package org.bouncycastle.math.ec;
import java.math.BigInteger;
import java.util.Random;
public abstract class ECFieldElement
implements ECConstants
{
public abstract BigInteger toBigInteger();
public abstract String getFieldName();
public abstract int getFieldSize();
public abstract ECFieldElement add(ECFieldElement b);
public abstract ECFieldElement subtract(ECFieldElement b);
public abstract ECFieldElement multiply(ECFieldElement b);
public abstract ECFieldElement divide(ECFieldElement b);
public abstract ECFieldElement negate();
public abstract ECFieldElement square();
public abstract ECFieldElement invert();
public abstract ECFieldElement sqrt();
public String toString()
{
return this.toBigInteger().toString(2);
}
public static class Fp extends ECFieldElement
{
BigInteger x;
BigInteger q;
public Fp(BigInteger q, BigInteger x)
{
this.x = x;
if (x.compareTo(q) >= 0)
{
throw new IllegalArgumentException("x value too large in field element");
}
this.q = q;
}
public BigInteger toBigInteger()
{
return x;
}
return the field name for this field.
Returns: the string "Fp".
/**
* return the field name for this field.
*
* @return the string "Fp".
*/
public String getFieldName()
{
return "Fp";
}
public int getFieldSize()
{
return q.bitLength();
}
public BigInteger getQ()
{
return q;
}
public ECFieldElement add(ECFieldElement b)
{
return new Fp(q, x.add(b.toBigInteger()).mod(q));
}
public ECFieldElement subtract(ECFieldElement b)
{
return new Fp(q, x.subtract(b.toBigInteger()).mod(q));
}
public ECFieldElement multiply(ECFieldElement b)
{
return new Fp(q, x.multiply(b.toBigInteger()).mod(q));
}
public ECFieldElement divide(ECFieldElement b)
{
return new Fp(q, x.multiply(b.toBigInteger().modInverse(q)).mod(q));
}
public ECFieldElement negate()
{
return new Fp(q, x.negate().mod(q));
}
public ECFieldElement square()
{
return new Fp(q, x.multiply(x).mod(q));
}
public ECFieldElement invert()
{
return new Fp(q, x.modInverse(q));
}
// D.1.4 91
return a sqrt root - the routine verifies that the calculation
returns the right value - if none exists it returns null.
/**
* return a sqrt root - the routine verifies that the calculation
* returns the right value - if none exists it returns null.
*/
public ECFieldElement sqrt()
{
if (!q.testBit(0))
{
throw new RuntimeException("not done yet");
}
// note: even though this class implements ECConstants don't be tempted to
// remove the explicit declaration, some J2ME environments don't cope.
// p mod 4 == 3
if (q.testBit(1))
{
// z = g^(u+1) + p, p = 4u + 3
ECFieldElement z = new Fp(q, x.modPow(q.shiftRight(2).add(ECConstants.ONE), q));
return z.square().equals(this) ? z : null;
}
// p mod 4 == 1
BigInteger qMinusOne = q.subtract(ECConstants.ONE);
BigInteger legendreExponent = qMinusOne.shiftRight(1);
if (!(x.modPow(legendreExponent, q).equals(ECConstants.ONE)))
{
return null;
}
BigInteger u = qMinusOne.shiftRight(2);
BigInteger k = u.shiftLeft(1).add(ECConstants.ONE);
BigInteger Q = this.x;
BigInteger fourQ = Q.shiftLeft(2).mod(q);
BigInteger U, V;
Random rand = new Random();
do
{
BigInteger P;
do
{
P = new BigInteger(q.bitLength(), rand);
}
while (P.compareTo(q) >= 0
|| !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, q).equals(qMinusOne)));
BigInteger[] result = lucasSequence(q, P, Q, k);
U = result[0];
V = result[1];
if (V.multiply(V).mod(q).equals(fourQ))
{
// Integer division by 2, mod q
if (V.testBit(0))
{
V = V.add(q);
}
V = V.shiftRight(1);
//assert V.multiply(V).mod(q).equals(x);
return new ECFieldElement.Fp(q, V);
}
}
while (U.equals(ECConstants.ONE) || U.equals(qMinusOne));
return null;
// BigInteger qMinusOne = q.subtract(ECConstants.ONE);
