package org.bouncycastle.crypto.signers;

import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DSA;
import org.bouncycastle.crypto.params.DSAKeyParameters;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.DSAPrivateKeyParameters;
import org.bouncycastle.crypto.params.DSAPublicKeyParameters;
import org.bouncycastle.crypto.params.ParametersWithRandom;

import java.math.BigInteger;
import java.security.SecureRandom;

The Digital Signature Algorithm - as described in "Handbook of Applied Cryptography", pages 452 - 453.
/** * The Digital Signature Algorithm - as described in "Handbook of Applied * Cryptography", pages 452 - 453. */
public class DSASigner implements DSA { DSAKeyParameters key; SecureRandom random; public void init( boolean forSigning, CipherParameters param) { if (forSigning) { if (param instanceof ParametersWithRandom) { ParametersWithRandom rParam = (ParametersWithRandom)param; this.random = rParam.getRandom(); this.key = (DSAPrivateKeyParameters)rParam.getParameters(); } else { this.random = new SecureRandom(); this.key = (DSAPrivateKeyParameters)param; } } else { this.key = (DSAPublicKeyParameters)param; } }
generate a signature for the given message using the key we were initialised with. For conventional DSA the message should be a SHA-1 hash of the message of interest.
Params:
  • message – the message that will be verified later.
/** * generate a signature for the given message using the key we were * initialised with. For conventional DSA the message should be a SHA-1 * hash of the message of interest. * * @param message the message that will be verified later. */
public BigInteger[] generateSignature( byte[] message) { DSAParameters params = key.getParameters(); BigInteger m = calculateE(params.getQ(), message); BigInteger k; int qBitLength = params.getQ().bitLength(); do { k = new BigInteger(qBitLength, random); } while (k.compareTo(params.getQ()) >= 0); BigInteger r = params.getG().modPow(k, params.getP()).mod(params.getQ()); k = k.modInverse(params.getQ()).multiply( m.add(((DSAPrivateKeyParameters)key).getX().multiply(r))); BigInteger s = k.mod(params.getQ()); BigInteger[] res = new BigInteger[2]; res[0] = r; res[1] = s; return res; }
return true if the value r and s represent a DSA signature for the passed in message for standard DSA the message should be a SHA-1 hash of the real message to be verified.
/** * return true if the value r and s represent a DSA signature for * the passed in message for standard DSA the message should be a * SHA-1 hash of the real message to be verified. */
public boolean verifySignature( byte[] message, BigInteger r, BigInteger s) { DSAParameters params = key.getParameters(); BigInteger m = calculateE(params.getQ(), message); BigInteger zero = BigInteger.valueOf(0); if (zero.compareTo(r) >= 0 || params.getQ().compareTo(r) <= 0) { return false; } if (zero.compareTo(s) >= 0 || params.getQ().compareTo(s) <= 0) { return false; } BigInteger w = s.modInverse(params.getQ()); BigInteger u1 = m.multiply(w).mod(params.getQ()); BigInteger u2 = r.multiply(w).mod(params.getQ()); u1 = params.getG().modPow(u1, params.getP()); u2 = ((DSAPublicKeyParameters)key).getY().modPow(u2, params.getP()); BigInteger v = u1.multiply(u2).mod(params.getP()).mod(params.getQ()); return v.equals(r); } private BigInteger calculateE(BigInteger n, byte[] message) { if (n.bitLength() >= message.length * 8) { return new BigInteger(1, message); } else { byte[] trunc = new byte[n.bitLength() / 8]; System.arraycopy(message, 0, trunc, 0, trunc.length); return new BigInteger(1, trunc); } } }