package org.bouncycastle.asn1;

import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;
import java.util.SimpleTimeZone;
import java.util.TimeZone;

import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Strings;

Base class representing the ASN.1 GeneralizedTime type.

The main difference between these and UTC time is a 4 digit year.

One second resolution date+time on UTC timezone (Z) with 4 digit year (valid from 0001 to 9999).

Timestamp format is: yyyymmddHHMMSS'Z'

X.690

This is what is called "restricted string", and it uses ASCII characters to encode digits and supplemental data.

11: Restrictions on BER employed by both CER and DER

11.7 GeneralizedTime

11.7.1 The encoding shall terminate with a "Z", as described in the ITU-T Rec. X.680 | ISO/IEC 8824-1 clause on GeneralizedTime.

11.7.2 The seconds element shall always be present.

11.7.3 The fractional-seconds elements, if present, shall omit all trailing zeros; if the elements correspond to 0, they shall be wholly omitted, and the decimal point element also shall be omitted.

/** * Base class representing the ASN.1 GeneralizedTime type. * <p> * The main difference between these and UTC time is a 4 digit year. * </p> * <p> * One second resolution date+time on UTC timezone (Z) * with 4 digit year (valid from 0001 to 9999). * </p><p> * Timestamp format is: yyyymmddHHMMSS'Z' * </p><p> * <h2>X.690</h2> * This is what is called "restricted string", * and it uses ASCII characters to encode digits and supplemental data. * * <h3>11: Restrictions on BER employed by both CER and DER</h3> * <h4>11.7 GeneralizedTime </h4> * <p> * <b>11.7.1</b> The encoding shall terminate with a "Z", * as described in the ITU-T Rec. X.680 | ISO/IEC 8824-1 clause on * GeneralizedTime. * </p><p> * <b>11.7.2</b> The seconds element shall always be present. * </p> * <p> * <b>11.7.3</b> The fractional-seconds elements, if present, * shall omit all trailing zeros; if the elements correspond to 0, * they shall be wholly omitted, and the decimal point element also * shall be omitted. */
public class ASN1GeneralizedTime extends ASN1Primitive { protected byte[] time;
return a generalized time from the passed in object
Params:
  • obj – an ASN1GeneralizedTime or an object that can be converted into one.
Throws:
Returns:an ASN1GeneralizedTime instance, or null.
/** * return a generalized time from the passed in object * * @param obj an ASN1GeneralizedTime or an object that can be converted into one. * @return an ASN1GeneralizedTime instance, or null. * @throws IllegalArgumentException if the object cannot be converted. */
public static ASN1GeneralizedTime getInstance( Object obj) { if (obj == null || obj instanceof ASN1GeneralizedTime) { return (ASN1GeneralizedTime)obj; } if (obj instanceof byte[]) { try { return (ASN1GeneralizedTime)fromByteArray((byte[])obj); } catch (Exception e) { throw new IllegalArgumentException("encoding error in getInstance: " + e.toString()); } } throw new IllegalArgumentException("illegal object in getInstance: " + obj.getClass().getName()); }
return a Generalized Time object from a tagged object.
Params:
  • obj – the tagged object holding the object we want
  • explicit – true if the object is meant to be explicitly tagged false otherwise.
Throws:
Returns:an ASN1GeneralizedTime instance.