// BigInteger legendreExponent = qMinusOne.shiftRight(1); //divide(ECConstants.TWO);
// if (!(x.modPow(legendreExponent, q).equals(ECConstants.ONE)))
// {
// return null;
// }
//
// Random rand = new Random();
// BigInteger fourX = x.shiftLeft(2);
//
// BigInteger r;
// do
// {
// r = new BigInteger(q.bitLength(), rand);
// }
// while (r.compareTo(q) >= 0
// || !(r.multiply(r).subtract(fourX).modPow(legendreExponent, q).equals(qMinusOne)));
//
// BigInteger n1 = qMinusOne.shiftRight(2); //.divide(ECConstants.FOUR);
// BigInteger n2 = n1.add(ECConstants.ONE); //q.add(ECConstants.THREE).divide(ECConstants.FOUR);
//
// BigInteger wOne = WOne(r, x, q);
// BigInteger wSum = W(n1, wOne, q).add(W(n2, wOne, q)).mod(q);
// BigInteger twoR = r.shiftLeft(1); //ECConstants.TWO.multiply(r);
//
// BigInteger root = twoR.modPow(q.subtract(ECConstants.TWO), q)
// .multiply(x).mod(q)
// .multiply(wSum).mod(q);
//
// return new Fp(q, root);
}
// private static BigInteger W(BigInteger n, BigInteger wOne, BigInteger p)
// {
// if (n.equals(ECConstants.ONE))
// {
// return wOne;
// }
// boolean isEven = !n.testBit(0);
// n = n.shiftRight(1);//divide(ECConstants.TWO);
// if (isEven)
// {
// BigInteger w = W(n, wOne, p);
// return w.multiply(w).subtract(ECConstants.TWO).mod(p);
// }
// BigInteger w1 = W(n.add(ECConstants.ONE), wOne, p);
// BigInteger w2 = W(n, wOne, p);
// return w1.multiply(w2).subtract(wOne).mod(p);
// }
//
// private BigInteger WOne(BigInteger r, BigInteger x, BigInteger p)
// {
// return r.multiply(r).multiply(x.modPow(q.subtract(ECConstants.TWO), q)).subtract(ECConstants.TWO).mod(p);
// }
private static BigInteger[] lucasSequence(
BigInteger p,
BigInteger P,
BigInteger Q,
BigInteger k)
{
int n = k.bitLength();
int s = k.getLowestSetBit();
BigInteger Uh = ECConstants.ONE;
BigInteger Vl = ECConstants.TWO;
BigInteger Vh = P;
BigInteger Ql = ECConstants.ONE;
BigInteger Qh = ECConstants.ONE;
for (int j = n - 1; j >= s + 1; --j)
{
Ql = Ql.multiply(Qh).mod(p);
if (k.testBit(j))
{
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vh).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
}
else
{
Qh = Ql;
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
}
}
Ql = Ql.multiply(Qh).mod(p);
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Ql = Ql.multiply(Qh).mod(p);
for (int j = 1; j <= s; ++j)
{
Uh = Uh.multiply(Vl).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
Ql = Ql.multiply(Ql).mod(p);
}
return new BigInteger[]{ Uh, Vl };
}
public boolean equals(Object other)
{
if (other == this)
{
return true;
}
if (!(other instanceof ECFieldElement.Fp))
{
return false;
}
ECFieldElement.Fp o = (ECFieldElement.Fp)other;
return q.equals(o.q) && x.equals(o.x);
}
public int hashCode()
{
return q.hashCode() ^ x.hashCode();
}
}
// /**
// * Class representing the Elements of the finite field
// * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB)
// * representation. Both trinomial (TPB) and pentanomial (PPB) polynomial
// * basis representations are supported. Gaussian normal basis (GNB)
// * representation is not supported.
// */
// public static class F2m extends ECFieldElement
// {
// BigInteger x;
//
// /**
// * Indicates gaussian normal basis representation (GNB). Number chosen
// * according to X9.62. GNB is not implemented at present.
// */
// public static final int GNB = 1;
//
// /**
// * Indicates trinomial basis representation (TPB). Number chosen
// * according to X9.62.
// */
// public static final int TPB = 2;
//
// /**
// * Indicates pentanomial basis representation (PPB). Number chosen
// * according to X9.62.
// */
// public static final int PPB = 3;
//
// /**
// * TPB or PPB.
