses similar constructions for
* stability checks.
*/
long sum = 0L;
Segment<K, V>[] segments = this.segments;
for (int i = 0; i < segments.length; ++i) {
if (segments[i].count != 0) {
return false;
}
sum += segments[i].modCount;
}
if (sum != 0L) { // recheck unless no modifications
for (int i = 0; i < segments.length; ++i) {
if (segments[i].count != 0) {
return false;
}
sum -= segments[i].modCount;
}
if (sum != 0L) {
return false;
}
}
return true;
}
private long longSize() {
Segment<K, V>[] segments = this.segments;
long sum = 0;
for (int i = 0; i < segments.length; ++i) {
sum += segments[i].count;
}
return sum;
}
@Override
public int size() {
return Ints.saturatedCast(longSize());
}
@Override
public V get(Object key) {
if (key == null) {
return null;
}
int hash = hash(key);
return segmentFor(hash).get(key, hash);
}
V getIfPresent(Object key) {
int hash = hash(checkNotNull(key));
return segmentFor(hash).get(key, hash);
}
private V get(K key, CacheLoader<? super K, V> loader) throws ExecutionException {
int hash = hash(checkNotNull(key));
return segmentFor(hash).get(key, hash, loader);
}
V getOrLoad(K key) throws ExecutionException {
return get(key, defaultLoader);
}
@Override
public boolean containsKey(Object key) {
// does not impact recency ordering
if (key == null) {
return false;
}
int hash = hash(key);
return segmentFor(hash).containsKey(key, hash);
}
@Override
public boolean containsValue(Object value) {
// does not impact recency ordering
if (value == null) {
return false;
}
// This implementation is patterned after ConcurrentHashMap, but without the locking. The only
// way for it to return a false negative would be for the target value to jump around in the map
// such that none of the subsequent iterations observed it, despite the fact that at every point
// in time it was present somewhere int the map. This becomes increasingly unlikely as
// CONTAINS_VALUE_RETRIES increases, though without locking it is theoretically possible.
long now = ticker.read();
final Segment<K, V>[] segments = this.segments;
long last = -1L;
for (int i = 0; i < CONTAINS_VALUE_RETRIES; i++) {
long sum = 0L;
for (Segment<K, V> segment : segments) {
// ensure visibility of most recent completed write
@SuppressWarnings({"UnusedDeclaration", "unused"})
int c = segment.count; // read-volatile
AtomicReferenceArray<ReferenceEntry<K, V>> table = segment.table;
for (int j = 0; j < table.length(); j++) {
for (ReferenceEntry<K, V> e = table.get(j); e != null; e = e.getNext()) {
V v = segment.getLiveValue(e, now);
if (v != null && valueEquivalence.equivalent(value, v)) {
return true;
}
}
}
sum += segment.modCount;
}
if (sum == last) {
break;
}
last = sum;
}
return false;
}
@Override
public V put(K key, V value) {
checkNotNull(key);
checkNotNull(value);
int hash = hash(key);
return segmentFor(hash).put(key, hash, value, false);
}
// expiration
@Override
public V putIfAbsent(K key, V value) {
checkNotNull(key);
checkNotNull(value);
int hash = hash(key);
return segmentFor(hash).put(key, hash, value, true);
}
// queues
@Override
public void putAll(Map<? extends K, ? extends V> m) {
for (Entry<? extends K, ? extends V> e : m.entrySet()) {
put(e.getKey(), e.getValue());
}
}
@Override
public V remove(Object key) {
if (key == null) {
return null;
}
int hash = hash(key);
return segmentFor(hash).remove(key, hash);
}
@Override
public boolean remove(Object key, Object value) {
if (key == null || value == null) {
return false;
}
int hash = hash(key);
return segmentFor(hash).remove(key, hash, value);
}
@Override
public boolean replace(K key, V oldValue, V newValue) {
checkNotNull(key);
checkNotNull(newValue);
if (oldValue == null) {
return false;
}
int hash = hash(key);
return segmentFor(hash).replace(key, hash, oldValue, newValue);
}
@Override
public V replace(K key, V value) {
checkNotNull(key);
checkNotNull(value);
int hash = hash(key);
return segmentFor(hash).replace(key, hash, value);
}
@Override
public void clear() {
for (Segment<K, V> segment : segments) {
segment.clear();
}
}
// Inner Classes
@Override
public Set<K> keySet() {
// does not impact recency ordering
Set<K> ks = keySet;
return (ks != null) ? ks : (keySet = new KeySet(this));
}
@Override
public Collection<V> values() {
// does not impact recency ordering
Collection<V> vs = values;
return (vs != null) ? vs : (values = new Values(this));
}
// Queues
@Override
public Set<Entry<K, V>> entrySet() {
// does not impact recency ordering
Set<Entry<K, V>> es = entrySet;
return (es != null) ? es : (entrySet = new EntrySet(this));
}
enum Strength {
/*
* TODO(kevinb): If we strongly reference the value and aren't loading, we needn't wrap the
* value. This could save ~8 bytes per entry.
*/
STRONG {
@Override
<K, V> ValueReference<K, V> referenceValue(
Segment<K, V> segment, ReferenceEntry<K, V> entry, V value, int weight) {
return (weight == 1)
? new StrongValueReference<K, V>(value)
: new WeightedStrongValueReference<K, V>(value, weight);
}
@Override
Equivalence<Object> defaultEquivalence() {
return Equivalence.equals();
}
},
WEAK {
@Override
<K, V> ValueReference<K, V> referenceValue(
Segment<K, V> segment, ReferenceEntry<K, V> entry, V value, int weight) {
return (weight == 1)
? new WeakValueReference<K, V>(segment.valueReferenceQueue, value, entry)
: new WeightedWeakValueReference<K, V>(
segment.valueReferenceQueue, value, entry, weight);
}
@Override
Equivalence<Object> defaultEquivalence() {
return Equivalence.identity();
}
};
Creates a reference for the given value according to this value strength.
/**
* Creates a reference for the given value according to this value strength.
*/
abstract <K, V> ValueReference<K, V> referenceValue(
Segment<K, V> segment, ReferenceEntry<K, V> entry, V value, int weight);
Returns the default equivalence strategy used to compare and hash keys or values referenced
at this strength. This strategy will be used unless the user explicitly specifies an
alternate strategy.
/**
* Returns the default equivalence strategy used to compare and hash keys or values referenced
* at this strength. This strategy will be used unless the user explicitly specifies an
* alternate strategy.
*/
abstract Equivalence<Object> defaultEquivalence();
}
// Cache support
// ConcurrentMap methods
Creates new entries.
/**
* Creates new entries.
*/
enum EntryFactory {
STRONG {
@Override
<K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next) {
return new StrongEntry<K, V>(key, hash, next);
}
},
STRONG_ACCESS {
@Override
<K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next) {
return new StrongAccessEntry<K, V>(key, hash, next);
}
@Override
<K, V> ReferenceEntry<K, V> copyEntry(
Segment<K, V> segment, ReferenceEntry<K, V> original, ReferenceEntry<K, V> newNext) {
ReferenceEntry<K, V> newEntry = super.copyEntry(segment, original, newNext);
copyAccessEntry(original, newEntry);
return newEntry;
}
},
STRONG_WRITE {
@Override
<K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next) {
return new StrongWriteEntry<K, V>(key, hash, next);
}
@Override
<K, V> ReferenceEntry<K, V> copyEntry(
Segment<K, V> segment, ReferenceEntry<K, V> original, ReferenceEntry<K, V> newNext) {
ReferenceEntry<K, V> newEntry = super.copyEntry(segment, original, newNext);
copyWriteEntry(original, newEntry);
return newEntry;
}
},
STRONG_ACCESS_WRITE {
@Override
<K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next) {
return new StrongAccessWriteEntry<K, V>(key, hash, next);
}
@Override
<K, V> ReferenceEntry<K, V> copyEntry(
Segment<K, V> segment, ReferenceEntry<K, V> original, ReferenceEntry<K, V> newNext) {
ReferenceEntry<K, V> newEntry = super.copyEntry(segment, original, newNext);
copyAccessEntry(original, newEntry);
copyWriteEntry(original, newEntry);
return newEntry;
}
},
WEAK {
@Override
<K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next) {
return new WeakEntry<K, V>(segment.keyReferenceQueue, key, hash, next);
}
},
WEAK_ACCESS {
@Override
<K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next) {
return new WeakAccessEntry<K, V>(segment.keyReferenceQueue, key, hash, next);
}
@Override
<K, V> ReferenceEntry<K, V> copyEntry(
Segment<K, V> segment, ReferenceEntry<K, V> original, ReferenceEntry<K, V> newNext) {
ReferenceEntry<K, V> newEntry = super.copyEntry(segment, original, newNext);
copyAccessEntry(original, newEntry);
return newEntry;
}
},
WEAK_WRITE {
@Override
<K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next) {
return new WeakWriteEntry<K, V>(segment.keyReferenceQueue, key, hash, next);
}
@Override
<K, V> ReferenceEntry<K, V> copyEntry(
Segment<K, V> segment, ReferenceEntry<K, V> original, ReferenceEntry<K, V> newNext) {
ReferenceEntry<K, V> newEntry = super.copyEntry(segment, original, newNext);
copyWriteEntry(original, newEntry);
return newEntry;
}
},
WEAK_ACCESS_WRITE {
@Override
<K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next) {
return new WeakAccessWriteEntry<K, V>(segment.keyReferenceQueue, key, hash, next);
}
@Override
<K, V> ReferenceEntry<K, V> copyEntry(
Segment<K, V> segment, ReferenceEntry<K, V> original, ReferenceEntry<K, V> newNext) {
ReferenceEntry<K, V> newEntry = super.copyEntry(segment, original, newNext);
copyAccessEntry(original, newEntry);
copyWriteEntry(original, newEntry);
return newEntry;
}
};
Masks used to compute indices in the following table.
/**
* Masks used to compute indices in the following table.
*/
static final int ACCESS_MASK = 1;
static final int WRITE_MASK = 2;
static final int WEAK_MASK = 4;
Look-up table for factories.
/**
* Look-up table for factories.
*/
static final EntryFactory[] factories = {
STRONG, STRONG_ACCESS, STRONG_WRITE, STRONG_ACCESS_WRITE,
WEAK, WEAK_ACCESS, WEAK_WRITE, WEAK_ACCESS_WRITE,
};
static EntryFactory getFactory(Strength keyStrength, boolean usesAccessQueue,
boolean usesWriteQueue) {
int flags = ((keyStrength == Strength.WEAK) ? WEAK_MASK : 0)
| (usesAccessQueue ? ACCESS_MASK : 0)
| (usesWriteQueue ? WRITE_MASK : 0);
return factories[flags];
}
Creates a new entry.
Params: - segment – to create the entry for
- key – of the entry
- hash – of the key
- next – entry in the same bucket
/**
* Creates a new entry.
*
* @param segment to create the entry for
* @param key of the entry
* @param hash of the key
* @param next entry in the same bucket
*/
abstract <K, V> ReferenceEntry<K, V> newEntry(
Segment<K, V> segment, K key, int hash, ReferenceEntry<K, V> next);
Copies an entry, assigning it a new next
entry. Params: - original – the entry to copy
- newNext – entry in the same bucket
/**
* Copies an entry, assigning it a new {@code next} entry.
