package org.bouncycastle.asn1.x9;

import java.math.BigInteger;

import org.bouncycastle.asn1.ASN1Encodable;
import org.bouncycastle.asn1.ASN1EncodableVector;
import org.bouncycastle.asn1.ASN1Sequence;
import org.bouncycastle.asn1.DERInteger;
import org.bouncycastle.asn1.DERObject;
import org.bouncycastle.asn1.DERObjectIdentifier;
import org.bouncycastle.asn1.DERSequence;

ASN.1 def for Elliptic-Curve Field ID structure. See X9.62, for further details.
/** * ASN.1 def for Elliptic-Curve Field ID structure. See * X9.62, for further details. */
public class X9FieldID extends ASN1Encodable implements X9ObjectIdentifiers { private DERObjectIdentifier id; private DERObject parameters;
Constructor for elliptic curves over prime fields F2.
Params:
  • primeP – The prime p defining the prime field.
/** * Constructor for elliptic curves over prime fields * <code>F<sub>2</sub></code>. * @param primeP The prime <code>p</code> defining the prime field. */
public X9FieldID(BigInteger primeP) { this.id = prime_field; this.parameters = new DERInteger(primeP); }
Constructor for elliptic curves over binary fields F2m.
Params:
  • m – The exponent m of F2m.
  • k1 – The integer k1 where xm + xk3 + xk2 + xk1 + 1 represents the reduction polynomial f(z).
  • k2 – The integer k2 where xm + xk3 + xk2 + xk1 + 1 represents the reduction polynomial f(z).
  • k3 – The integer k3 where xm + xk3 + xk2 + xk1 + 1 represents the reduction polynomial f(z)..
/** * Constructor for elliptic curves over binary fields * <code>F<sub>2<sup>m</sup></sub></code>. * @param m The exponent <code>m</code> of * <code>F<sub>2<sup>m</sup></sub></code>. * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> * represents the reduction polynomial <code>f(z)</code>. * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> * represents the reduction polynomial <code>f(z)</code>. * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> + * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code> * represents the reduction polynomial <code>f(z)</code>.. */
public X9FieldID(int m, int k1, int k2, int k3) { this.id = characteristic_two_field; ASN1EncodableVector fieldIdParams = new ASN1EncodableVector(); fieldIdParams.add(new DERInteger(m)); if (k2 == 0) { fieldIdParams.add(tpBasis); fieldIdParams.add(new DERInteger(k1)); } else { fieldIdParams.add(ppBasis); ASN1EncodableVector pentanomialParams = new ASN1EncodableVector(); pentanomialParams.add(new DERInteger(k1)); pentanomialParams.add(new DERInteger(k2)); pentanomialParams.add(new DERInteger(k3)); fieldIdParams.add(new DERSequence(pentanomialParams)); } this.parameters = new DERSequence(fieldIdParams); } public X9FieldID( ASN1Sequence seq) { this.id = (DERObjectIdentifier)seq.getObjectAt(0); this.parameters = (DERObject)seq.getObjectAt(1); } public DERObjectIdentifier getIdentifier() { return id; } public DERObject getParameters() { return parameters; }
Produce a DER encoding of the following structure.
 FieldID ::= SEQUENCE {
     fieldType       FIELD-ID.&id({IOSet}),
     parameters      FIELD-ID.&Type({IOSet}{@fieldType})
 }
/** * Produce a DER encoding of the following structure. * <pre> * FieldID ::= SEQUENCE { * fieldType FIELD-ID.&amp;id({IOSet}), * parameters FIELD-ID.&amp;Type({IOSet}{&#64;fieldType}) * } * </pre> */
public DERObject toASN1Object() { ASN1EncodableVector v = new ASN1EncodableVector(); v.add(this.id); v.add(this.parameters); return new DERSequence(v); } }