// */
// private int representation;
//
// /**
// * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
// */
// private int m;
//
// /**
// * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
// * x<sup>k</sup> + 1</code> represents the reduction polynomial
// * <code>f(z)</code>.<br>
// * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.<br>
// */
// private int k1;
//
// /**
// * TPB: Always set to <code>0</code><br>
// * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.<br>
// */
// private int k2;
//
// /**
// * TPB: Always set to <code>0</code><br>
// * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.<br>
// */
// private int k3;
//
// /**
// * Constructor for PPB.
// * @param m The exponent <code>m</code> of
// * <code>F<sub>2<sup>m</sup></sub></code>.
// * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.
// * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.
// * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.
// * @param x The BigInteger representing the value of the field element.
// */
// public F2m(
// int m,
// int k1,
// int k2,
// int k3,
// BigInteger x)
// {
//// super(x);
// this.x = x;
//
// if ((k2 == 0) && (k3 == 0))
// {
// this.representation = TPB;
// }
// else
// {
// if (k2 >= k3)
// {
// throw new IllegalArgumentException(
// "k2 must be smaller than k3");
// }
// if (k2 <= 0)
// {
// throw new IllegalArgumentException(
// "k2 must be larger than 0");
// }
// this.representation = PPB;
// }
//
// if (x.signum() < 0)
// {
// throw new IllegalArgumentException("x value cannot be negative");
// }
//
// this.m = m;
// this.k1 = k1;
// this.k2 = k2;
// this.k3 = k3;
// }
//
// /**
// * Constructor for TPB.
// * @param m The exponent <code>m</code> of
// * <code>F<sub>2<sup>m</sup></sub></code>.
// * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
// * x<sup>k</sup> + 1</code> represents the reduction
// * polynomial <code>f(z)</code>.
// * @param x The BigInteger representing the value of the field element.
// */
// public F2m(int m, int k, BigInteger x)
// {
// // Set k1 to k, and set k2 and k3 to 0
// this(m, k, 0, 0, x);
// }
//
// public BigInteger toBigInteger()
// {
// return x;
// }
//
// public String getFieldName()
// {
// return "F2m";
// }
//
// public int getFieldSize()
// {
// return m;
// }
//
// /**
// * Checks, if the ECFieldElements <code>a</code> and <code>b</code>
// * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code>
// * (having the same representation).
// * @param a field element.
// * @param b field element to be compared.
// * @throws IllegalArgumentException if <code>a</code> and <code>b</code>
// * are not elements of the same field
// * <code>F<sub>2<sup>m</sup></sub></code> (having the same
// * representation).
// */
// public static void checkFieldElements(
// ECFieldElement a,
// ECFieldElement b)
// {
// if ((!(a instanceof F2m)) || (!(b instanceof F2m)))
// {
// throw new IllegalArgumentException("Field elements are not "
// + "both instances of ECFieldElement.F2m");
// }
//
// if ((a.toBigInteger().signum() < 0) || (b.toBigInteger().signum() < 0))
// {
// throw new IllegalArgumentException(
// "x value may not be negative");
// }
//
// ECFieldElement.F2m aF2m = (ECFieldElement.F2m)a;
// ECFieldElement.F2m bF2m = (ECFieldElement.F2m)b;
//
// if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1)
// || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3))
// {
// throw new IllegalArgumentException("Field elements are not "
// + "elements of the same field F2m");
// }
//
// if (aF2m.representation != bF2m.representation)
// {
// // Should never occur
// throw new IllegalArgumentException(
// "One of the field "
// + "elements are not elements has incorrect representation");
// }
// }
//
// /**
// * Computes <code>z * a(z) mod f(z)</code>, where <code>f(z)</code> is
// * the reduction polynomial of <code>this</code>.
// * @param a The polynomial <code>a(z)</code> to be multiplied by
// * <code>z mod f(z)</code>.
