/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.spatial3d.geom;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
3D rectangle, bounded on six sides by X,Y,Z limits, degenerate in Y
@lucene.internal
/**
* 3D rectangle, bounded on six sides by X,Y,Z limits, degenerate in Y
*
* @lucene.internal
*/
class XdYZSolid extends BaseXYZSolid {
Min-X /** Min-X */
protected final double minX;
Max-X /** Max-X */
protected final double maxX;
Y /** Y */
protected final double Y;
Min-Z /** Min-Z */
protected final double minZ;
Max-Z /** Max-Z */
protected final double maxZ;
Min-X plane /** Min-X plane */
protected final SidedPlane minXPlane;
Max-X plane /** Max-X plane */
protected final SidedPlane maxXPlane;
Y plane /** Y plane */
protected final Plane yPlane;
Min-Z plane /** Min-Z plane */
protected final SidedPlane minZPlane;
Max-Z plane /** Max-Z plane */
protected final SidedPlane maxZPlane;
These are the edge points of the shape, which are defined to be at least one point on
each surface area boundary. In the case of a solid, this includes points which represent
the intersection of XYZ bounding planes and the planet, as well as points representing
the intersection of single bounding planes with the planet itself.
/** These are the edge points of the shape, which are defined to be at least one point on
* each surface area boundary. In the case of a solid, this includes points which represent
* the intersection of XYZ bounding planes and the planet, as well as points representing
* the intersection of single bounding planes with the planet itself.
*/
protected final GeoPoint[] edgePoints;
Notable points for YPlane /** Notable points for YPlane */
protected final GeoPoint[] notableYPoints;
Sole constructor
Params: - planetModel – is the planet model.
- minX – is the minimum X value.
- maxX – is the maximum X value.
- Y – is the Y value.
- minZ – is the minimum Z value.
- maxZ – is the maximum Z value.
/**
* Sole constructor
*
*@param planetModel is the planet model.
*@param minX is the minimum X value.
*@param maxX is the maximum X value.
*@param Y is the Y value.
*@param minZ is the minimum Z value.
*@param maxZ is the maximum Z value.
*/
public XdYZSolid(final PlanetModel planetModel,
final double minX,
final double maxX,
final double Y,
final double minZ,
final double maxZ) {
super(planetModel);
// Argument checking
if (maxX - minX < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("X values in wrong order or identical");
if (maxZ - minZ < Vector.MINIMUM_RESOLUTION)
throw new IllegalArgumentException("Z values in wrong order or identical");
this.minX = minX;
this.maxX = maxX;
this.Y = Y;
this.minZ = minZ;
this.maxZ = maxZ;
final double worldMinY = planetModel.getMinimumYValue();
final double worldMaxY = planetModel.getMaximumYValue();
// Construct the planes
minXPlane = new SidedPlane(maxX,0.0,0.0,xUnitVector,-minX);
maxXPlane = new SidedPlane(minX,0.0,0.0,xUnitVector,-maxX);
yPlane = new Plane(yUnitVector,-Y);
minZPlane = new SidedPlane(0.0,0.0,maxZ,zUnitVector,-minZ);
maxZPlane = new SidedPlane(0.0,0.0,minZ,zUnitVector,-maxZ);
// We need at least one point on the planet surface for each manifestation of the shape.
// There can be up to 2 (on opposite sides of the world). But we have to go through
// 4 combinations of adjacent planes in order to find out if any have 2 intersection solution.
// Typically, this requires 4 square root operations.
final GeoPoint[] minXY = minXPlane.findIntersections(planetModel,yPlane,maxXPlane,minZPlane,maxZPlane);
final GeoPoint[] maxXY = maxXPlane.findIntersections(planetModel,yPlane,minXPlane,minZPlane,maxZPlane);
final GeoPoint[] YminZ = yPlane.findIntersections(planetModel,minZPlane,maxZPlane,minXPlane,maxXPlane);
final GeoPoint[] YmaxZ = yPlane.findIntersections(planetModel,maxZPlane,minZPlane,minXPlane,maxXPlane);
notableYPoints = glueTogether(minXY, maxXY, YminZ, YmaxZ);
// Now, compute the edge points.
// This is the trickiest part of setting up an XYZSolid. We've computed intersections already, so
// we'll start there. We know that at most there will be two disconnected shapes on the planet surface.
// But there's also a case where exactly one plane slices through the world, and none of the bounding plane
// intersections do. Thus, if we don't find any of the edge intersection cases, we have to look for that last case.
// We need to look at single-plane/world intersections.
// We detect these by looking at the world model and noting its x, y, and z bounds.
// The cases we are looking for are when the four corner points for any given
// plane are all outside of the world, AND that plane intersects the world.