*
* @param original the entry to copy
* @param newNext entry in the same bucket
*/
// Guarded By Segment.this
<K, V> ReferenceEntry<K, V> copyEntry(
Segment<K, V> segment, ReferenceEntry<K, V> original, ReferenceEntry<K, V> newNext) {
return newEntry(segment, original.getKey(), original.getHash(), newNext);
}
// Guarded By Segment.this
<K, V> void copyAccessEntry(ReferenceEntry<K, V> original, ReferenceEntry<K, V> newEntry) {
// TODO(fry): when we link values instead of entries this method can go
// away, as can connectAccessOrder, nullifyAccessOrder.
newEntry.setAccessTime(original.getAccessTime());
connectAccessOrder(original.getPreviousInAccessQueue(), newEntry);
connectAccessOrder(newEntry, original.getNextInAccessQueue());
nullifyAccessOrder(original);
}
// Guarded By Segment.this
<K, V> void copyWriteEntry(ReferenceEntry<K, V> original, ReferenceEntry<K, V> newEntry) {
// TODO(fry): when we link values instead of entries this method can go
// away, as can connectWriteOrder, nullifyWriteOrder.
newEntry.setWriteTime(original.getWriteTime());
connectWriteOrder(original.getPreviousInWriteQueue(), newEntry);
connectWriteOrder(newEntry, original.getNextInWriteQueue());
nullifyWriteOrder(original);
}
}
private enum NullEntry implements ReferenceEntry<Object, Object> {
INSTANCE;
@Override
public ValueReference<Object, Object> getValueReference() {
return null;
}
@Override
public void setValueReference(ValueReference<Object, Object> valueReference) {
}
@Override
public ReferenceEntry<Object, Object> getNext() {
return null;
}
@Override
public int getHash() {
return 0;
}
@Override
public Object getKey() {
return null;
}
@Override
public long getAccessTime() {
return 0;
}
@Override
public void setAccessTime(long time) {
}
@Override
public ReferenceEntry<Object, Object> getNextInAccessQueue() {
return this;
}
@Override
public void setNextInAccessQueue(ReferenceEntry<Object, Object> next) {
}
@Override
public ReferenceEntry<Object, Object> getPreviousInAccessQueue() {
return this;
}
@Override
public void setPreviousInAccessQueue(ReferenceEntry<Object, Object> previous) {
}
@Override
public long getWriteTime() {
return 0;
}
@Override
public void setWriteTime(long time) {
}
@Override
public ReferenceEntry<Object, Object> getNextInWriteQueue() {
return this;
}
@Override
public void setNextInWriteQueue(ReferenceEntry<Object, Object> next) {
}
@Override
public ReferenceEntry<Object, Object> getPreviousInWriteQueue() {
return this;
}
@Override
public void setPreviousInWriteQueue(ReferenceEntry<Object, Object> previous) {
}
}
A reference to a value.
/**
* A reference to a value.
*/
interface ValueReference<K, V> {
Returns the value. Does not block or throw exceptions.
/**
* Returns the value. Does not block or throw exceptions.
*/
V get();
Waits for a value that may still be loading. Unlike get(), this method can block (in the
case of FutureValueReference).
Throws: - ExecutionException – if the loading thread throws an exception
- ExecutionError – if the loading thread throws an error
/**
* Waits for a value that may still be loading. Unlike get(), this method can block (in the
* case of FutureValueReference).
*
* @throws ExecutionException if the loading thread throws an exception
* @throws ExecutionError if the loading thread throws an error
*/
V waitForValue() throws ExecutionException;
Returns the weight of this entry. This is assumed to be static between calls to setValue.
/**
* Returns the weight of this entry. This is assumed to be static between calls to setValue.
*/
int getWeight();
Returns the entry associated with this value reference, or null
if this value reference is independent of any entry. /**
* Returns the entry associated with this value reference, or {@code null} if this value
* reference is independent of any entry.
*/
ReferenceEntry<K, V> getEntry();
Creates a copy of this reference for the given entry.
value
may be null only for a loading reference.
/**
* Creates a copy of this reference for the given entry.
* <p>
* <p>{@code value} may be null only for a loading reference.
*/
ValueReference<K, V> copyFor(
ReferenceQueue<V> queue, V value, ReferenceEntry<K, V> entry);
Notifify pending loads that a new value was set. This is only relevant to loading
value references.
/**
* Notifify pending loads that a new value was set. This is only relevant to loading
* value references.
*/
void notifyNewValue(V newValue);
Returns true if a new value is currently loading, regardless of whether or not there is an
existing value. It is assumed that the return value of this method is constant for any given
ValueReference instance.
/**
* Returns true if a new value is currently loading, regardless of whether or not there is an
* existing value. It is assumed that the return value of this method is constant for any given
* ValueReference instance.
*/
boolean isLoading();
Returns true if this reference contains an active value, meaning one that is still considered
present in the cache. Active values consist of live values, which are returned by cache
lookups, and dead values, which have been evicted but awaiting removal. Non-active values
consist strictly of loading values, though during refresh a value may be both active and
loading.
/**
* Returns true if this reference contains an active value, meaning one that is still considered
* present in the cache. Active values consist of live values, which are returned by cache
* lookups, and dead values, which have been evicted but awaiting removal. Non-active values
* consist strictly of loading values, though during refresh a value may be both active and
* loading.
*/
boolean isActive();
}
An entry in a reference map.
Entries in the map can be in the following states:
Valid:
- Live: valid key/value are set
- Loading: loading is pending
Invalid:
- Expired: time expired (key/value may still be set)
- Collected: key/value was partially collected, but not yet cleaned up
- Unset: marked as unset, awaiting cleanup or reuse
/**
* An entry in a reference map.
* <p>
* Entries in the map can be in the following states:
* <p>
* Valid:
* - Live: valid key/value are set
* - Loading: loading is pending
* <p>
* Invalid:
* - Expired: time expired (key/value may still be set)
* - Collected: key/value was partially collected, but not yet cleaned up
* - Unset: marked as unset, awaiting cleanup or reuse
*/
interface ReferenceEntry<K, V> {
Returns the value reference from this entry.
/**
* Returns the value reference from this entry.
*/
ValueReference<K, V> getValueReference();
Sets the value reference for this entry.
/**
* Sets the value reference for this entry.
*/
void setValueReference(ValueReference<K, V> valueReference);
Returns the next entry in the chain.
/**
* Returns the next entry in the chain.
*/
ReferenceEntry<K, V> getNext();
Returns the entry's hash.
/**
* Returns the entry's hash.
*/
int getHash();
Returns the key for this entry.
/**
* Returns the key for this entry.
*/
K getKey();
/*
* Used by entries that use access order. Access entries are maintained in a doubly-linked list.
* New entries are added at the tail of the list at write time; stale entries are expired from
* the head of the list.
*/
Returns the time that this entry was last accessed, in ns.
/**
* Returns the time that this entry was last accessed, in ns.
*/
long getAccessTime();
Sets the entry access time in ns.
/**
* Sets the entry access time in ns.
*/
void setAccessTime(long time);
Returns the next entry in the access queue.
/**
* Returns the next entry in the access queue.
*/
ReferenceEntry<K, V> getNextInAccessQueue();
Sets the next entry in the access queue.
/**
* Sets the next entry in the access queue.
*/
void setNextInAccessQueue(ReferenceEntry<K, V> next);
Returns the previous entry in the access queue.
/**
* Returns the previous entry in the access queue.
*/
ReferenceEntry<K, V> getPreviousInAccessQueue();
Sets the previous entry in the access queue.
/**
* Sets the previous entry in the access queue.
*/
void setPreviousInAccessQueue(ReferenceEntry<K, V> previous);
/*
* Implemented by entries that use write order. Write entries are maintained in a
* doubly-linked list. New entries are added at the tail of the list at write time and stale
* entries are expired from the head of the list.
*/
Returns the time that this entry was last written, in ns.
/**
* Returns the time that this entry was last written, in ns.
*/
long getWriteTime();
Sets the entry write time in ns.
/**
* Sets the entry write time in ns.
*/
void setWriteTime(long time);
Returns the next entry in the write queue.
/**
* Returns the next entry in the write queue.
*/
ReferenceEntry<K, V> getNextInWriteQueue();
Sets the next entry in the write queue.
/**
* Sets the next entry in the write queue.
*/
void setNextInWriteQueue(ReferenceEntry<K, V> next);
Returns the previous entry in the write queue.
/**
* Returns the previous entry in the write queue.
*/
ReferenceEntry<K, V> getPreviousInWriteQueue();
Sets the previous entry in the write queue.
/**
* Sets the previous entry in the write queue.
*/
void setPreviousInWriteQueue(ReferenceEntry<K, V> previous);
}
abstract static class AbstractReferenceEntry<K, V> implements ReferenceEntry<K, V> {
@Override
public ValueReference<K, V> getValueReference() {
throw new UnsupportedOperationException();
}
@Override
public void setValueReference(ValueReference<K, V> valueReference) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getNext() {
throw new UnsupportedOperationException();
}
@Override
public int getHash() {
throw new UnsupportedOperationException();
}
@Override
public K getKey() {
throw new UnsupportedOperationException();
}
@Override
public long getAccessTime() {
throw new UnsupportedOperationException();
}
@Override
public void setAccessTime(long time) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getNextInAccessQueue() {
throw new UnsupportedOperationException();
}
@Override
public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getPreviousInAccessQueue() {
throw new UnsupportedOperationException();
}
@Override
public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
throw new UnsupportedOperationException();
}
@Override
public long getWriteTime() {
throw new UnsupportedOperationException();
}
@Override
public void setWriteTime(long time) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getNextInWriteQueue() {
throw new UnsupportedOperationException();
}
@Override
public void setNextInWriteQueue(ReferenceEntry<K, V> next) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getPreviousInWriteQueue() {
throw new UnsupportedOperationException();
}
@Override
public void setPreviousInWriteQueue(ReferenceEntry<K, V> previous) {
throw new UnsupportedOperationException();
}
}
Used for strongly-referenced keys.
/**
* Used for strongly-referenced keys.
*/
static class StrongEntry<K, V> extends AbstractReferenceEntry<K, V> {
final K key;
final int hash;
final ReferenceEntry<K, V> next;
// The code below is exactly the same for each entry type.
volatile ValueReference<K, V> valueReference = unset();
StrongEntry(K key, int hash, ReferenceEntry<K, V> next) {
this.key = key;
this.hash = hash;
this.next = next;
}
@Override
public K getKey() {
return this.key;
}
@Override
public ValueReference<K, V> getValueReference() {
return valueReference;
}
@Override
public void setValueReference(ValueReference<K, V> valueReference) {
this.valueReference = valueReference;
}
@Override
public int getHash() {
return hash;
}
@Override
public ReferenceEntry<K, V> getNext() {
return next;
}
}
static final class StrongAccessEntry<K, V> extends StrongEntry<K, V> {
volatile long accessTime = Long.MAX_VALUE;
// The code below is exactly the same for each access entry type.
// Guarded By Segment.this
ReferenceEntry<K, V> nextAccess = nullEntry();
// Guarded By Segment.this
ReferenceEntry<K, V> previousAccess = nullEntry();
StrongAccessEntry(K key, int hash, ReferenceEntry<K, V> next) {
super(key, hash, next);
}
@Override
public long getAccessTime() {
return accessTime;
}
@Override
public void setAccessTime(long time) {
this.accessTime = time;
}
@Override
public ReferenceEntry<K, V> getNextInAccessQueue() {
return nextAccess;
}
@Override
public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
this.nextAccess = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInAccessQueue() {
return previousAccess;
}
@Override
public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
this.previousAccess = previous;
}
}
static final class StrongWriteEntry<K, V> extends StrongEntry<K, V> {
volatile long writeTime = Long.MAX_VALUE;
// The code below is exactly the same for each write entry type.