/** * return a Generalized Time object from a tagged object. * * @param obj the tagged object holding the object we want * @param explicit true if the object is meant to be explicitly * tagged false otherwise. * @return an ASN1GeneralizedTime instance. * @throws IllegalArgumentException if the tagged object cannot * be converted. */
public static ASN1GeneralizedTime getInstance( ASN1TaggedObject obj, boolean explicit) { ASN1Primitive o = obj.getObject(); if (explicit || o instanceof ASN1GeneralizedTime) { return getInstance(o); } else { return new ASN1GeneralizedTime(((ASN1OctetString)o).getOctets()); } }
The correct format for this is YYYYMMDDHHMMSS[.f]Z, or without the Z for local time, or Z+-HHMM on the end, for difference between local time and UTC time. The fractional second amount f must consist of at least one number with trailing zeroes removed.
Params:
  • time – the time string.
Throws:
/** * The correct format for this is YYYYMMDDHHMMSS[.f]Z, or without the Z * for local time, or Z+-HHMM on the end, for difference between local * time and UTC time. The fractional second amount f must consist of at * least one number with trailing zeroes removed. * * @param time the time string. * @throws IllegalArgumentException if String is an illegal format. */
public ASN1GeneralizedTime( String time) { this.time = Strings.toByteArray(time); try { this.getDate(); } catch (ParseException e) { throw new IllegalArgumentException("invalid date string: " + e.getMessage()); } }
Base constructor from a java.util.date object
Params:
  • time – a date object representing the time of interest.
/** * Base constructor from a java.util.date object * * @param time a date object representing the time of interest. */
public ASN1GeneralizedTime( Date time) { SimpleDateFormat dateF = new SimpleDateFormat("yyyyMMddHHmmss'Z'", DateUtil.EN_Locale); dateF.setTimeZone(new SimpleTimeZone(0, "Z")); this.time = Strings.toByteArray(dateF.format(time)); }
Base constructor from a java.util.date and Locale - you may need to use this if the default locale doesn't use a Gregorian calender so that the GeneralizedTime produced is compatible with other ASN.1 implementations.
Params:
  • time – a date object representing the time of interest.
  • locale – an appropriate Locale for producing an ASN.1 GeneralizedTime value.
/** * Base constructor from a java.util.date and Locale - you may need to use this if the default locale * doesn't use a Gregorian calender so that the GeneralizedTime produced is compatible with other ASN.1 implementations. * * @param time a date object representing the time of interest. * @param locale an appropriate Locale for producing an ASN.1 GeneralizedTime value. */
public ASN1GeneralizedTime( Date time, Locale locale) { SimpleDateFormat dateF = new SimpleDateFormat("yyyyMMddHHmmss'Z'", locale); dateF.setTimeZone(new SimpleTimeZone(0, "Z")); this.time = Strings.toByteArray(dateF.format(time)); } ASN1GeneralizedTime( byte[] bytes) { this.time = bytes; }
Return the time.
Returns:The time string as it appeared in the encoded object.
/** * Return the time. * * @return The time string as it appeared in the encoded object. */
public String getTimeString() { return Strings.fromByteArray(time); }
return the time - always in the form of YYYYMMDDhhmmssGMT(+hh:mm|-hh:mm).