// * @return <code>z * a(z) mod f(z)</code>
// */
// private BigInteger multZModF(final BigInteger a)
// {
// // Left-shift of a(z)
// BigInteger az = a.shiftLeft(1);
// if (az.testBit(this.m))
// {
// // If the coefficient of z^m in a(z) equals 1, reduction
// // modulo f(z) is performed: Add f(z) to to a(z):
// // Step 1: Unset mth coeffient of a(z)
// az = az.clearBit(this.m);
//
// // Step 2: Add r(z) to a(z), where r(z) is defined as
// // f(z) = z^m + r(z), and k1, k2, k3 are the positions of
// // the non-zero coefficients in r(z)
// az = az.flipBit(0);
// az = az.flipBit(this.k1);
// if (this.representation == PPB)
// {
// az = az.flipBit(this.k2);
// az = az.flipBit(this.k3);
// }
// }
// return az;
// }
//
// public ECFieldElement add(final ECFieldElement b)
// {
// // No check performed here for performance reasons. Instead the
// // elements involved are checked in ECPoint.F2m
// // checkFieldElements(this, b);
// if (b.toBigInteger().signum() == 0)
// {
// return this;
// }
//
// return new F2m(this.m, this.k1, this.k2, this.k3, this.x.xor(b.toBigInteger()));
// }
//
// public ECFieldElement subtract(final ECFieldElement b)
// {
// // Addition and subtraction are the same in F2m
// return add(b);
// }
//
//
// public ECFieldElement multiply(final ECFieldElement b)
// {
// // Left-to-right shift-and-add field multiplication in F2m
// // Input: Binary polynomials a(z) and b(z) of degree at most m-1
// // Output: c(z) = a(z) * b(z) mod f(z)
//
// // No check performed here for performance reasons. Instead the
// // elements involved are checked in ECPoint.F2m
// // checkFieldElements(this, b);
// final BigInteger az = this.x;
// BigInteger bz = b.toBigInteger();
// BigInteger cz;
//
// // Compute c(z) = a(z) * b(z) mod f(z)
// if (az.testBit(0))
// {
// cz = bz;
// }
// else
// {
// cz = ECConstants.ZERO;
// }
//
// for (int i = 1; i < this.m; i++)
// {
// // b(z) := z * b(z) mod f(z)
// bz = multZModF(bz);
//
// if (az.testBit(i))
// {
// // If the coefficient of x^i in a(z) equals 1, b(z) is added
// // to c(z)
// cz = cz.xor(bz);
// }
// }
// return new ECFieldElement.F2m(m, this.k1, this.k2, this.k3, cz);
// }
//
//
// public ECFieldElement divide(final ECFieldElement b)
// {
// // There may be more efficient implementations
// ECFieldElement bInv = b.invert();
// return multiply(bInv);
// }
//
// public ECFieldElement negate()
// {
// // -x == x holds for all x in F2m
// return this;
// }
//
// public ECFieldElement square()
// {
// // Naive implementation, can probably be speeded up using modular
// // reduction
// return multiply(this);
// }
//
// public ECFieldElement invert()
// {
// // Inversion in F2m using the extended Euclidean algorithm
// // Input: A nonzero polynomial a(z) of degree at most m-1
// // Output: a(z)^(-1) mod f(z)
//
// // u(z) := a(z)
// BigInteger uz = this.x;
// if (uz.signum() <= 0)
// {
// throw new ArithmeticException("x is zero or negative, " +
// "inversion is impossible");
// }
//
// // v(z) := f(z)
// BigInteger vz = ECConstants.ZERO.setBit(m);
// vz = vz.setBit(0);
// vz = vz.setBit(this.k1);
// if (this.representation == PPB)
// {
// vz = vz.setBit(this.k2);
// vz = vz.setBit(this.k3);
// }
//
// // g1(z) := 1, g2(z) := 0
// BigInteger g1z = ECConstants.ONE;
// BigInteger g2z = ECConstants.ZERO;
//
// // while u != 1
// while (!(uz.equals(ECConstants.ZERO)))
// {
// // j := deg(u(z)) - deg(v(z))
// int j = uz.bitLength() - vz.bitLength();
//
// // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j
// if (j < 0)
// {
// final BigInteger uzCopy = uz;
// uz = vz;
// vz = uzCopy;
//
// final BigInteger g1zCopy = g1z;
// g1z = g2z;
// g2z = g1zCopy;
//
// j = -j;
// }
//
// // u(z) := u(z) + z^j * v(z)
// // Note, that no reduction modulo f(z) is required, because
// // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z)))
// // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z))
// // = deg(u(z))
// uz = uz.xor(vz.shiftLeft(j));
//
// // g1(z) := g1(z) + z^j * g2(z)
// g1z = g1z.xor(g2z.shiftLeft(j));
//// if (g1z.bitLength() > this.m) {
//// throw new ArithmeticException(
//// "deg(g1z) >= m, g1z = " + g1z.toString(2));
//// }
// }
// return new ECFieldElement.F2m(
// this.m, this.k1, this.k2, this.k3, g2z);
// }
//
// public ECFieldElement sqrt()
// {
// throw new RuntimeException("Not implemented");
// }
//
// /**
// * @return the representation of the field
// * <code>F<sub>2<sup>m</sup></sub></code>, either of
// * TPB (trinomial
// * basis representation) or
// * PPB (pentanomial
// * basis representation).