// Guarded By Segment.this
ReferenceEntry<K, V> nextWrite = nullEntry();
// Guarded By Segment.this
ReferenceEntry<K, V> previousWrite = nullEntry();
StrongWriteEntry(K key, int hash, ReferenceEntry<K, V> next) {
super(key, hash, next);
}
@Override
public long getWriteTime() {
return writeTime;
}
@Override
public void setWriteTime(long time) {
this.writeTime = time;
}
@Override
public ReferenceEntry<K, V> getNextInWriteQueue() {
return nextWrite;
}
@Override
public void setNextInWriteQueue(ReferenceEntry<K, V> next) {
this.nextWrite = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInWriteQueue() {
return previousWrite;
}
@Override
public void setPreviousInWriteQueue(ReferenceEntry<K, V> previous) {
this.previousWrite = previous;
}
}
static final class StrongAccessWriteEntry<K, V> extends StrongEntry<K, V> {
volatile long accessTime = Long.MAX_VALUE;
// The code below is exactly the same for each access entry type.
// Guarded By Segment.this
ReferenceEntry<K, V> nextAccess = nullEntry();
// Guarded By Segment.this
ReferenceEntry<K, V> previousAccess = nullEntry();
volatile long writeTime = Long.MAX_VALUE;
// Guarded By Segment.this
ReferenceEntry<K, V> nextWrite = nullEntry();
// Guarded By Segment.this
ReferenceEntry<K, V> previousWrite = nullEntry();
StrongAccessWriteEntry(K key, int hash, ReferenceEntry<K, V> next) {
super(key, hash, next);
}
@Override
public long getAccessTime() {
return accessTime;
}
@Override
public void setAccessTime(long time) {
this.accessTime = time;
}
@Override
public ReferenceEntry<K, V> getNextInAccessQueue() {
return nextAccess;
}
// The code below is exactly the same for each write entry type.
@Override
public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
this.nextAccess = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInAccessQueue() {
return previousAccess;
}
@Override
public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
this.previousAccess = previous;
}
@Override
public long getWriteTime() {
return writeTime;
}
@Override
public void setWriteTime(long time) {
this.writeTime = time;
}
@Override
public ReferenceEntry<K, V> getNextInWriteQueue() {
return nextWrite;
}
@Override
public void setNextInWriteQueue(ReferenceEntry<K, V> next) {
this.nextWrite = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInWriteQueue() {
return previousWrite;
}
@Override
public void setPreviousInWriteQueue(ReferenceEntry<K, V> previous) {
this.previousWrite = previous;
}
}
Used for weakly-referenced keys.
/**
* Used for weakly-referenced keys.
*/
static class WeakEntry<K, V> extends WeakReference<K> implements ReferenceEntry<K, V> {
final int hash;
final ReferenceEntry<K, V> next;
/*
* It'd be nice to get these for free from AbstractReferenceEntry, but we're already extending
* WeakReference<K>.
*/
// null access
volatile ValueReference<K, V> valueReference = unset();
WeakEntry(ReferenceQueue<K> queue, K key, int hash, ReferenceEntry<K, V> next) {
super(key, queue);
this.hash = hash;
this.next = next;
}
@Override
public K getKey() {
return get();
}
@Override
public long getAccessTime() {
throw new UnsupportedOperationException();
}
@Override
public void setAccessTime(long time) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getNextInAccessQueue() {
throw new UnsupportedOperationException();
}
// null write
@Override
public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getPreviousInAccessQueue() {
throw new UnsupportedOperationException();
}
@Override
public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
throw new UnsupportedOperationException();
}
@Override
public long getWriteTime() {
throw new UnsupportedOperationException();
}
@Override
public void setWriteTime(long time) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getNextInWriteQueue() {
throw new UnsupportedOperationException();
}
// The code below is exactly the same for each entry type.
@Override
public void setNextInWriteQueue(ReferenceEntry<K, V> next) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry<K, V> getPreviousInWriteQueue() {
throw new UnsupportedOperationException();
}
@Override
public void setPreviousInWriteQueue(ReferenceEntry<K, V> previous) {
throw new UnsupportedOperationException();
}
@Override
public ValueReference<K, V> getValueReference() {
return valueReference;
}
@Override
public void setValueReference(ValueReference<K, V> valueReference) {
this.valueReference = valueReference;
}
@Override
public int getHash() {
return hash;
}
@Override
public ReferenceEntry<K, V> getNext() {
return next;
}
}
static final class WeakAccessEntry<K, V> extends WeakEntry<K, V> {
volatile long accessTime = Long.MAX_VALUE;
// The code below is exactly the same for each access entry type.
// Guarded By Segment.this
ReferenceEntry<K, V> nextAccess = nullEntry();
// Guarded By Segment.this
ReferenceEntry<K, V> previousAccess = nullEntry();
WeakAccessEntry(
ReferenceQueue<K> queue, K key, int hash, ReferenceEntry<K, V> next) {
super(queue, key, hash, next);
}
@Override
public long getAccessTime() {
return accessTime;
}
@Override
public void setAccessTime(long time) {
this.accessTime = time;
}
@Override
public ReferenceEntry<K, V> getNextInAccessQueue() {
return nextAccess;
}
@Override
public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
this.nextAccess = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInAccessQueue() {
return previousAccess;
}
@Override
public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
this.previousAccess = previous;
}
}
static final class WeakWriteEntry<K, V> extends WeakEntry<K, V> {
volatile long writeTime = Long.MAX_VALUE;
// The code below is exactly the same for each write entry type.
// Guarded By Segment.this
ReferenceEntry<K, V> nextWrite = nullEntry();
// Guarded By Segment.this
ReferenceEntry<K, V> previousWrite = nullEntry();
WeakWriteEntry(
ReferenceQueue<K> queue, K key, int hash, ReferenceEntry<K, V> next) {
super(queue, key, hash, next);
}
@Override
public long getWriteTime() {
return writeTime;
}
@Override
public void setWriteTime(long time) {
this.writeTime = time;
}
@Override
public ReferenceEntry<K, V> getNextInWriteQueue() {
return nextWrite;
}
@Override
public void setNextInWriteQueue(ReferenceEntry<K, V> next) {
this.nextWrite = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInWriteQueue() {
return previousWrite;
}
@Override
public void setPreviousInWriteQueue(ReferenceEntry<K, V> previous) {
this.previousWrite = previous;
}
}
static final class WeakAccessWriteEntry<K, V> extends WeakEntry<K, V> {
volatile long accessTime = Long.MAX_VALUE;
// The code below is exactly the same for each access entry type.
// Guarded By Segment.this
ReferenceEntry<K, V> nextAccess = nullEntry();
// Guarded By Segment.this
ReferenceEntry<K, V> previousAccess = nullEntry();
volatile long writeTime = Long.MAX_VALUE;
// Guarded By Segment.this
ReferenceEntry<K, V> nextWrite = nullEntry();
// Guarded By Segment.this
ReferenceEntry<K, V> previousWrite = nullEntry();
WeakAccessWriteEntry(
ReferenceQueue<K> queue, K key, int hash, ReferenceEntry<K, V> next) {
super(queue, key, hash, next);
}
@Override
public long getAccessTime() {
return accessTime;
}
@Override
public void setAccessTime(long time) {
this.accessTime = time;
}
@Override
public ReferenceEntry<K, V> getNextInAccessQueue() {
return nextAccess;
}
// The code below is exactly the same for each write entry type.
@Override
public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
this.nextAccess = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInAccessQueue() {
return previousAccess;
}
@Override
public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
this.previousAccess = previous;
}
@Override
public long getWriteTime() {
return writeTime;
}
@Override
public void setWriteTime(long time) {
this.writeTime = time;
}
@Override
public ReferenceEntry<K, V> getNextInWriteQueue() {
return nextWrite;
}
@Override
public void setNextInWriteQueue(ReferenceEntry<K, V> next) {
this.nextWrite = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInWriteQueue() {
return previousWrite;
}
@Override
public void setPreviousInWriteQueue(ReferenceEntry<K, V> previous) {
this.previousWrite = previous;
}
}
References a weak value.
/**
* References a weak value.
*/
static class WeakValueReference<K, V>
extends WeakReference<V> implements ValueReference<K, V> {
final ReferenceEntry<K, V> entry;
WeakValueReference(ReferenceQueue<V> queue, V referent, ReferenceEntry<K, V> entry) {
super(referent, queue);
this.entry = entry;
}
@Override
public int getWeight() {
return 1;
}
@Override
public ReferenceEntry<K, V> getEntry() {
return entry;
}
@Override
public void notifyNewValue(V newValue) {
}
@Override
public ValueReference<K, V> copyFor(
ReferenceQueue<V> queue, V value, ReferenceEntry<K, V> entry) {
return new WeakValueReference<K, V>(queue, value, entry);
}
@Override
public boolean isLoading() {
return false;
}
@Override
public boolean isActive() {
return true;
}
@Override
public V waitForValue() {
return get();
}
}
References a strong value.
/**
* References a strong value.
*/
static class StrongValueReference<K, V> implements ValueReference<K, V> {
final V referent;
StrongValueReference(V referent) {
this.referent = referent;
}
@Override
public V get() {
return referent;
}
@Override
public int getWeight() {
return 1;
}
@Override
public ReferenceEntry<K, V> getEntry() {
return null;
}
@Override
public ValueReference<K, V> copyFor(
ReferenceQueue<V> queue, V value, ReferenceEntry<K, V> entry) {
return this;
}
@Override
public boolean isLoading() {
return false;
}
@Override
public boolean isActive() {
return true;
}
@Override
public V waitForValue() {
return get();
}
@Override
public void notifyNewValue(V newValue) {
}
}
References a weak value.
/**
* References a weak value.
*/
static final class WeightedWeakValueReference<K, V> extends WeakValueReference<K, V> {
final int weight;
WeightedWeakValueReference(ReferenceQueue<V> queue, V referent, ReferenceEntry<K, V> entry,
int weight) {
super(queue, referent, entry);
this.weight = weight;
}
@Override
public int getWeight() {
return weight;
}
@Override
public ValueReference<K, V> copyFor(
ReferenceQueue<V> queue, V value, ReferenceEntry<K, V> entry) {
return new WeightedWeakValueReference<K, V>(queue, value, entry, weight);
}
}
References a strong value.
/**
* References a strong value.
*/
static final class WeightedStrongValueReference<K, V> extends StrongValueReference<K, V> {
final int weight;
WeightedStrongValueReference(V referent, int weight) {
super(referent);
this.weight = weight;
}
@Override
public int getWeight() {
return weight;
}
}
Segments are specialized versions of hash tables. This subclass inherits from ReentrantLock
opportunistically, just to simplify some locking and avoid separate construction.
/**
* Segments are specialized versions of hash tables. This subclass inherits from ReentrantLock
* opportunistically, just to simplify some locking and avoid separate construction.
*/
@SuppressWarnings("serial") // This class is never serialized.
static class Segment<K, V> extends ReentrantLock {
/*
* TODO(fry): Consider copying variables (like evictsBySize) from outer class into this class.
* It will require more memory but will reduce indirection.
