package org.bouncycastle.crypto.signers;

import java.math.BigInteger;
import java.security.SecureRandom;

import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DSAExt;
import org.bouncycastle.crypto.params.DSAKeyParameters;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.DSAPrivateKeyParameters;
import org.bouncycastle.crypto.params.DSAPublicKeyParameters;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.util.BigIntegers;

The Digital Signature Algorithm - as described in "Handbook of Applied Cryptography", pages 452 - 453.
/** * The Digital Signature Algorithm - as described in "Handbook of Applied * Cryptography", pages 452 - 453. */
public class DSASigner implements DSAExt { private final DSAKCalculator kCalculator; private DSAKeyParameters key; private SecureRandom random;
Default configuration, random K values.
/** * Default configuration, random K values. */
public DSASigner() { this.kCalculator = new RandomDSAKCalculator(); }
Configuration with an alternate, possibly deterministic calculator of K.
Params:
  • kCalculator – a K value calculator.
/** * Configuration with an alternate, possibly deterministic calculator of K. * * @param kCalculator a K value calculator. */
public DSASigner(DSAKCalculator kCalculator) { this.kCalculator = kCalculator; } public void init( boolean forSigning, CipherParameters param) { SecureRandom providedRandom = null; if (forSigning) { if (param instanceof ParametersWithRandom) { ParametersWithRandom rParam = (ParametersWithRandom)param; this.key = (DSAPrivateKeyParameters)rParam.getParameters(); providedRandom = rParam.getRandom(); } else { this.key = (DSAPrivateKeyParameters)param; } } else { this.key = (DSAPublicKeyParameters)param; } this.random = initSecureRandom(forSigning && !kCalculator.isDeterministic(), providedRandom); } public BigInteger getOrder() { return key.getParameters().getQ(); }
generate a signature for the given message using the key we were initialised with. For conventional DSA the message should be a SHA-1 hash of the message of interest.
Params:
  • message – the message that will be verified later.
/** * generate a signature for the given message using the key we were * initialised with. For conventional DSA the message should be a SHA-1 * hash of the message of interest. * * @param message the message that will be verified later. */
public BigInteger[] generateSignature( byte[] message) { DSAParameters params = key.getParameters(); BigInteger q = params.getQ(); BigInteger m = calculateE(q, message); BigInteger x = ((DSAPrivateKeyParameters)key).getX(); if (kCalculator.isDeterministic()) { kCalculator.init(q, x, message); } else { kCalculator.init(q, random); } BigInteger k = kCalculator.nextK(); // the randomizer is to conceal timing information related to k and x. BigInteger r = params.getG().modPow(k.add(getRandomizer(q, random)), params.getP()).mod(q); k = k.modInverse(q).multiply(m.add(x.multiply(r))); BigInteger s = k.mod(q); return new BigInteger[]{ r, s }; }
return true if the value r and s represent a DSA signature for the passed in message for standard DSA the message should be a SHA-1 hash of the real message to be verified.
/** * return true if the value r and s represent a DSA signature for * the passed in message for standard DSA the message should be a * SHA-1 hash of the real message to be verified. */
public boolean verifySignature( byte[] message, BigInteger r, BigInteger s) { DSAParameters params = key.getParameters(); BigInteger q = params.getQ(); BigInteger m = calculateE(q, message); BigInteger zero = BigInteger.valueOf(0); if (zero.compareTo(r) >= 0 || q.compareTo(r) <= 0) { return false; } if (zero.compareTo(s) >= 0 || q.compareTo(s) <= 0) { return false; } BigInteger w = s.modInverse(q); BigInteger u1 = m.multiply(w).mod(q); BigInteger u2 = r.multiply(w).mod(q); BigInteger p = params.getP(); u1 = params.getG().modPow(u1, p); u2 = ((DSAPublicKeyParameters)key).getY().modPow(u2, p); BigInteger v = u1.multiply(u2).mod(p).mod(q); return v.equals(r); } private BigInteger calculateE(BigInteger n, byte[] message) { if (n.bitLength() >= message.length * 8) { return new BigInteger(1, message); } else { byte[] trunc = new byte[n.bitLength() / 8]; System.arraycopy(message, 0, trunc, 0, trunc.length); return new BigInteger(1, trunc); } } protected SecureRandom initSecureRandom(boolean needed, SecureRandom provided) { return !needed ? null : (provided != null) ? provided : CryptoServicesRegistrar.getSecureRandom(); } private BigInteger getRandomizer(BigInteger q, SecureRandom provided) { // Calculate a random multiple of q to add to k. Note that g^q = 1 (mod p), so adding multiple of q to k does not change r. int randomBits = 7; return BigIntegers.createRandomBigInteger(randomBits, provided != null ? provided : CryptoServicesRegistrar.getSecureRandom()).add(BigInteger.valueOf(128)).multiply(q); } }