// */
// public int getRepresentation()
// {
// return this.representation;
// }
//
// /**
// * @return the degree <code>m</code> of the reduction polynomial
// * <code>f(z)</code>.
// */
// public int getM()
// {
// return this.m;
// }
//
// /**
// * @return TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
// * x<sup>k</sup> + 1</code> represents the reduction polynomial
// * <code>f(z)</code>.<br>
// * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.<br>
// */
// public int getK1()
// {
// return this.k1;
// }
//
// /**
// * @return TPB: Always returns <code>0</code><br>
// * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.<br>
// */
// public int getK2()
// {
// return this.k2;
// }
//
// /**
// * @return TPB: Always set to <code>0</code><br>
// * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
// * represents the reduction polynomial <code>f(z)</code>.<br>
// */
// public int getK3()
// {
// return this.k3;
// }
//
// public boolean equals(Object anObject)
// {
// if (anObject == this)
// {
// return true;
// }
//
// if (!(anObject instanceof ECFieldElement.F2m))
// {
// return false;
// }
//
// ECFieldElement.F2m b = (ECFieldElement.F2m)anObject;
//
// return ((this.m == b.m) && (this.k1 == b.k1) && (this.k2 == b.k2)
// && (this.k3 == b.k3)
// && (this.representation == b.representation)
// && (this.x.equals(b.x)));
// }
//
// public int hashCode()
// {
// return x.hashCode() ^ m ^ k1 ^ k2 ^ k3;
// }
// }
Class representing the Elements of the finite field
F2m
in polynomial basis (PB)
representation. Both trinomial (TPB) and pentanomial (PPB) polynomial
basis representations are supported. Gaussian normal basis (GNB)
representation is not supported.
/**
* Class representing the Elements of the finite field
* <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB)
* representation. Both trinomial (TPB) and pentanomial (PPB) polynomial
* basis representations are supported. Gaussian normal basis (GNB)
* representation is not supported.
*/
public static class F2m extends ECFieldElement
{
Indicates gaussian normal basis representation (GNB). Number chosen
according to X9.62. GNB is not implemented at present.
/**
* Indicates gaussian normal basis representation (GNB). Number chosen
* according to X9.62. GNB is not implemented at present.
*/
public static final int GNB = 1;
Indicates trinomial basis representation (TPB). Number chosen
according to X9.62.
/**
* Indicates trinomial basis representation (TPB). Number chosen
* according to X9.62.
*/
public static final int TPB = 2;
Indicates pentanomial basis representation (PPB). Number chosen
according to X9.62.
/**
* Indicates pentanomial basis representation (PPB). Number chosen
* according to X9.62.
*/
public static final int PPB = 3;
TPB or PPB.
/**
* TPB or PPB.
*/
private int representation;
The exponent m
of F2m
.
/**
* The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
*/
private int m;
TPB: The integer k
where xm +
xk + 1
represents the reduction polynomial
f(z)
.
PPB: The integer k1
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
.
/**
* TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
* x<sup>k</sup> + 1</code> represents the reduction polynomial
* <code>f(z)</code>.<br>
* PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br>
*/
private int k1;
TPB: Always set to 0
PPB: The integer k2
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
.
/**
* TPB: Always set to <code>0</code><br>
* PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br>
*/
private int k2;
TPB: Always set to 0
PPB: The integer k3
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
.
/**
* TPB: Always set to <code>0</code><br>
* PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br>
*/
private int k3;
The IntArray
holding the bits.
/**
* The <code>IntArray</code> holding the bits.
*/
private IntArray x;
The number of int
s required to hold m
bits.
/**
* The number of <code>int</code>s required to hold <code>m</code> bits.
*/
private int t;
Constructor for PPB.
Params: - m – The exponent
m
of
F2m
. - k1 – The integer
k1
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
. - k2 – The integer
k2
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
. - k3 – The integer
k3
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
. - x – The BigInteger representing the value of the field element.
/**
* Constructor for PPB.
* @param m The exponent <code>m</code> of
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param x The BigInteger representing the value of the field element.