*/
/*
* Segments maintain a table of entry lists that are ALWAYS kept in a consistent state, so can
* be read without locking. Next fields of nodes are immutable (final). All list additions are
* performed at the front of each bin. This makes it easy to check changes, and also fast to
* traverse. When nodes would otherwise be changed, new nodes are created to replace them. This
* works well for hash tables since the bin lists tend to be short. (The average length is less
* than two.)
*
* Read operations can thus proceed without locking, but rely on selected uses of volatiles to
* ensure that completed write operations performed by other threads are noticed. For most
* purposes, the "count" field, tracking the number of elements, serves as that volatile
* variable ensuring visibility. This is convenient because this field needs to be read in many
* read operations anyway:
*
* - All (unsynchronized) read operations must first read the "count" field, and should not
* look at table entries if it is 0.
*
* - All (synchronized) write operations should write to the "count" field after structurally
* changing any bin. The operations must not take any action that could even momentarily
* cause a concurrent read operation to see inconsistent data. This is made easier by the
* nature of the read operations in Map. For example, no operation can reveal that the table
* has grown but the threshold has not yet been updated, so there are no atomicity requirements
* for this with respect to reads.
*
* As a guide, all critical volatile reads and writes to the count field are marked in code
* comments.
*/
final LocalCache<K, V> map;
The maximum weight of this segment. UNSET_INT if there is no maximum.
/**
* The maximum weight of this segment. UNSET_INT if there is no maximum.
*/
final long maxSegmentWeight;
The key reference queue contains entries whose keys have been garbage collected, and which
need to be cleaned up internally.
/**
* The key reference queue contains entries whose keys have been garbage collected, and which
* need to be cleaned up internally.
*/
final ReferenceQueue<K> keyReferenceQueue;
The value reference queue contains value references whose values have been garbage collected,
and which need to be cleaned up internally.
/**
* The value reference queue contains value references whose values have been garbage collected,
* and which need to be cleaned up internally.
*/
final ReferenceQueue<V> valueReferenceQueue;
The recency queue is used to record which entries were accessed for updating the access
list's ordering. It is drained as a batch operation when either the DRAIN_THRESHOLD is
crossed or a write occurs on the segment.
/**
* The recency queue is used to record which entries were accessed for updating the access
* list's ordering. It is drained as a batch operation when either the DRAIN_THRESHOLD is
* crossed or a write occurs on the segment.
*/
final Queue<ReferenceEntry<K, V>> recencyQueue;
A counter of the number of reads since the last write, used to drain queues on a small
fraction of read operations.
/**
* A counter of the number of reads since the last write, used to drain queues on a small
* fraction of read operations.
*/
final AtomicInteger readCount = new AtomicInteger();
A queue of elements currently in the map, ordered by write time. Elements are added to the
tail of the queue on write.
/**
* A queue of elements currently in the map, ordered by write time. Elements are added to the
* tail of the queue on write.
*/
final Queue<ReferenceEntry<K, V>> writeQueue;
A queue of elements currently in the map, ordered by access time. Elements are added to the
tail of the queue on access (note that writes count as accesses).
/**
* A queue of elements currently in the map, ordered by access time. Elements are added to the
* tail of the queue on access (note that writes count as accesses).
*/
final Queue<ReferenceEntry<K, V>> accessQueue;
The number of live elements in this segment's region.
/**
* The number of live elements in this segment's region.
*/
volatile int count;
The weight of the live elements in this segment's region.
/**
* The weight of the live elements in this segment's region.
*/
long totalWeight;
Number of updates that alter the size of the table. This is used during bulk-read methods to
make sure they see a consistent snapshot: If modCounts change during a traversal of segments
loading size or checking containsValue, then we might have an inconsistent view of state
so (usually) must retry.
/**
* Number of updates that alter the size of the table. This is used during bulk-read methods to
* make sure they see a consistent snapshot: If modCounts change during a traversal of segments
* loading size or checking containsValue, then we might have an inconsistent view of state
* so (usually) must retry.
*/
int modCount;
The table is expanded when its size exceeds this threshold. (The value of this field is always (int) (capacity * 0.75)
.) /**
* The table is expanded when its size exceeds this threshold. (The value of this field is
* always {@code (int) (capacity * 0.75)}.)
*/
int threshold;
The per-segment table.
/**
* The per-segment table.
*/
volatile AtomicReferenceArray<ReferenceEntry<K, V>> table;
Segment(LocalCache<K, V> map, int initialCapacity, long maxSegmentWeight) {
this.map = map;
this.maxSegmentWeight = maxSegmentWeight;
initTable(newEntryArray(initialCapacity));
keyReferenceQueue = map.usesKeyReferences()
? new ReferenceQueue<K>() : null;
valueReferenceQueue = map.usesValueReferences()
? new ReferenceQueue<V>() : null;
recencyQueue = map.usesAccessQueue()
? new ConcurrentLinkedQueue<ReferenceEntry<K, V>>()
: LocalCache.discardingQueue();
writeQueue = map.usesWriteQueue()
? new WriteQueue<K, V>()
: LocalCache.discardingQueue();
accessQueue = map.usesAccessQueue()
? new AccessQueue<K, V>()
: LocalCache.discardingQueue();
}
AtomicReferenceArray<ReferenceEntry<K, V>> newEntryArray(int size) {
return new AtomicReferenceArray<ReferenceEntry<K, V>>(size);
}
void initTable(AtomicReferenceArray<ReferenceEntry<K, V>> newTable) {
this.threshold = newTable.length() * 3 / 4; // 0.75
if (this.threshold == maxSegmentWeight) {
// prevent spurious expansion before eviction
this.threshold++;
}
this.table = newTable;
}
ReferenceEntry<K, V> newEntry(K key, int hash, ReferenceEntry<K, V> next) {
return map.entryFactory.newEntry(this, checkNotNull(key), hash, next);
}
Copies original
into a new entry chained to newNext
. Returns the new entry, or null
if original
was already garbage collected. /**
* Copies {@code original} into a new entry chained to {@code newNext}. Returns the new entry,
* or {@code null} if {@code original} was already garbage collected.
*/
ReferenceEntry<K, V> copyEntry(ReferenceEntry<K, V> original, ReferenceEntry<K, V> newNext) {
if (original.getKey() == null) {
// key collected
return null;
}
ValueReference<K, V> valueReference = original.getValueReference();
V value = valueReference.get();
if ((value == null) && valueReference.isActive()) {
// value collected
return null;
}
ReferenceEntry<K, V> newEntry = map.entryFactory.copyEntry(this, original, newNext);
newEntry.setValueReference(valueReference.copyFor(this.valueReferenceQueue, value, newEntry));
return newEntry;
}
Sets a new value of an entry. Adds newly created entries at the end of the access queue.
/**
* Sets a new value of an entry. Adds newly created entries at the end of the access queue.
*/
void setValue(ReferenceEntry<K, V> entry, K key, V value, long now) {
ValueReference<K, V> previous = entry.getValueReference();
int weight = 1;
checkState(weight >= 0, "Weights must be non-negative");
ValueReference<K, V> valueReference =
map.valueStrength.referenceValue(this, entry, value, weight);
entry.setValueReference(valueReference);
recordWrite(entry, weight, now);
previous.notifyNewValue(value);
}
// loading
V get(K key, int hash, CacheLoader<? super K, V> loader) throws ExecutionException {
checkNotNull(key);
checkNotNull(loader);
try {
if (count != 0) { // read-volatile
// don't call getLiveEntry, which would ignore loading values
ReferenceEntry<K, V> e = getEntry(key, hash);
if (e != null) {
long now = map.ticker.read();
V value = getLiveValue(e, now);
if (value != null) {
recordRead(e, now);
return scheduleRefresh(e, key, hash, value, now, loader);
}
ValueReference<K, V> valueReference = e.getValueReference();
if (valueReference.isLoading()) {
return waitForLoadingValue(e, key, valueReference);
}
}
}
// at this point e is either null or expired;
return lockedGetOrLoad(key, hash, loader);
} catch (ExecutionException ee) {
Throwable cause = ee.getCause();
if (cause instanceof Error) {
throw new ExecutionError((Error) cause);
} else if (cause instanceof RuntimeException) {
throw new UncheckedExecutionException(cause);
}
throw ee;
} finally {
postReadCleanup();
}
}
V lockedGetOrLoad(K key, int hash, CacheLoader<? super K, V> loader)
throws ExecutionException {
ReferenceEntry<K, V> e;
ValueReference<K, V> valueReference = null;
LoadingValueReference<K, V> loadingValueReference = null;
boolean createNewEntry = true;
lock();
try {
// re-read ticker once inside the lock
long now = map.ticker.read();
preWriteCleanup(now);
int newCount = this.count - 1;
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
valueReference = e.getValueReference();
if (valueReference.isLoading()) {
createNewEntry = false;
} else {
V value = valueReference.get();
if (value == null) {
enqueueNotification(entryKey, hash, valueReference, RemovalCause.COLLECTED);
} else if (map.isExpired(e, now)) {
// This is a duplicate check, as preWriteCleanup already purged expired
// entries, but let's accomodate an incorrect expiration queue.
enqueueNotification(entryKey, hash, valueReference, RemovalCause.EXPIRED);
} else {
recordLockedRead(e, now);
// we were concurrent with loading; don't consider refresh
return value;
}
// immediately reuse invalid entries
writeQueue.remove(e);
accessQueue.remove(e);
this.count = newCount; // write-volatile
}
break;
}
}
if (createNewEntry) {
loadingValueReference = new LoadingValueReference<K, V>();
if (e == null) {
e = newEntry(key, hash, first);
e.setValueReference(loadingValueReference);
table.set(index, e);
} else {
e.setValueReference(loadingValueReference);
}
}
} finally {
unlock();
postWriteCleanup();
}
if (createNewEntry) {
// Synchronizes on the entry to allow failing fast when a recursive load is
// detected. This may be circumvented when an entry is copied, but will fail fast most
// of the time.
synchronized (e) {
return loadSync(key, hash, loadingValueReference, loader);
}
} else {
// The entry already exists. Wait for loading.
return waitForLoadingValue(e, key, valueReference);
}
}
V waitForLoadingValue(ReferenceEntry<K, V> e, K key, ValueReference<K, V> valueReference)
throws ExecutionException {
if (!valueReference.isLoading()) {
throw new AssertionError();
}
checkState(!Thread.holdsLock(e), "Recursive load of: %s", key);
// don't consider expiration as we're concurrent with loading
V value = valueReference.waitForValue();
if (value == null) {
throw new CacheLoader.InvalidCacheLoadException("CacheLoader returned null for key " + key + ".");
}
// re-read ticker now that loading has completed
long now = map.ticker.read();
recordRead(e, now);
return value;
}
// at most one of loadSync/loadAsync may be called for any given LoadingValueReference
V loadSync(K key, int hash, LoadingValueReference<K, V> loadingValueReference,
CacheLoader<? super K, V> loader) throws ExecutionException {
ListenableFuture<V> loadingFuture = loadingValueReference.loadFuture(key, loader);
return getAndRecordStats(key, hash, loadingValueReference, loadingFuture);
}
ListenableFuture<V> loadAsync(final K key, final int hash,
final LoadingValueReference<K, V> loadingValueReference, CacheLoader<? super K, V> loader) {
final ListenableFuture<V> loadingFuture = loadingValueReference.loadFuture(key, loader);
loadingFuture.addListener(
new Runnable() {
@Override
public void run() {
try {
V newValue = getAndRecordStats(key, hash, loadingValueReference, loadingFuture);
} catch (Throwable t) {
logger.log(Level.WARNING, "Exception thrown during refresh", t);
loadingValueReference.setException(t);
}
}
}, directExecutor());
return loadingFuture;
}
Waits uninterruptibly for newValue
to be loaded, and then records loading stats. /**
* Waits uninterruptibly for {@code newValue} to be loaded, and then records loading stats.