// There are four corner points all told; we must evaluate these WRT the planet surface.
final boolean minXYminZ = planetModel.pointOutside(minX, Y, minZ);
final boolean minXYmaxZ = planetModel.pointOutside(minX, Y, maxZ);
final boolean maxXYminZ = planetModel.pointOutside(maxX, Y, minZ);
final boolean maxXYmaxZ = planetModel.pointOutside(maxX, Y, maxZ);
final GeoPoint[] yEdges;
if (Y - worldMinY >= -Vector.MINIMUM_RESOLUTION && Y - worldMaxY <= Vector.MINIMUM_RESOLUTION &&
minX < 0.0 && maxX > 0.0 && minZ < 0.0 && maxZ > 0.0 &&
minXYminZ && minXYmaxZ && maxXYminZ && maxXYmaxZ) {
// Find any point on the minY plane that intersects the world
// First construct a perpendicular plane that will allow us to find a sample point.
// This plane is vertical and goes through the points (0,0,0) and (0,1,0)
// Then use it to compute a sample point.
final GeoPoint intPoint = yPlane.getSampleIntersectionPoint(planetModel, yVerticalPlane);
if (intPoint != null) {
yEdges = new GeoPoint[]{intPoint};
} else {
yEdges = EMPTY_POINTS;
}
} else {
yEdges = EMPTY_POINTS;
}
this.edgePoints = glueTogether(minXY, maxXY, YminZ, YmaxZ, yEdges);
}
Constructor for deserialization.
Params: - planetModel – is the planet model.
- inputStream – is the input stream.
/**
* Constructor for deserialization.
* @param planetModel is the planet model.
* @param inputStream is the input stream.
*/
public XdYZSolid(final PlanetModel planetModel, final InputStream inputStream) throws IOException {
this(planetModel,
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream),
SerializableObject.readDouble(inputStream));
}
@Override
public void write(final OutputStream outputStream) throws IOException {
SerializableObject.writeDouble(outputStream, minX);
SerializableObject.writeDouble(outputStream, maxX);
SerializableObject.writeDouble(outputStream, Y);
SerializableObject.writeDouble(outputStream, minZ);
SerializableObject.writeDouble(outputStream, maxZ);
}
@Override
protected GeoPoint[] getEdgePoints() {
return edgePoints;
}
@Override
public boolean isWithin(final double x, final double y, final double z) {
return minXPlane.isWithin(x, y, z) &&
maxXPlane.isWithin(x, y, z) &&
yPlane.evaluateIsZero(x, y, z) &&
minZPlane.isWithin(x, y, z) &&
maxZPlane.isWithin(x, y, z);
}
@Override
public int getRelationship(final GeoShape path) {
//System.err.println(this+" getrelationship with "+path);
final int insideRectangle = isShapeInsideArea(path);
if (insideRectangle == SOME_INSIDE) {
//System.err.println(" some inside");
return OVERLAPS;
}
// Figure out if the entire XYZArea is contained by the shape.
final int insideShape = isAreaInsideShape(path);
if (insideShape == SOME_INSIDE) {
return OVERLAPS;
}
if (insideRectangle == ALL_INSIDE && insideShape == ALL_INSIDE) {
//System.err.println(" inside of each other");
return OVERLAPS;
}
if (path.intersects(yPlane, notableYPoints, minXPlane, maxXPlane, minZPlane, maxZPlane)) {
//System.err.println(" edges intersect");
return OVERLAPS;
}
if (insideRectangle == ALL_INSIDE) {
//System.err.println(" shape inside rectangle");
return WITHIN;
}
if (insideShape == ALL_INSIDE) {
//System.err.println(" shape contains rectangle");
return CONTAINS;
}
//System.err.println(" disjoint");
return DISJOINT;
}
@Override
public boolean equals(Object o) {
if (!(o instanceof XdYZSolid))
return false;
XdYZSolid other = (XdYZSolid) o;
if (!super.equals(other)) {
return false;
}
return other.minXPlane.equals(minXPlane) &&
other.maxXPlane.equals(maxXPlane) &&
other.yPlane.equals(yPlane) &&
other.minZPlane.equals(minZPlane) &&
other.maxZPlane.equals(maxZPlane);
}
@Override
public int hashCode() {
int result = super.hashCode();
result = 31 * result + minXPlane.hashCode();
result = 31 * result + maxXPlane.hashCode();
result = 31 * result + yPlane.hashCode();
result = 31 * result + minZPlane.hashCode();
result = 31 * result + maxZPlane.hashCode();
return result;
}
@Override
public String toString() {
return "XdYZSolid: {planetmodel="+planetModel+", minXplane="+minXPlane+", maxXplane="+maxXPlane+", yplane="+yPlane+", minZplane="+minZPlane+", maxZplane="+maxZPlane+"}";
}
}