*/
public F2m(
int m,
int k1,
int k2,
int k3,
BigInteger x)
{
// t = m / 32 rounded up to the next integer
t = (m + 31) >> 5;
this.x = new IntArray(x, t);
if ((k2 == 0) && (k3 == 0))
{
this.representation = TPB;
}
else
{
if (k2 >= k3)
{
throw new IllegalArgumentException(
"k2 must be smaller than k3");
}
if (k2 <= 0)
{
throw new IllegalArgumentException(
"k2 must be larger than 0");
}
this.representation = PPB;
}
if (x.signum() < 0)
{
throw new IllegalArgumentException("x value cannot be negative");
}
this.m = m;
this.k1 = k1;
this.k2 = k2;
this.k3 = k3;
}
Constructor for TPB.
Params: - m – The exponent
m
of
F2m
. - k – The integer
k
where xm +
xk + 1
represents the reduction
polynomial f(z)
. - x – The BigInteger representing the value of the field element.
/**
* Constructor for TPB.
* @param m The exponent <code>m</code> of
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param k The integer <code>k</code> where <code>x<sup>m</sup> +
* x<sup>k</sup> + 1</code> represents the reduction
* polynomial <code>f(z)</code>.
* @param x The BigInteger representing the value of the field element.
*/
public F2m(int m, int k, BigInteger x)
{
// Set k1 to k, and set k2 and k3 to 0
this(m, k, 0, 0, x);
}
private F2m(int m, int k1, int k2, int k3, IntArray x)
{
t = (m + 31) >> 5;
this.x = x;
this.m = m;
this.k1 = k1;
this.k2 = k2;
this.k3 = k3;
if ((k2 == 0) && (k3 == 0))
{
this.representation = TPB;
}
else
{
this.representation = PPB;
}
}
public BigInteger toBigInteger()
{
return x.toBigInteger();
}
public String getFieldName()
{
return "F2m";
}
public int getFieldSize()
{
return m;
}
Checks, if the ECFieldElements a
and b
are elements of the same field F2m
(having the same representation).
Params: - a – field element.
- b – field element to be compared.
Throws: - IllegalArgumentException – if
a
and b
are not elements of the same field
F2m
(having the same
representation).
/**
* Checks, if the ECFieldElements <code>a</code> and <code>b</code>
* are elements of the same field <code>F<sub>2<sup>m</sup></sub></code>
* (having the same representation).
* @param a field element.
* @param b field element to be compared.
* @throws IllegalArgumentException if <code>a</code> and <code>b</code>
* are not elements of the same field
* <code>F<sub>2<sup>m</sup></sub></code> (having the same
* representation).
*/
public static void checkFieldElements(
ECFieldElement a,
ECFieldElement b)
{
if ((!(a instanceof F2m)) || (!(b instanceof F2m)))
{
throw new IllegalArgumentException("Field elements are not "
+ "both instances of ECFieldElement.F2m");
}
ECFieldElement.F2m aF2m = (ECFieldElement.F2m)a;
ECFieldElement.F2m bF2m = (ECFieldElement.F2m)b;
if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1)
|| (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3))
{
throw new IllegalArgumentException("Field elements are not "
+ "elements of the same field F2m");
}
if (aF2m.representation != bF2m.representation)
{
// Should never occur
throw new IllegalArgumentException(
"One of the field "
+ "elements are not elements has incorrect representation");
}
}
public ECFieldElement add(final ECFieldElement b)
{
// No check performed here for performance reasons. Instead the
// elements involved are checked in ECPoint.F2m
// checkFieldElements(this, b);
IntArray iarrClone = (IntArray)this.x.clone();
F2m bF2m = (F2m)b;
iarrClone.addShifted(bF2m.x, 0);
return new F2m(m, k1, k2, k3, iarrClone);
}
public ECFieldElement subtract(final ECFieldElement b)
{
// Addition and subtraction are the same in F2m
return add(b);
}
public ECFieldElement multiply(final ECFieldElement b)
{
// Right-to-left comb multiplication in the IntArray
// Input: Binary polynomials a(z) and b(z) of degree at most m-1
// Output: c(z) = a(z) * b(z) mod f(z)
// No check performed here for performance reasons. Instead the
// elements involved are checked in ECPoint.F2m
// checkFieldElements(this, b);
F2m bF2m = (F2m)b;
IntArray mult = x.multiply(bF2m.x, m);