*/
V getAndRecordStats(K key, int hash, LoadingValueReference<K, V> loadingValueReference,
ListenableFuture<V> newValue) throws ExecutionException {
V value = null;
try {
value = getUninterruptibly(newValue);
if (value == null) {
throw new CacheLoader.InvalidCacheLoadException("CacheLoader returned null for key " + key + ".");
}
storeLoadedValue(key, hash, loadingValueReference, value);
return value;
} finally {
if (value == null) {
removeLoadingValue(key, hash, loadingValueReference);
}
}
}
V scheduleRefresh(ReferenceEntry<K, V> entry, K key, int hash, V oldValue, long now,
CacheLoader<? super K, V> loader) {
if (map.refreshes() && (now - entry.getWriteTime() > map.refreshNanos)
&& !entry.getValueReference().isLoading()) {
V newValue = refresh(key, hash, loader, true);
if (newValue != null) {
return newValue;
}
}
return oldValue;
}
Refreshes the value associated with key
, unless another thread is already doing so. Returns the newly refreshed value associated with key
if it was refreshed inline, or null
if another thread is performing the refresh or if an error occurs during refresh. /**
* Refreshes the value associated with {@code key}, unless another thread is already doing so.
* Returns the newly refreshed value associated with {@code key} if it was refreshed inline, or
* {@code null} if another thread is performing the refresh or if an error occurs during
* refresh.
*/
V refresh(K key, int hash, CacheLoader<? super K, V> loader, boolean checkTime) {
final LoadingValueReference<K, V> loadingValueReference =
insertLoadingValueReference(key, hash, checkTime);
if (loadingValueReference == null) {
return null;
}
ListenableFuture<V> result = loadAsync(key, hash, loadingValueReference, loader);
if (result.isDone()) {
try {
return Uninterruptibles.getUninterruptibly(result);
} catch (Throwable t) {
// don't let refresh exceptions propagate; error was already logged
}
}
return null;
}
Returns a newly inserted LoadingValueReference
, or null if the live value reference is already loading. /**
* Returns a newly inserted {@code LoadingValueReference}, or null if the live value reference
* is already loading.
*/
LoadingValueReference<K, V> insertLoadingValueReference(final K key, final int hash,
boolean checkTime) {
ReferenceEntry<K, V> e = null;
lock();
try {
long now = map.ticker.read();
preWriteCleanup(now);
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
// Look for an existing entry.
for (e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
// We found an existing entry.
ValueReference<K, V> valueReference = e.getValueReference();
if (valueReference.isLoading()
|| (checkTime && (now - e.getWriteTime() < map.refreshNanos))) {
// refresh is a no-op if loading is pending
// if checkTime, we want to check *after* acquiring the lock if refresh still needs
// to be scheduled
return null;
}
// continue returning old value while loading
++modCount;
LoadingValueReference<K, V> loadingValueReference =
new LoadingValueReference<K, V>(valueReference);
e.setValueReference(loadingValueReference);
return loadingValueReference;
}
}
++modCount;
LoadingValueReference<K, V> loadingValueReference = new LoadingValueReference<K, V>();
e = newEntry(key, hash, first);
e.setValueReference(loadingValueReference);
table.set(index, e);
return loadingValueReference;
} finally {
unlock();
postWriteCleanup();
}
}
// reference queues, for garbage collection cleanup
Cleanup collected entries when the lock is available.
/**
* Cleanup collected entries when the lock is available.
*/
void tryDrainReferenceQueues() {
if (tryLock()) {
try {
drainReferenceQueues();
} finally {
unlock();
}
}
}
Drain the key and value reference queues, cleaning up internal entries containing garbage
collected keys or values.
/**
* Drain the key and value reference queues, cleaning up internal entries containing garbage
* collected keys or values.
*/
void drainReferenceQueues() {
if (map.usesKeyReferences()) {
drainKeyReferenceQueue();
}
if (map.usesValueReferences()) {
drainValueReferenceQueue();
}
}
void drainKeyReferenceQueue() {
Reference<? extends K> ref;
int i = 0;
while ((ref = keyReferenceQueue.poll()) != null) {
@SuppressWarnings("unchecked")
ReferenceEntry<K, V> entry = (ReferenceEntry<K, V>) ref;
map.reclaimKey(entry);
if (++i == DRAIN_MAX) {
break;
}
}
}
void drainValueReferenceQueue() {
Reference<? extends V> ref;
int i = 0;
while ((ref = valueReferenceQueue.poll()) != null) {
@SuppressWarnings("unchecked")
ValueReference<K, V> valueReference = (ValueReference<K, V>) ref;
map.reclaimValue(valueReference);
if (++i == DRAIN_MAX) {
break;
}
}
}
Clears all entries from the key and value reference queues.
/**
* Clears all entries from the key and value reference queues.
*/
void clearReferenceQueues() {
if (map.usesKeyReferences()) {
clearKeyReferenceQueue();
}
if (map.usesValueReferences()) {
clearValueReferenceQueue();
}
}
void clearKeyReferenceQueue() {
while (keyReferenceQueue.poll() != null) {
}
}
void clearValueReferenceQueue() {
while (valueReferenceQueue.poll() != null) {
}
}
// recency queue, shared by expiration and eviction
Records the relative order in which this read was performed by adding entry
to the recency queue. At write-time, or when the queue is full past the threshold, the queue will be drained and the entries therein processed.
Note: locked reads should use recordLockedRead
.
/**
* Records the relative order in which this read was performed by adding {@code entry} to the
* recency queue. At write-time, or when the queue is full past the threshold, the queue will
* be drained and the entries therein processed.
* <p>
* <p>Note: locked reads should use {@link #recordLockedRead}.
*/
void recordRead(ReferenceEntry<K, V> entry, long now) {
if (map.recordsAccess()) {
entry.setAccessTime(now);
}
recencyQueue.add(entry);
}
Updates the eviction metadata that entry
was just read. This currently amounts to adding entry
to relevant eviction lists.
Note: this method should only be called under lock, as it directly manipulates the eviction queues. Unlocked reads should use recordRead
.
/**
* Updates the eviction metadata that {@code entry} was just read. This currently amounts to
* adding {@code entry} to relevant eviction lists.
* <p>
* <p>Note: this method should only be called under lock, as it directly manipulates the
* eviction queues. Unlocked reads should use {@link #recordRead}.
*/
void recordLockedRead(ReferenceEntry<K, V> entry, long now) {
if (map.recordsAccess()) {
entry.setAccessTime(now);
}
accessQueue.add(entry);
}
Updates eviction metadata that entry
was just written. This currently amounts to adding entry
to relevant eviction lists. /**
* Updates eviction metadata that {@code entry} was just written. This currently amounts to
* adding {@code entry} to relevant eviction lists.
*/
void recordWrite(ReferenceEntry<K, V> entry, int weight, long now) {
// we are already under lock, so drain the recency queue immediately
drainRecencyQueue();
totalWeight += weight;
if (map.recordsAccess()) {
entry.setAccessTime(now);
}
if (map.recordsWrite()) {
entry.setWriteTime(now);
}
accessQueue.add(entry);
writeQueue.add(entry);
}
Drains the recency queue, updating eviction metadata that the entries therein were read in
the specified relative order. This currently amounts to adding them to relevant eviction
lists (accounting for the fact that they could have been removed from the map since being
added to the recency queue).
/**
* Drains the recency queue, updating eviction metadata that the entries therein were read in
* the specified relative order. This currently amounts to adding them to relevant eviction
* lists (accounting for the fact that they could have been removed from the map since being
* added to the recency queue).
*/
void drainRecencyQueue() {
ReferenceEntry<K, V> e;
while ((e = recencyQueue.poll()) != null) {
// An entry may be in the recency queue despite it being removed from
// the map . This can occur when the entry was concurrently read while a
// writer is removing it from the segment or after a clear has removed
// all of the segment's entries.
if (accessQueue.contains(e)) {
accessQueue.add(e);
}
}
}
// expiration
Cleanup expired entries when the lock is available.
/**
* Cleanup expired entries when the lock is available.
*/
void tryExpireEntries(long now) {
if (tryLock()) {
try {
expireEntries(now);
} finally {
unlock();
// don't call postWriteCleanup as we're in a read
}
}
}
void expireEntries(long now) {
drainRecencyQueue();
ReferenceEntry<K, V> e;
while ((e = writeQueue.peek()) != null && map.isExpired(e, now)) {
if (!removeEntry(e, e.getHash(), RemovalCause.EXPIRED)) {
throw new AssertionError();
}
}
while ((e = accessQueue.peek()) != null && map.isExpired(e, now)) {
if (!removeEntry(e, e.getHash(), RemovalCause.EXPIRED)) {
throw new AssertionError();
}
}
}
// eviction
void enqueueNotification(ReferenceEntry<K, V> entry, RemovalCause cause) {
enqueueNotification(entry.getKey(), entry.getHash(), entry.getValueReference(), cause);
}
void enqueueNotification(K key, int hash, ValueReference<K, V> valueReference,
RemovalCause cause) {
totalWeight -= valueReference.getWeight();
if (map.removalNotificationQueue != DISCARDING_QUEUE) {
V value = valueReference.get();
RemovalNotification<K, V> notification = new RemovalNotification<K, V>(key, value, cause);
map.removalNotificationQueue.offer(notification);
}
}
Performs eviction if the segment is full. This should only be called prior to adding a new entry and increasing count
. /**
* Performs eviction if the segment is full. This should only be called prior to adding a new
* entry and increasing {@code count}.
*/
void evictEntries() {
if (!map.evictsBySize()) {
return;
}
drainRecencyQueue();
while (totalWeight > maxSegmentWeight) {
ReferenceEntry<K, V> e = getNextEvictable();
if (!removeEntry(e, e.getHash(), RemovalCause.SIZE)) {
throw new AssertionError();
}
}
}
// TODO(fry): instead implement this with an eviction head
ReferenceEntry<K, V> getNextEvictable() {
for (ReferenceEntry<K, V> e : accessQueue) {
int weight = e.getValueReference().getWeight();
if (weight > 0) {
return e;
}
}
throw new AssertionError();
}
Returns first entry of bin for given hash.
/**
* Returns first entry of bin for given hash.
*/
ReferenceEntry<K, V> getFirst(int hash) {
// read this volatile field only once
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
return table.get(hash & (table.length() - 1));
}
// Specialized implementations of map methods
ReferenceEntry<K, V> getEntry(Object key, int hash) {
for (ReferenceEntry<K, V> e = getFirst(hash); e != null; e = e.getNext()) {
if (e.getHash() != hash) {
continue;
}
K entryKey = e.getKey();
if (entryKey == null) {
tryDrainReferenceQueues();
continue;
}
if (map.keyEquivalence.equivalent(key, entryKey)) {
return e;
}
}
return null;
}
ReferenceEntry<K, V> getLiveEntry(Object key, int hash, long now) {
ReferenceEntry<K, V> e = getEntry(key, hash);
if (e == null) {
return null;
} else if (map.isExpired(e, now)) {
tryExpireEntries(now);
return null;
}
return e;
}
Gets the value from an entry. Returns null if the entry is invalid, partially-collected,
loading, or expired.
