package org.bouncycastle.asn1.x9;
import java.math.BigInteger;
import org.bouncycastle.asn1.ASN1Encodable;
import org.bouncycastle.asn1.ASN1EncodableVector;
import org.bouncycastle.asn1.ASN1Sequence;
import org.bouncycastle.asn1.DERInteger;
import org.bouncycastle.asn1.DERObject;
import org.bouncycastle.asn1.DERObjectIdentifier;
import org.bouncycastle.asn1.DERSequence;
ASN.1 def for Elliptic-Curve Field ID structure. See
X9.62, for further details.
/**
* ASN.1 def for Elliptic-Curve Field ID structure. See
* X9.62, for further details.
*/
public class X9FieldID
extends ASN1Encodable
implements X9ObjectIdentifiers
{
private DERObjectIdentifier id;
private DERObject parameters;
Constructor for elliptic curves over prime fields
F2
.
Params: - primeP – The prime
p
defining the prime field.
/**
* Constructor for elliptic curves over prime fields
* <code>F<sub>2</sub></code>.
* @param primeP The prime <code>p</code> defining the prime field.
*/
public X9FieldID(BigInteger primeP)
{
this.id = prime_field;
this.parameters = new DERInteger(primeP);
}
Constructor for elliptic curves over binary fields
F2m
.
Params: - m – The exponent
m
of
F2m
. - k1 – The integer
k1
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
. - k2 – The integer
k2
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
. - k3 – The integer
k3
where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z)
..
/**
* Constructor for elliptic curves over binary fields
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param m The exponent <code>m</code> of
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>..
*/
public X9FieldID(int m, int k1, int k2, int k3)
{
this.id = characteristic_two_field;
ASN1EncodableVector fieldIdParams = new ASN1EncodableVector();
fieldIdParams.add(new DERInteger(m));
if (k2 == 0)
{
fieldIdParams.add(tpBasis);
fieldIdParams.add(new DERInteger(k1));
}
else
{
fieldIdParams.add(ppBasis);
ASN1EncodableVector pentanomialParams = new ASN1EncodableVector();
pentanomialParams.add(new DERInteger(k1));
pentanomialParams.add(new DERInteger(k2));
pentanomialParams.add(new DERInteger(k3));
fieldIdParams.add(new DERSequence(pentanomialParams));
}
this.parameters = new DERSequence(fieldIdParams);
}
public X9FieldID(
ASN1Sequence seq)
{
this.id = (DERObjectIdentifier)seq.getObjectAt(0);
this.parameters = (DERObject)seq.getObjectAt(1);
}
public DERObjectIdentifier getIdentifier()
{
return id;
}
public DERObject getParameters()
{
return parameters;
}
Produce a DER encoding of the following structure.
FieldID ::= SEQUENCE {
fieldType FIELD-ID.&id({IOSet}),
parameters FIELD-ID.&Type({IOSet}{@fieldType})
}
/**
* Produce a DER encoding of the following structure.
* <pre>
* FieldID ::= SEQUENCE {
* fieldType FIELD-ID.&id({IOSet}),
* parameters FIELD-ID.&Type({IOSet}{@fieldType})
* }
* </pre>
*/
public DERObject toASN1Object()
{
ASN1EncodableVector v = new ASN1EncodableVector();
v.add(this.id);
v.add(this.parameters);
return new DERSequence(v);
}
}