package org.bouncycastle.math.ec.custom.sec;

import java.math.BigInteger;

import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Mod;
import org.bouncycastle.math.raw.Nat224;
import org.bouncycastle.util.Arrays;

public class SecP224K1FieldElement extends ECFieldElement.AbstractFp
{
    public static final BigInteger Q = SecP224K1Curve.q;

    // Calculated as ECConstants.TWO.modPow(Q.shiftRight(2), Q)
    private static final int[] PRECOMP_POW2 = new int[]{ 0x33bfd202, 0xdcfad133, 0x2287624a, 0xc3811ba8,
        0xa85558fc, 0x1eaef5d7, 0x8edf154c };

    protected int[] x;

    public SecP224K1FieldElement(BigInteger x)
    {
        if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
        {
            throw new IllegalArgumentException("x value invalid for SecP224K1FieldElement");
        }

        this.x = SecP224K1Field.fromBigInteger(x);
    }

    public SecP224K1FieldElement()
    {
        this.x = Nat224.create();
    }

    protected SecP224K1FieldElement(int[] x)
    {
        this.x = x;
    }

    public boolean isZero()
    {
        return Nat224.isZero(x);
    }

    public boolean isOne()
    {
        return Nat224.isOne(x);
    }

    public boolean testBitZero()
    {
        return Nat224.getBit(x, 0) == 1;
    }

    public BigInteger toBigInteger()
    {
        return Nat224.toBigInteger(x);
    }

    public String getFieldName()
    {
        return "SecP224K1Field";
    }

    public int getFieldSize()
    {
        return Q.bitLength();
    }

    public ECFieldElement add(ECFieldElement b)
    {
        int[] z = Nat224.create();
        SecP224K1Field.add(x, ((SecP224K1FieldElement)b).x, z);
        return new SecP224K1FieldElement(z);
    }

    public ECFieldElement addOne()
    {
        int[] z = Nat224.create();
        SecP224K1Field.addOne(x, z);
        return new SecP224K1FieldElement(z);
    }

    public ECFieldElement subtract(ECFieldElement b)
    {
        int[] z = Nat224.create();
        SecP224K1Field.subtract(x, ((SecP224K1FieldElement)b).x, z);
        return new SecP224K1FieldElement(z);
    }

    public ECFieldElement multiply(ECFieldElement b)
    {
        int[] z = Nat224.create();
        SecP224K1Field.multiply(x, ((SecP224K1FieldElement)b).x, z);
        return new SecP224K1FieldElement(z);
    }

    public ECFieldElement divide(ECFieldElement b)
    {
//        return multiply(b.invert());
        int[] z = Nat224.create();
        Mod.invert(SecP224K1Field.P, ((SecP224K1FieldElement)b).x, z);
        SecP224K1Field.multiply(z, x, z);
        return new SecP224K1FieldElement(z);
    }

    public ECFieldElement negate()
    {
        int[] z = Nat224.create();
        SecP224K1Field.negate(x, z);
        return new SecP224K1FieldElement(z);
    }

    public ECFieldElement square()
    {
        int[] z = Nat224.create();
        SecP224K1Field.square(x, z);
        return new SecP224K1FieldElement(z);
    }

    public ECFieldElement invert()
    {
//        return new SecP224K1FieldElement(toBigInteger().modInverse(Q));
        int[] z = Nat224.create();
        Mod.invert(SecP224K1Field.P, x, z);
        return new SecP224K1FieldElement(z);
    }

    // D.1.4 91
    
return a sqrt root - the routine verifies that the calculation returns the right value - if none exists it returns null.
/** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */
public ECFieldElement sqrt() { /* * Q == 8m + 5, so we use Pocklington's method for this case. * * First, raise this element to the exponent 2^221 - 2^29 - 2^9 - 2^8 - 2^6 - 2^4 - 2^1 (i.e. m + 1) * * Breaking up the exponent's binary representation into "repunits", we get: * { 191 1s } { 1 0s } { 19 1s } { 2 0s } { 1 1s } { 1 0s} { 1 1s } { 1 0s} { 3 1s } { 1 0s} * * Therefore we need an addition chain containing 1, 3, 19, 191 (the lengths of the repunits) * We use: [1], 2, [3], 4, 8, 11, [19], 23, 42, 84, 107, [191] */ int[] x1 = this.x; if (Nat224.isZero(x1) || Nat224.isOne(x1)) { return this; } int[] x2 = Nat224.create(); SecP224K1Field.square(x1, x2); SecP224K1Field.multiply(x2, x1, x2); int[] x3 = x2; SecP224K1Field.square(x2, x3); SecP224K1Field.multiply(x3, x1, x3); int[] x4 = Nat224.create(); SecP224K1Field.square(x3, x4); SecP224K1Field.multiply(x4, x1, x4); int[] x8 = Nat224.create(); SecP224K1Field.squareN(x4, 4, x8); SecP224K1Field.multiply(x8, x4, x8); int[] x11 = Nat224.create(); SecP224K1Field.squareN(x8, 3, x11); SecP224K1Field.multiply(x11, x3, x11); int[] x19 = x11; SecP224K1Field.squareN(x11, 8, x19); SecP224K1Field.multiply(x19, x8, x19); int[] x23 = x8; SecP224K1Field.squareN(x19, 4, x23); SecP224K1Field.multiply(x23, x4, x23); int[] x42 = x4; SecP224K1Field.squareN(x23, 19, x42); SecP224K1Field.multiply(x42, x19, x42); int[] x84 = Nat224.create(); SecP224K1Field.squareN(x42, 42, x84); SecP224K1Field.multiply(x84, x42, x84); int[] x107 = x42; SecP224K1Field.squareN(x84, 23, x107); SecP224K1Field.multiply(x107, x23, x107); int[] x191 = x23; SecP224K1Field.squareN(x107, 84, x191); SecP224K1Field.multiply(x191, x84, x191); int[] t1 = x191; SecP224K1Field.squareN(t1, 20, t1); SecP224K1Field.multiply(t1, x19, t1); SecP224K1Field.squareN(t1, 3, t1); SecP224K1Field.multiply(t1, x1, t1); SecP224K1Field.squareN(t1, 2, t1); SecP224K1Field.multiply(t1, x1, t1); SecP224K1Field.squareN(t1, 4, t1); SecP224K1Field.multiply(t1, x3, t1); SecP224K1Field.square(t1, t1); int[] t2 = x84; SecP224K1Field.square(t1, t2); if (Nat224.eq(x1, t2)) { return new SecP224K1FieldElement(t1); } /* * If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess, * which is ((4x)^(m + 1))/2 mod Q */ SecP224K1Field.multiply(t1, PRECOMP_POW2, t1); SecP224K1Field.square(t1, t2); if (Nat224.eq(x1, t2)) { return new SecP224K1FieldElement(t1); } return null; } public boolean equals(Object other) { if (other == this) { return true; } if (!(other instanceof SecP224K1FieldElement)) { return false; } SecP224K1FieldElement o = (SecP224K1FieldElement)other; return Nat224.eq(x, o.x); } public int hashCode() { return Q.hashCode() ^ Arrays.hashCode(x, 0, 7); } }