/**
* Gets the value from an entry. Returns null if the entry is invalid, partially-collected,
* loading, or expired.
*/
V getLiveValue(ReferenceEntry<K, V> entry, long now) {
if (entry.getKey() == null) {
tryDrainReferenceQueues();
return null;
}
V value = entry.getValueReference().get();
if (value == null) {
tryDrainReferenceQueues();
return null;
}
if (map.isExpired(entry, now)) {
tryExpireEntries(now);
return null;
}
return value;
}
V get(Object key, int hash) {
try {
if (count != 0) { // read-volatile
long now = map.ticker.read();
ReferenceEntry<K, V> e = getLiveEntry(key, hash, now);
if (e == null) {
return null;
}
V value = e.getValueReference().get();
if (value != null) {
recordRead(e, now);
return scheduleRefresh(e, e.getKey(), hash, value, now, map.defaultLoader);
}
tryDrainReferenceQueues();
}
return null;
} finally {
postReadCleanup();
}
}
boolean containsKey(Object key, int hash) {
try {
if (count != 0) { // read-volatile
long now = map.ticker.read();
ReferenceEntry<K, V> e = getLiveEntry(key, hash, now);
if (e == null) {
return false;
}
return e.getValueReference().get() != null;
}
return false;
} finally {
postReadCleanup();
}
}
V put(K key, int hash, V value, boolean onlyIfAbsent) {
lock();
try {
long now = map.ticker.read();
preWriteCleanup(now);
int newCount = this.count + 1;
if (newCount > this.threshold) { // ensure capacity
expand();
newCount = this.count + 1;
}
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
// Look for an existing entry.
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
// We found an existing entry.
ValueReference<K, V> valueReference = e.getValueReference();
V entryValue = valueReference.get();
if (entryValue == null) {
++modCount;
if (valueReference.isActive()) {
enqueueNotification(key, hash, valueReference, RemovalCause.COLLECTED);
setValue(e, key, value, now);
newCount = this.count; // count remains unchanged
} else {
setValue(e, key, value, now);
newCount = this.count + 1;
}
this.count = newCount; // write-volatile
evictEntries();
return null;
} else if (onlyIfAbsent) {
// Mimic
// "if (!map.containsKey(key)) ...
// else return map.get(key);
recordLockedRead(e, now);
return entryValue;
} else {
// clobber existing entry, count remains unchanged
++modCount;
enqueueNotification(key, hash, valueReference, RemovalCause.REPLACED);
setValue(e, key, value, now);
evictEntries();
return entryValue;
}
}
}
// Create a new entry.
++modCount;
ReferenceEntry<K, V> newEntry = newEntry(key, hash, first);
setValue(newEntry, key, value, now);
table.set(index, newEntry);
newCount = this.count + 1;
this.count = newCount; // write-volatile
evictEntries();
return null;
} finally {
unlock();
postWriteCleanup();
}
}
Expands the table if possible.
/**
* Expands the table if possible.
*/
void expand() {
AtomicReferenceArray<ReferenceEntry<K, V>> oldTable = table;
int oldCapacity = oldTable.length();
if (oldCapacity >= MAXIMUM_CAPACITY) {
return;
}
/*
* Reclassify nodes in each list to new Map. Because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move with a power of two offset.
* We eliminate unnecessary node creation by catching cases where old nodes can be reused
* because their next fields won't change. Statistically, at the default threshold, only
* about one-sixth of them need cloning when a table doubles. The nodes they replace will be
* garbage collectable as soon as they are no longer referenced by any reader thread that may
* be in the midst of traversing table right now.
*/
int newCount = count;
AtomicReferenceArray<ReferenceEntry<K, V>> newTable = newEntryArray(oldCapacity << 1);
threshold = newTable.length() * 3 / 4;
int newMask = newTable.length() - 1;
for (int oldIndex = 0; oldIndex < oldCapacity; ++oldIndex) {
// We need to guarantee that any existing reads of old Map can
// proceed. So we cannot yet null out each bin.
ReferenceEntry<K, V> head = oldTable.get(oldIndex);
if (head != null) {
ReferenceEntry<K, V> next = head.getNext();
int headIndex = head.getHash() & newMask;
// Single node on list
if (next == null) {
newTable.set(headIndex, head);
} else {
// Reuse the consecutive sequence of nodes with the same target
// index from the end of the list. tail points to the first
// entry in the reusable list.
ReferenceEntry<K, V> tail = head;
int tailIndex = headIndex;
for (ReferenceEntry<K, V> e = next; e != null; e = e.getNext()) {
int newIndex = e.getHash() & newMask;
if (newIndex != tailIndex) {
// The index changed. We'll need to copy the previous entry.
tailIndex = newIndex;
tail = e;
}
}
newTable.set(tailIndex, tail);
// Clone nodes leading up to the tail.
for (ReferenceEntry<K, V> e = head; e != tail; e = e.getNext()) {
int newIndex = e.getHash() & newMask;
ReferenceEntry<K, V> newNext = newTable.get(newIndex);
ReferenceEntry<K, V> newFirst = copyEntry(e, newNext);
if (newFirst != null) {
newTable.set(newIndex, newFirst);
} else {
removeCollectedEntry(e);
newCount--;
}
}
}
}
}
table = newTable;
this.count = newCount;
}
boolean replace(K key, int hash, V oldValue, V newValue) {
lock();
try {
long now = map.ticker.read();
preWriteCleanup(now);
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
ValueReference<K, V> valueReference = e.getValueReference();
V entryValue = valueReference.get();
if (entryValue == null) {
if (valueReference.isActive()) {
// If the value disappeared, this entry is partially collected.
int newCount = this.count - 1;
++modCount;
ReferenceEntry<K, V> newFirst = removeValueFromChain(
first, e, entryKey, hash, valueReference, RemovalCause.COLLECTED);
newCount = this.count - 1;
table.set(index, newFirst);
this.count = newCount; // write-volatile
}
return false;
}
if (map.valueEquivalence.equivalent(oldValue, entryValue)) {
++modCount;
enqueueNotification(key, hash, valueReference, RemovalCause.REPLACED);
setValue(e, key, newValue, now);
evictEntries();
return true;
} else {
// Mimic
// "if (map.containsKey(key) && map.get(key).equals(oldValue))..."
recordLockedRead(e, now);
return false;
}
}
}
return false;
} finally {
unlock();
postWriteCleanup();
}
}
V replace(K key, int hash, V newValue) {
lock();
try {
long now = map.ticker.read();
preWriteCleanup(now);
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
ValueReference<K, V> valueReference = e.getValueReference();
V entryValue = valueReference.get();
if (entryValue == null) {
if (valueReference.isActive()) {
// If the value disappeared, this entry is partially collected.
int newCount = this.count - 1;
++modCount;
ReferenceEntry<K, V> newFirst = removeValueFromChain(
first, e, entryKey, hash, valueReference, RemovalCause.COLLECTED);
newCount = this.count - 1;
table.set(index, newFirst);
this.count = newCount; // write-volatile
}
return null;
}
++modCount;
enqueueNotification(key, hash, valueReference, RemovalCause.REPLACED);
setValue(e, key, newValue, now);
evictEntries();
return entryValue;
}
}
return null;
} finally {
unlock();
postWriteCleanup();
}
}
V remove(Object key, int hash) {
lock();
try {
long now = map.ticker.read();
preWriteCleanup(now);
int newCount = this.count - 1;
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
ValueReference<K, V> valueReference = e.getValueReference();
V entryValue = valueReference.get();
RemovalCause cause;
if (entryValue != null) {
cause = RemovalCause.EXPLICIT;
} else if (valueReference.isActive()) {
cause = RemovalCause.COLLECTED;
} else {
// currently loading
return null;
}
++modCount;
ReferenceEntry<K, V> newFirst = removeValueFromChain(
first, e, entryKey, hash, valueReference, cause);
newCount = this.count - 1;
table.set(index, newFirst);
this.count = newCount; // write-volatile
return entryValue;
}
}
return null;
} finally {
unlock();
postWriteCleanup();
}
}
boolean storeLoadedValue(K key, int hash, LoadingValueReference<K, V> oldValueReference,
V newValue) {
lock();
try {
long now = map.ticker.read();
preWriteCleanup(now);
int newCount = this.count + 1;
if (newCount > this.threshold) { // ensure capacity
expand();
newCount = this.count + 1;
}
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
ValueReference<K, V> valueReference = e.getValueReference();
V entryValue = valueReference.get();
// replace the old LoadingValueReference if it's live, otherwise
// perform a putIfAbsent
if (oldValueReference == valueReference
|| (entryValue == null && valueReference != UNSET)) {
++modCount;
if (oldValueReference.isActive()) {
RemovalCause cause =
(entryValue == null) ? RemovalCause.COLLECTED : RemovalCause.REPLACED;
enqueueNotification(key, hash, oldValueReference, cause);
newCount--;
}
setValue(e, key, newValue, now);
this.count = newCount; // write-volatile
evictEntries();
return true;
}
// the loaded value was already clobbered
valueReference = new WeightedStrongValueReference<K, V>(newValue, 0);
enqueueNotification(key, hash, valueReference, RemovalCause.REPLACED);
return false;
}
}
++modCount;
ReferenceEntry<K, V> newEntry = newEntry(key, hash, first);
setValue(newEntry, key, newValue, now);
table.set(index, newEntry);
this.count = newCount; // write-volatile
evictEntries();
return true;
} finally {
unlock();
postWriteCleanup();
}
}
boolean remove(Object key, int hash, Object value) {
lock();
try {
long now = map.ticker.read();
preWriteCleanup(now);
int newCount = this.count - 1;
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
ValueReference<K, V> valueReference = e.getValueReference();
V entryValue = valueReference.get();
RemovalCause cause;
if (map.valueEquivalence.equivalent(value, entryValue)) {
cause = RemovalCause.EXPLICIT;
} else if (entryValue == null && valueReference.isActive()) {
cause = RemovalCause.COLLECTED;
} else {
// currently loading
return false;
}
++modCount;
ReferenceEntry<K, V> newFirst = removeValueFromChain(
first, e, entryKey, hash, valueReference, cause);
newCount = this.count - 1;
table.set(index, newFirst);
this.count = newCount; // write-volatile
return (cause == RemovalCause.EXPLICIT);
}
}
return false;
} finally {
unlock();
postWriteCleanup();
}
}
void clear() {
if (count != 0) { // read-volatile
lock();
try {
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
for (int i = 0; i < table.length(); ++i) {
for (ReferenceEntry<K, V> e = table.get(i); e != null; e = e.getNext()) {
// Loading references aren't actually in the map yet.
if (e.getValueReference().isActive()) {
enqueueNotification(e, RemovalCause.EXPLICIT);
}
}
}
for (int i = 0; i < table.length(); ++i) {
table.set(i, null);
}
clearReferenceQueues();
writeQueue.clear();
accessQueue.clear();
readCount.set(0);
++modCount;
count = 0; // write-volatile
} finally {
unlock();
postWriteCleanup();
}
}
}
ReferenceEntry<K, V> removeValueFromChain(ReferenceEntry<K, V> first,
ReferenceEntry<K, V> entry, K key, int hash,
ValueReference<K, V> valueReference,
RemovalCause cause) {
enqueueNotification(key, hash, valueReference, cause);
writeQueue.remove(entry);
accessQueue.remove(entry);
if (valueReference.isLoading()) {
valueReference.notifyNewValue(null);
return first;
} else {
return removeEntryFromChain(first, entry);
}
}
ReferenceEntry<K, V> removeEntryFromChain(ReferenceEntry<K, V> first,
ReferenceEntry<K, V> entry) {
int newCount = count;
ReferenceEntry<K, V> newFirst = entry.getNext();
for (ReferenceEntry<K, V> e = first; e != entry; e = e.getNext()) {
ReferenceEntry<K, V> next = copyEntry(e, newFirst);
if (next != null) {
newFirst = next;
} else {
removeCollectedEntry(e);
newCount--;
}
}
this.count = newCount;
return newFirst;
}
void removeCollectedEntry(ReferenceEntry<K, V> entry) {
enqueueNotification(entry, RemovalCause.COLLECTED);
writeQueue.remove(entry);
accessQueue.remove(entry);
}
Removes an entry whose key has been garbage collected.
