package org.bouncycastle.math.ec;

import java.math.BigInteger;

Class implementing the WTNAF (Window τ-adic Non-Adjacent Form) algorithm.
/** * Class implementing the WTNAF (Window * <code>&tau;</code>-adic Non-Adjacent Form) algorithm. */
public class WTauNafMultiplier extends AbstractECMultiplier { // TODO Create WTauNafUtil class and move various functionality into it static final String PRECOMP_NAME = "bc_wtnaf";
Multiplies a ECPoint.AbstractF2m by k using the reduced τ-adic NAF (RTNAF) method.
Params:
  • point – The ECPoint.AbstractF2m to multiply.
  • k – The integer by which to multiply k.
Returns:p multiplied by k.
/** * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m} * by <code>k</code> using the reduced <code>&tau;</code>-adic NAF (RTNAF) * method. * @param point The ECPoint.AbstractF2m to multiply. * @param k The integer by which to multiply <code>k</code>. * @return <code>p</code> multiplied by <code>k</code>. */
protected ECPoint multiplyPositive(ECPoint point, BigInteger k) { if (!(point instanceof ECPoint.AbstractF2m)) { throw new IllegalArgumentException("Only ECPoint.AbstractF2m can be " + "used in WTauNafMultiplier"); } ECPoint.AbstractF2m p = (ECPoint.AbstractF2m)point; ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve(); int m = curve.getFieldSize(); byte a = curve.getA().toBigInteger().byteValue(); byte mu = Tnaf.getMu(a); BigInteger[] s = curve.getSi(); ZTauElement rho = Tnaf.partModReduction(k, m, a, s, mu, (byte)10); return multiplyWTnaf(p, rho, a, mu); }
Multiplies a ECPoint.AbstractF2m by an element λ of Z[τ] using the τ-adic NAF (TNAF) method.
Params:
  • p – The ECPoint.AbstractF2m to multiply.
  • lambda – The element λ of Z[τ] of which to compute the [τ]-adic NAF.
Returns:p multiplied by λ.
/** * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m} * by an element <code>&lambda;</code> of <code><b>Z</b>[&tau;]</code> using * the <code>&tau;</code>-adic NAF (TNAF) method. * @param p The ECPoint.AbstractF2m to multiply. * @param lambda The element <code>&lambda;</code> of * <code><b>Z</b>[&tau;]</code> of which to compute the * <code>[&tau;]</code>-adic NAF. * @return <code>p</code> multiplied by <code>&lambda;</code>. */
private ECPoint.AbstractF2m multiplyWTnaf(ECPoint.AbstractF2m p, ZTauElement lambda, byte a, byte mu) { ZTauElement[] alpha = (a == 0) ? Tnaf.alpha0 : Tnaf.alpha1; BigInteger tw = Tnaf.getTw(mu, Tnaf.WIDTH); byte[]u = Tnaf.tauAdicWNaf(mu, lambda, Tnaf.WIDTH, BigInteger.valueOf(Tnaf.POW_2_WIDTH), tw, alpha); return multiplyFromWTnaf(p, u); }
Multiplies a ECPoint.AbstractF2m by an element λ of Z[τ] using the window τ-adic NAF (TNAF) method, given the WTNAF of λ.
Params:
  • p – The ECPoint.AbstractF2m to multiply.
  • u – The the WTNAF of λ..
Returns:λ * p
/** * Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m} * by an element <code>&lambda;</code> of <code><b>Z</b>[&tau;]</code> * using the window <code>&tau;</code>-adic NAF (TNAF) method, given the * WTNAF of <code>&lambda;</code>. * @param p The ECPoint.AbstractF2m to multiply. * @param u The the WTNAF of <code>&lambda;</code>.. * @return <code>&lambda; * p</code> */
private static ECPoint.AbstractF2m multiplyFromWTnaf(final ECPoint.AbstractF2m p, byte[] u) { ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve(); final byte a = curve.getA().toBigInteger().byteValue(); WTauNafPreCompInfo preCompInfo = (WTauNafPreCompInfo)curve.precompute(p, PRECOMP_NAME, new PreCompCallback() { public PreCompInfo precompute(PreCompInfo existing) { if (existing instanceof WTauNafPreCompInfo) { return existing; } WTauNafPreCompInfo result = new WTauNafPreCompInfo(); result.setPreComp(Tnaf.getPreComp(p, a)); return result; } }); ECPoint.AbstractF2m[] pu = preCompInfo.getPreComp(); // TODO Include negations in precomp (optionally) and use from here ECPoint.AbstractF2m[] puNeg = new ECPoint.AbstractF2m[pu.length]; for (int i = 0; i < pu.length; ++i) { puNeg[i] = (ECPoint.AbstractF2m)pu[i].negate(); } // q = infinity ECPoint.AbstractF2m q = (ECPoint.AbstractF2m) p.getCurve().getInfinity(); int tauCount = 0; for (int i = u.length - 1; i >= 0; i--) { ++tauCount; int ui = u[i]; if (ui != 0) { q = q.tauPow(tauCount); tauCount = 0; ECPoint x = ui > 0 ? pu[ui >>> 1] : puNeg[(-ui) >>> 1]; q = (ECPoint.AbstractF2m)q.add(x); } } if (tauCount > 0) { q = q.tauPow(tauCount); } return q; } }