mult.reduce(m, new int[]{k1, k2, k3});
return new F2m(m, k1, k2, k3, mult);
}
public ECFieldElement divide(final ECFieldElement b)
{
// There may be more efficient implementations
ECFieldElement bInv = b.invert();
return multiply(bInv);
}
public ECFieldElement negate()
{
// -x == x holds for all x in F2m
return this;
}
public ECFieldElement square()
{
IntArray squared = x.square(m);
squared.reduce(m, new int[]{k1, k2, k3});
return new F2m(m, k1, k2, k3, squared);
}
public ECFieldElement invert()
{
// Inversion in F2m using the extended Euclidean algorithm
// Input: A nonzero polynomial a(z) of degree at most m-1
// Output: a(z)^(-1) mod f(z)
// u(z) := a(z)
IntArray uz = (IntArray)this.x.clone();
// v(z) := f(z)
IntArray vz = new IntArray(t);
vz.setBit(m);
vz.setBit(0);
vz.setBit(this.k1);
if (this.representation == PPB)
{
vz.setBit(this.k2);
vz.setBit(this.k3);
}
// g1(z) := 1, g2(z) := 0
IntArray g1z = new IntArray(t);
g1z.setBit(0);
IntArray g2z = new IntArray(t);
// while u != 0
while (!uz.isZero())
// while (uz.getUsedLength() > 0)
// while (uz.bitLength() > 1)
{
// j := deg(u(z)) - deg(v(z))
int j = uz.bitLength() - vz.bitLength();
// If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j
if (j < 0)
{
final IntArray uzCopy = uz;
uz = vz;
vz = uzCopy;
final IntArray g1zCopy = g1z;
g1z = g2z;
g2z = g1zCopy;
j = -j;
}
// u(z) := u(z) + z^j * v(z)
// Note, that no reduction modulo f(z) is required, because
// deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z)))
// = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z))
// = deg(u(z))
// uz = uz.xor(vz.shiftLeft(j));
// jInt = n / 32
int jInt = j >> 5;
// jInt = n % 32
int jBit = j & 0x1F;
IntArray vzShift = vz.shiftLeft(jBit);
uz.addShifted(vzShift, jInt);
// g1(z) := g1(z) + z^j * g2(z)
// g1z = g1z.xor(g2z.shiftLeft(j));
IntArray g2zShift = g2z.shiftLeft(jBit);
g1z.addShifted(g2zShift, jInt);
}
return new ECFieldElement.F2m(
this.m, this.k1, this.k2, this.k3, g2z);
}
public ECFieldElement sqrt()
{
throw new RuntimeException("Not implemented");
}
Returns: the representation of the field
F2m
, either of
TPB (trinomial
basis representation) or
PPB (pentanomial
basis representation).
/**
* @return the representation of the field
* <code>F<sub>2<sup>m</sup></sub></code>, either of
* TPB (trinomial
* basis representation) or
* PPB (pentanomial
* basis representation).
*/
public int getRepresentation()
{
return this.representation;
}
Returns: the degree m
of the reduction polynomial
f(z)
.
/**
* @return the degree <code>m</code> of the reduction polynomial
* <code>f(z)</code>.
*/
public int getM()
{
return this.m;
}
Returns: TPB: The integer k
where xm +
xk + 1
represents the reduction polynomial
f(z)
.
PPB: The integer k1
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
.
/**
* @return TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
* x<sup>k</sup> + 1</code> represents the reduction polynomial
* <code>f(z)</code>.<br>
* PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br>
*/
public int getK1()
{
return this.k1;
}
Returns: TPB: Always returns 0
PPB: The integer k2
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
.
/**
* @return TPB: Always returns <code>0</code><br>
* PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br>
*/
public int getK2()
{
return this.k2;
}
Returns: TPB: Always set to 0
PPB: The integer k3
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
.
/**
* @return TPB: Always set to <code>0</code><br>
* PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br>
*/
public int getK3()
{
return this.k3;
}
public boolean equals(Object anObject)
{
if (anObject == this)
{
return true;
}
if (!(anObject instanceof ECFieldElement.F2m))
{
return false;
}
ECFieldElement.F2m b = (ECFieldElement.F2m)anObject;
return ((this.m == b.m) && (this.k1 == b.k1) && (this.k2 == b.k2)
&& (this.k3 == b.k3)
&& (this.representation == b.representation)
&& (this.x.equals(b.x)));
}
public int hashCode()
{
return x.hashCode() ^ m ^ k1 ^ k2 ^ k3;
}
}
}