/**
* Removes an entry whose key has been garbage collected.
*/
boolean reclaimKey(ReferenceEntry<K, V> entry, int hash) {
lock();
try {
int newCount = count - 1;
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
if (e == entry) {
++modCount;
ReferenceEntry<K, V> newFirst = removeValueFromChain(
first, e, e.getKey(), hash, e.getValueReference(), RemovalCause.COLLECTED);
newCount = this.count - 1;
table.set(index, newFirst);
this.count = newCount; // write-volatile
return true;
}
}
return false;
} finally {
unlock();
postWriteCleanup();
}
}
Removes an entry whose value has been garbage collected.
/**
* Removes an entry whose value has been garbage collected.
*/
boolean reclaimValue(K key, int hash, ValueReference<K, V> valueReference) {
lock();
try {
int newCount = this.count - 1;
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
ValueReference<K, V> v = e.getValueReference();
if (v == valueReference) {
++modCount;
ReferenceEntry<K, V> newFirst = removeValueFromChain(
first, e, entryKey, hash, valueReference, RemovalCause.COLLECTED);
newCount = this.count - 1;
table.set(index, newFirst);
this.count = newCount; // write-volatile
return true;
}
return false;
}
}
return false;
} finally {
unlock();
if (!isHeldByCurrentThread()) { // don't cleanup inside of put
postWriteCleanup();
}
}
}
boolean removeLoadingValue(K key, int hash, LoadingValueReference<K, V> valueReference) {
lock();
try {
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
K entryKey = e.getKey();
if (e.getHash() == hash && entryKey != null
&& map.keyEquivalence.equivalent(key, entryKey)) {
ValueReference<K, V> v = e.getValueReference();
if (v == valueReference) {
if (valueReference.isActive()) {
e.setValueReference(valueReference.getOldValue());
} else {
ReferenceEntry<K, V> newFirst = removeEntryFromChain(first, e);
table.set(index, newFirst);
}
return true;
}
return false;
}
}
return false;
} finally {
unlock();
postWriteCleanup();
}
}
boolean removeEntry(ReferenceEntry<K, V> entry, int hash, RemovalCause cause) {
int newCount = this.count - 1;
AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
int index = hash & (table.length() - 1);
ReferenceEntry<K, V> first = table.get(index);
for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
if (e == entry) {
++modCount;
ReferenceEntry<K, V> newFirst = removeValueFromChain(
first, e, e.getKey(), hash, e.getValueReference(), cause);
newCount = this.count - 1;
table.set(index, newFirst);
this.count = newCount; // write-volatile
return true;
}
}
return false;
}
Performs routine cleanup following a read. Normally cleanup happens during writes. If cleanup
is not observed after a sufficient number of reads, try cleaning up from the read thread.
/**
* Performs routine cleanup following a read. Normally cleanup happens during writes. If cleanup
* is not observed after a sufficient number of reads, try cleaning up from the read thread.
*/
void postReadCleanup() {
if ((readCount.incrementAndGet() & DRAIN_THRESHOLD) == 0) {
cleanUp();
}
}
Performs routine cleanup prior to executing a write. This should be called every time a
write thread acquires the segment lock, immediately after acquiring the lock.
Post-condition: expireEntries has been run.
/**
* Performs routine cleanup prior to executing a write. This should be called every time a
* write thread acquires the segment lock, immediately after acquiring the lock.
* <p>
* <p>Post-condition: expireEntries has been run.
*/
void preWriteCleanup(long now) {
runLockedCleanup(now);
}
Performs routine cleanup following a write.
/**
* Performs routine cleanup following a write.
*/
void postWriteCleanup() {
}
void cleanUp() {
long now = map.ticker.read();
runLockedCleanup(now);
}
void runLockedCleanup(long now) {
if (tryLock()) {
try {
drainReferenceQueues();
expireEntries(now); // calls drainRecencyQueue
readCount.set(0);
} finally {
unlock();
}
}
}
}
static class LoadingValueReference<K, V> implements ValueReference<K, V> {
// TODO(fry): rename get, then extend AbstractFuture instead of containing SettableFuture
final SettableFuture<V> futureValue = SettableFuture.create();
final Stopwatch stopwatch = Stopwatch.createUnstarted();
volatile ValueReference<K, V> oldValue;
public LoadingValueReference() {
this(LocalCache.unset());
}
public LoadingValueReference(ValueReference<K, V> oldValue) {
this.oldValue = oldValue;
}
@Override
public boolean isLoading() {
return true;
}
@Override
public boolean isActive() {
return oldValue.isActive();
}
@Override
public int getWeight() {
return oldValue.getWeight();
}
public boolean set(V newValue) {
return futureValue.set(newValue);
}
public boolean setException(Throwable t) {
return futureValue.setException(t);
}
private ListenableFuture<V> fullyFailedFuture(Throwable t) {
return Futures.immediateFailedFuture(t);
}
@Override
public void notifyNewValue(V newValue) {
if (newValue != null) {
// The pending load was clobbered by a manual write.
// Unblock all pending gets, and have them return the new value.
set(newValue);
} else {
// The pending load was removed. Delay notifications until loading completes.
oldValue = unset();
}
// TODO(fry): could also cancel loading if we had a handle on its future
}
public ListenableFuture<V> loadFuture(K key, CacheLoader<? super K, V> loader) {
stopwatch.start();
V previousValue = oldValue.get();
try {
if (previousValue == null) {
V newValue = loader.load(key);
return set(newValue) ? futureValue : Futures.immediateFuture(newValue);
}
ListenableFuture<V> newValue = loader.reload(key, previousValue);
if (newValue == null) {
return Futures.immediateFuture(null);
}
// To avoid a race, make sure the refreshed value is set into loadingValueReference
// *before* returning newValue from the cache query.
return Futures.transform(newValue, new Function<V, V>() {
@Override
public V apply(V newValue) {
LoadingValueReference.this.set(newValue);
return newValue;
}
});
} catch (Throwable t) {
if (t instanceof InterruptedException) {
Thread.currentThread().interrupt();
}
return setException(t) ? futureValue : fullyFailedFuture(t);
}
}
@Override
public V waitForValue() throws ExecutionException {
return getUninterruptibly(futureValue);
}
@Override
public V get() {
return oldValue.get();
}
public ValueReference<K, V> getOldValue() {
return oldValue;
}
@Override
public ReferenceEntry<K, V> getEntry() {
return null;
}
@Override
public ValueReference<K, V> copyFor(
ReferenceQueue<V> queue, V value, ReferenceEntry<K, V> entry) {
return this;
}
}
A custom queue for managing eviction order. Note that this is tightly integrated with
ReferenceEntry
, upon which it relies to perform its linking.
Note that this entire implementation makes the assumption that all elements which are in
the map are also in this queue, and that all elements not in the queue are not in the map.
The benefits of creating our own queue are that (1) we can replace elements in the middle
of the queue as part of copyWriteEntry, and (2) the contains method is highly optimized
for the current model.
/**
* A custom queue for managing eviction order. Note that this is tightly integrated with {@code
* ReferenceEntry}, upon which it relies to perform its linking.
* <p>
* <p>Note that this entire implementation makes the assumption that all elements which are in
* the map are also in this queue, and that all elements not in the queue are not in the map.
* <p>
* <p>The benefits of creating our own queue are that (1) we can replace elements in the middle
* of the queue as part of copyWriteEntry, and (2) the contains method is highly optimized
* for the current model.
*/
static final class WriteQueue<K, V> extends AbstractQueue<ReferenceEntry<K, V>> {
final ReferenceEntry<K, V> head = new AbstractReferenceEntry<K, V>() {
ReferenceEntry<K, V> nextWrite = this;
ReferenceEntry<K, V> previousWrite = this;
@Override
public long getWriteTime() {
return Long.MAX_VALUE;
}
@Override
public void setWriteTime(long time) {
}
@Override
public ReferenceEntry<K, V> getNextInWriteQueue() {
return nextWrite;
}
@Override
public void setNextInWriteQueue(ReferenceEntry<K, V> next) {
this.nextWrite = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInWriteQueue() {
return previousWrite;
}
@Override
public void setPreviousInWriteQueue(ReferenceEntry<K, V> previous) {
this.previousWrite = previous;
}
};
// implements Queue
@Override
public boolean offer(ReferenceEntry<K, V> entry) {
// unlink
connectWriteOrder(entry.getPreviousInWriteQueue(), entry.getNextInWriteQueue());
// add to tail
connectWriteOrder(head.getPreviousInWriteQueue(), entry);
connectWriteOrder(entry, head);
return true;
}
@Override
public ReferenceEntry<K, V> peek() {
ReferenceEntry<K, V> next = head.getNextInWriteQueue();
return (next == head) ? null : next;
}
@Override
public ReferenceEntry<K, V> poll() {
ReferenceEntry<K, V> next = head.getNextInWriteQueue();
if (next == head) {
return null;
}
remove(next);
return next;
}
@Override
@SuppressWarnings("unchecked")
public boolean remove(Object o) {
ReferenceEntry<K, V> e = (ReferenceEntry) o;
ReferenceEntry<K, V> previous = e.getPreviousInWriteQueue();
ReferenceEntry<K, V> next = e.getNextInWriteQueue();
connectWriteOrder(previous, next);
nullifyWriteOrder(e);
return next != NullEntry.INSTANCE;
}
@Override
@SuppressWarnings("unchecked")
public boolean contains(Object o) {
ReferenceEntry<K, V> e = (ReferenceEntry) o;
return e.getNextInWriteQueue() != NullEntry.INSTANCE;
}
@Override
public boolean isEmpty() {
return head.getNextInWriteQueue() == head;
}
@Override
public int size() {
int size = 0;
for (ReferenceEntry<K, V> e = head.getNextInWriteQueue(); e != head;
e = e.getNextInWriteQueue()) {
size++;
}
return size;
}
@Override
public void clear() {
ReferenceEntry<K, V> e = head.getNextInWriteQueue();
while (e != head) {
ReferenceEntry<K, V> next = e.getNextInWriteQueue();
nullifyWriteOrder(e);
e = next;
}
head.setNextInWriteQueue(head);
head.setPreviousInWriteQueue(head);
}
@Override
public Iterator<ReferenceEntry<K, V>> iterator() {
return new AbstractSequentialIterator<ReferenceEntry<K, V>>(peek()) {
@Override
protected ReferenceEntry<K, V> computeNext(ReferenceEntry<K, V> previous) {
ReferenceEntry<K, V> next = previous.getNextInWriteQueue();
return (next == head) ? null : next;
}
};
}
}
A custom queue for managing access order. Note that this is tightly integrated with ReferenceEntry
, upon which it reliese to perform its linking.