Normally in a certificate we would expect "Z" rather than "GMT", however adding the "GMT" means we can just use:

    dateF = new SimpleDateFormat("yyyyMMddHHmmssz");
To read in the time and get a date which is compatible with our local time zone.
Returns:a String representation of the time.
/** * return the time - always in the form of * YYYYMMDDhhmmssGMT(+hh:mm|-hh:mm). * <p> * Normally in a certificate we would expect "Z" rather than "GMT", * however adding the "GMT" means we can just use: * <pre> * dateF = new SimpleDateFormat("yyyyMMddHHmmssz"); * </pre> * To read in the time and get a date which is compatible with our local * time zone. * @return a String representation of the time. */
public String getTime() { String stime = Strings.fromByteArray(time); // // standardise the format. // if (stime.charAt(stime.length() - 1) == 'Z') { return stime.substring(0, stime.length() - 1) + "GMT+00:00"; } else { int signPos = stime.length() - 5; char sign = stime.charAt(signPos); if (sign == '-' || sign == '+') { return stime.substring(0, signPos) + "GMT" + stime.substring(signPos, signPos + 3) + ":" + stime.substring(signPos + 3); } else { signPos = stime.length() - 3; sign = stime.charAt(signPos); if (sign == '-' || sign == '+') { return stime.substring(0, signPos) + "GMT" + stime.substring(signPos) + ":00"; } } } return stime + calculateGMTOffset(); } private String calculateGMTOffset() { String sign = "+"; TimeZone timeZone = TimeZone.getDefault(); int offset = timeZone.getRawOffset(); if (offset < 0) { sign = "-"; offset = -offset; } int hours = offset / (60 * 60 * 1000); int minutes = (offset - (hours * 60 * 60 * 1000)) / (60 * 1000); try { if (timeZone.useDaylightTime() && timeZone.inDaylightTime(this.getDate())) { hours += sign.equals("+") ? 1 : -1; } } catch (ParseException e) { // we'll do our best and ignore daylight savings } return "GMT" + sign + convert(hours) + ":" + convert(minutes); } private String convert(int time) { if (time < 10) { return "0" + time; } return Integer.toString(time); } public Date getDate() throws ParseException { SimpleDateFormat dateF; String stime = Strings.fromByteArray(time); String d = stime; if (stime.endsWith("Z")) { if (hasFractionalSeconds()) { dateF = new SimpleDateFormat("yyyyMMddHHmmss.SSS'Z'"); } else if (hasSeconds()) { dateF = new SimpleDateFormat("yyyyMMddHHmmss'Z'"); } else if (hasMinutes()) { dateF = new SimpleDateFormat("yyyyMMddHHmm'Z'"); } else { dateF = new SimpleDateFormat("yyyyMMddHH'Z'"); } dateF.setTimeZone(new SimpleTimeZone(0, "Z")); } else if (stime.indexOf('-') > 0 || stime.indexOf('+') > 0) { d = this.getTime(); if (hasFractionalSeconds()) { dateF = new SimpleDateFormat("yyyyMMddHHmmss.SSSz"); } else if (hasSeconds()) { dateF = new SimpleDateFormat("yyyyMMddHHmmssz"); } else if (hasMinutes()) { dateF = new SimpleDateFormat("yyyyMMddHHmmz"); } else { dateF = new SimpleDateFormat("yyyyMMddHHz"); } dateF.setTimeZone(new SimpleTimeZone(0, "Z")); } else { if (hasFractionalSeconds()) { dateF = new SimpleDateFormat("yyyyMMddHHmmss.SSS"); } else if (hasSeconds()) { dateF = new SimpleDateFormat("yyyyMMddHHmmss"); } else if (hasMinutes()) { dateF = new SimpleDateFormat("yyyyMMddHHmm"); } else { dateF = new SimpleDateFormat("yyyyMMddHH"); } dateF.setTimeZone(new SimpleTimeZone(0, TimeZone.getDefault().getID())); } if (hasFractionalSeconds()) { // java misinterprets extra digits as being milliseconds... String frac = d.substring(14); int index; for (index = 1; index < frac.length(); index++) { char ch = frac.charAt(index); if (!('0' <= ch && ch <= '9')) { break; } } if (index - 1 > 3) { frac = frac.substring(0, 4) + frac.substring(index); d = d.substring(0, 14) + frac; } else if (index - 1 == 1) { frac = frac.substring(0, index) + "00" + frac.substring(index); d = d.substring(0, 14) + frac; } else if (index - 1 == 2) { frac = frac.substring(0, index) + "0" + frac.substring(index); d = d.substring(0, 14) + frac; } } return DateUtil.epochAdjust(dateF.parse(d)); } protected boolean hasFractionalSeconds() { for (int i = 0; i != time.length; i++) { if (time[i] == '.') { if (i == 14) { return true; } } } return false; } protected boolean hasSeconds() { return isDigit(12) && isDigit(13); } protected boolean hasMinutes() { return isDigit(10) && isDigit(11); } private boolean isDigit(int pos) { return time.length > pos && time[pos] >= '0' && time[pos] <= '9'; } boolean isConstructed() { return false; } int encodedLength() { int length = time.length; return 1 + StreamUtil.calculateBodyLength(length) + length; } void encode( ASN1OutputStream out) throws IOException { out.writeEncoded(BERTags.GENERALIZED_TIME, time); } ASN1Primitive toDERObject() { return new DERGeneralizedTime(time); } boolean asn1Equals( ASN1Primitive o) { if (!(o instanceof ASN1GeneralizedTime)) { return false; } return Arrays.areEqual(time, ((ASN1GeneralizedTime)o).time); } public int hashCode() { return Arrays.hashCode(time); } }