Note that this entire implementation makes the assumption that all elements which are in
the map are also in this queue, and that all elements not in the queue are not in the map.
The benefits of creating our own queue are that (1) we can replace elements in the middle
of the queue as part of copyWriteEntry, and (2) the contains method is highly optimized
for the current model.
/**
* A custom queue for managing access order. Note that this is tightly integrated with
* {@code ReferenceEntry}, upon which it reliese to perform its linking.
* <p>
* <p>Note that this entire implementation makes the assumption that all elements which are in
* the map are also in this queue, and that all elements not in the queue are not in the map.
* <p>
* <p>The benefits of creating our own queue are that (1) we can replace elements in the middle
* of the queue as part of copyWriteEntry, and (2) the contains method is highly optimized
* for the current model.
*/
static final class AccessQueue<K, V> extends AbstractQueue<ReferenceEntry<K, V>> {
final ReferenceEntry<K, V> head = new AbstractReferenceEntry<K, V>() {
ReferenceEntry<K, V> nextAccess = this;
ReferenceEntry<K, V> previousAccess = this;
@Override
public long getAccessTime() {
return Long.MAX_VALUE;
}
@Override
public void setAccessTime(long time) {
}
@Override
public ReferenceEntry<K, V> getNextInAccessQueue() {
return nextAccess;
}
@Override
public void setNextInAccessQueue(ReferenceEntry<K, V> next) {
this.nextAccess = next;
}
@Override
public ReferenceEntry<K, V> getPreviousInAccessQueue() {
return previousAccess;
}
@Override
public void setPreviousInAccessQueue(ReferenceEntry<K, V> previous) {
this.previousAccess = previous;
}
};
// implements Queue
@Override
public boolean offer(ReferenceEntry<K, V> entry) {
// unlink
connectAccessOrder(entry.getPreviousInAccessQueue(), entry.getNextInAccessQueue());
// add to tail
connectAccessOrder(head.getPreviousInAccessQueue(), entry);
connectAccessOrder(entry, head);
return true;
}
@Override
public ReferenceEntry<K, V> peek() {
ReferenceEntry<K, V> next = head.getNextInAccessQueue();
return (next == head) ? null : next;
}
@Override
public ReferenceEntry<K, V> poll() {
ReferenceEntry<K, V> next = head.getNextInAccessQueue();
if (next == head) {
return null;
}
remove(next);
return next;
}
@Override
@SuppressWarnings("unchecked")
public boolean remove(Object o) {
ReferenceEntry<K, V> e = (ReferenceEntry) o;
ReferenceEntry<K, V> previous = e.getPreviousInAccessQueue();
ReferenceEntry<K, V> next = e.getNextInAccessQueue();
connectAccessOrder(previous, next);
nullifyAccessOrder(e);
return next != NullEntry.INSTANCE;
}
@Override
@SuppressWarnings("unchecked")
public boolean contains(Object o) {
ReferenceEntry<K, V> e = (ReferenceEntry) o;
return e.getNextInAccessQueue() != NullEntry.INSTANCE;
}
@Override
public boolean isEmpty() {
return head.getNextInAccessQueue() == head;
}
@Override
public int size() {
int size = 0;
for (ReferenceEntry<K, V> e = head.getNextInAccessQueue(); e != head;
e = e.getNextInAccessQueue()) {
size++;
}
return size;
}
@Override
public void clear() {
ReferenceEntry<K, V> e = head.getNextInAccessQueue();
while (e != head) {
ReferenceEntry<K, V> next = e.getNextInAccessQueue();
nullifyAccessOrder(e);
e = next;
}
head.setNextInAccessQueue(head);
head.setPreviousInAccessQueue(head);
}
@Override
public Iterator<ReferenceEntry<K, V>> iterator() {
return new AbstractSequentialIterator<ReferenceEntry<K, V>>(peek()) {
@Override
protected ReferenceEntry<K, V> computeNext(ReferenceEntry<K, V> previous) {
ReferenceEntry<K, V> next = previous.getNextInAccessQueue();
return (next == head) ? null : next;
}
};
}
}
// Iterator Support
static class LocalManualCache<K, V> implements Cache<K, V>, Serializable {
private static final long serialVersionUID = 1;
final LocalCache<K, V> localCache;
LocalManualCache(CacheBuilder<? super K, ? super V> builder) {
this(new LocalCache<K, V>(builder, null));
}
// Cache methods
private LocalManualCache(LocalCache<K, V> localCache) {
this.localCache = localCache;
}
@Override
public V getIfPresent(Object key) {
return localCache.getIfPresent(key);
}
// Serialization Support
@Override
public void put(K key, V value) {
localCache.put(key, value);
}
}
static class LocalLoadingCache<K, V>
extends LocalManualCache<K, V> implements LoadingCache<K, V> {
private static final long serialVersionUID = 1;
// LoadingCache methods
LocalLoadingCache(CacheBuilder<? super K, ? super V> builder,
CacheLoader<? super K, V> loader) {
super(new LocalCache<K, V>(builder, checkNotNull(loader)));
}
@Override
public V get(K key) throws ExecutionException {
return localCache.getOrLoad(key);
}
public V getUnchecked(K key) {
try {
return get(key);
} catch (ExecutionException e) {
throw new UncheckedExecutionException(e.getCause());
}
}
// Serialization Support
@Override
public final V apply(K key) {
return getUnchecked(key);
}
}
abstract class HashIterator<T> implements Iterator<T> {
int nextSegmentIndex;
int nextTableIndex;
Segment<K, V> currentSegment;
AtomicReferenceArray<ReferenceEntry<K, V>> currentTable;
ReferenceEntry<K, V> nextEntry;
WriteThroughEntry nextExternal;
WriteThroughEntry lastReturned;
HashIterator() {
nextSegmentIndex = segments.length - 1;
nextTableIndex = -1;
advance();
}
@Override
public abstract T next();
final void advance() {
nextExternal = null;
if (nextInChain()) {
return;
}
if (nextInTable()) {
return;
}
while (nextSegmentIndex >= 0) {
currentSegment = segments[nextSegmentIndex--];
if (currentSegment.count != 0) {
currentTable = currentSegment.table;
nextTableIndex = currentTable.length() - 1;
if (nextInTable()) {
return;
}
}
}
}
Finds the next entry in the current chain. Returns true if an entry was found.
/**
* Finds the next entry in the current chain. Returns true if an entry was found.
*/
boolean nextInChain() {
if (nextEntry != null) {
for (nextEntry = nextEntry.getNext(); nextEntry != null; nextEntry = nextEntry.getNext()) {
if (advanceTo(nextEntry)) {
return true;
}
}
}
return false;
}
Finds the next entry in the current table. Returns true if an entry was found.
/**
* Finds the next entry in the current table. Returns true if an entry was found.
*/
boolean nextInTable() {
while (nextTableIndex >= 0) {
if ((nextEntry = currentTable.get(nextTableIndex--)) != null) {
if (advanceTo(nextEntry) || nextInChain()) {
return true;
}
}
}
return false;
}
Advances to the given entry. Returns true if the entry was valid, false if it should be
skipped.
/**
* Advances to the given entry. Returns true if the entry was valid, false if it should be
* skipped.
*/
boolean advanceTo(ReferenceEntry<K, V> entry) {
try {
long now = ticker.read();
K key = entry.getKey();
V value = getLiveValue(entry, now);
if (value != null) {
nextExternal = new WriteThroughEntry(key, value);
return true;
} else {
// Skip stale entry.
return false;
}
} finally {
currentSegment.postReadCleanup();
}
}
@Override
public boolean hasNext() {
return nextExternal != null;
}
WriteThroughEntry nextEntry() {
if (nextExternal == null) {
throw new NoSuchElementException();
}
lastReturned = nextExternal;
advance();
return lastReturned;
}
@Override
public void remove() {
checkState(lastReturned != null);
LocalCache.this.remove(lastReturned.getKey());
lastReturned = null;
}
}
final class KeyIterator extends HashIterator<K> {
@Override
public K next() {
return nextEntry().getKey();
}
}
final class ValueIterator extends HashIterator<V> {
@Override
public V next() {
return nextEntry().getValue();
}
}
Custom Entry class used by EntryIterator.next(), that relays setValue changes to the
underlying map.
/**
* Custom Entry class used by EntryIterator.next(), that relays setValue changes to the
* underlying map.
*/
final class WriteThroughEntry implements Entry<K, V> {
final K key; // non-null
final V value; // non-null
WriteThroughEntry(K key, V value) {
this.key = key;
this.value = value;
}
@Override
public K getKey() {
return key;
}
@Override
public V getValue() {
return value;
}
@Override
public boolean equals(Object object) {
// Cannot use key and value equivalence
if (object instanceof Entry) {
Entry<?, ?> that = (Entry<?, ?>) object;
return key.equals(that.getKey()) && value.equals(that.getValue());
}
return false;
}
@Override
public int hashCode() {
// Cannot use key and value equivalence
return key.hashCode() ^ value.hashCode();
}
@Override
public V setValue(V newValue) {
throw new UnsupportedOperationException();
}
Returns a string representation of the form {key}={value}
.
/**
* Returns a string representation of the form <code>{key}={value}</code>.
*/
@Override
public String toString() {
return getKey() + "=" + getValue();
}
}
final class EntryIterator extends HashIterator<Entry<K, V>> {
@Override
public Entry<K, V> next() {
return nextEntry();
}
}
// Serialization Support
abstract class AbstractCacheSet<T> extends AbstractSet<T> {
final ConcurrentMap<?, ?> map;
AbstractCacheSet(ConcurrentMap<?, ?> map) {
this.map = map;
}
@Override
public int size() {
return map.size();
}
@Override
public boolean isEmpty() {
return map.isEmpty();
}
@Override
public void clear() {
map.clear();
}
}
final class KeySet extends AbstractCacheSet<K> {
KeySet(ConcurrentMap<?, ?> map) {
super(map);
}
@Override
public Iterator<K> iterator() {
return new KeyIterator();
}
@Override
public boolean contains(Object o) {
return map.containsKey(o);
}
@Override
public boolean remove(Object o) {
return map.remove(o) != null;
}
}
final class Values extends AbstractCollection<V> {
private final ConcurrentMap<?, ?> map;
Values(ConcurrentMap<?, ?> map) {
this.map = map;
}
@Override
public int size() {
return map.size();
}
@Override
public boolean isEmpty() {
return map.isEmpty();
}
@Override
public void clear() {
map.clear();
}
@Override
public Iterator<V> iterator() {
return new ValueIterator();
}
@Override
public boolean contains(Object o) {
return map.containsValue(o);
}
}
final class EntrySet extends AbstractCacheSet<Entry<K, V>> {
EntrySet(ConcurrentMap<?, ?> map) {
super(map);
}
@Override
public Iterator<Entry<K, V>> iterator() {
return new EntryIterator();
}
@Override
public boolean contains(Object o) {
if (!(o instanceof Entry)) {
return false;
}
Entry<?, ?> e = (Entry<?, ?>) o;
Object key = e.getKey();
if (key == null) {
return false;
}
V v = LocalCache.this.get(key);
return v != null && valueEquivalence.equivalent(e.getValue(), v);
}
@Override
public boolean remove(Object o) {
if (!(o instanceof Entry)) {
return false;
}
Entry<?, ?> e = (Entry<?, ?>) o;
Object key = e.getKey();
return key != null && LocalCache.this.remove(key, e.getValue());
}
}
}