/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.spatial3d.geom;

import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;

Holds mathematical constants associated with the model of a planet.
@lucene.experimental
/** * Holds mathematical constants associated with the model of a planet. * @lucene.experimental */
public class PlanetModel implements SerializableObject {
Planet model corresponding to sphere.
/** Planet model corresponding to sphere. */
public static final PlanetModel SPHERE = new PlanetModel(1.0,1.0);
Mean radius
/** Mean radius */
// see http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf public static final double WGS84_MEAN = 6371008.7714;
Polar radius
/** Polar radius */
public static final double WGS84_POLAR = 6356752.314245;
Equatorial radius
/** Equatorial radius */
public static final double WGS84_EQUATORIAL = 6378137.0;
Planet model corresponding to WGS84
/** Planet model corresponding to WGS84 */
public static final PlanetModel WGS84 = new PlanetModel(WGS84_EQUATORIAL/WGS84_MEAN, WGS84_POLAR/WGS84_MEAN); // Surface of the planet: // x^2/a^2 + y^2/b^2 + z^2/c^2 = 1.0 // Scaling factors are a,b,c. geo3d can only support models where a==b, so use ab instead.
The x/y scaling factor
/** The x/y scaling factor */
public final double ab;
The z scaling factor
/** The z scaling factor */
public final double c;
The inverse of ab
/** The inverse of ab */
public final double inverseAb;
The inverse of c
/** The inverse of c */
public final double inverseC;
The square of the inverse of ab
/** The square of the inverse of ab */
public final double inverseAbSquared;
The square of the inverse of c
/** The square of the inverse of c */
public final double inverseCSquared;
The flattening value
/** The flattening value */
public final double flattening;
The square ratio
/** The square ratio */
public final double squareRatio;
The scale of the planet
/** The scale of the planet */
public final double scale;
The inverse of scale
/** The inverse of scale */
public final double inverseScale; // We do NOT include radius, because all computations in geo3d are in radians, not meters. // Compute north and south pole for planet model, since these are commonly used.
North pole
/** North pole */
public final GeoPoint NORTH_POLE;
South pole
/** South pole */
public final GeoPoint SOUTH_POLE;
Min X pole
/** Min X pole */
public final GeoPoint MIN_X_POLE;
Max X pole
/** Max X pole */
public final GeoPoint MAX_X_POLE;
Min Y pole
/** Min Y pole */
public final GeoPoint MIN_Y_POLE;
Max Y pole
/** Max Y pole */
public final GeoPoint MAX_Y_POLE;
Minimum surface distance between poles
/** Minimum surface distance between poles */
public final double minimumPoleDistance;
Constructor.
Params:
  • ab – is the x/y scaling factor.
  • c – is the z scaling factor.
/** Constructor. * @param ab is the x/y scaling factor. * @param c is the z scaling factor. */
public PlanetModel(final double ab, final double c) { this.ab = ab; this.c = c; this.inverseAb = 1.0 / ab; this.inverseC = 1.0 / c; this.flattening = (ab - c) * inverseAb; this.squareRatio = (ab * ab - c * c) / (c * c); this.inverseAbSquared = inverseAb * inverseAb; this.inverseCSquared = inverseC * inverseC; this.NORTH_POLE = new GeoPoint(c, 0.0, 0.0, 1.0, Math.PI * 0.5, 0.0); this.SOUTH_POLE = new GeoPoint(c, 0.0, 0.0, -1.0, -Math.PI * 0.5, 0.0); this.MIN_X_POLE = new GeoPoint(ab, -1.0, 0.0, 0.0, 0.0, -Math.PI); this.MAX_X_POLE = new GeoPoint(ab, 1.0, 0.0, 0.0, 0.0, 0.0); this.MIN_Y_POLE = new GeoPoint(ab, 0.0, -1.0, 0.0, 0.0, -Math.PI * 0.5); this.MAX_Y_POLE = new GeoPoint(ab, 0.0, 1.0, 0.0, 0.0, Math.PI * 0.5); this.scale = (2.0 * ab + c)/3.0; this.inverseScale = 1.0 / scale; this.minimumPoleDistance = Math.min(surfaceDistance(NORTH_POLE, SOUTH_POLE), surfaceDistance(MIN_X_POLE, MAX_X_POLE)); }
Deserialization constructor.
Params:
  • inputStream – is the input stream.
/** Deserialization constructor. * @param inputStream is the input stream. */
public PlanetModel(final InputStream inputStream) throws IOException { this(SerializableObject.readDouble(inputStream), SerializableObject.readDouble(inputStream)); } @Override public void write(final OutputStream outputStream) throws IOException { SerializableObject.writeDouble(outputStream, ab); SerializableObject.writeDouble(outputStream, c); }
Does this planet model describe a sphere?
Returns:true if so.
/** Does this planet model describe a sphere? *@return true if so. */
public boolean isSphere() { return this.ab == this.c; }
Find the minimum magnitude of all points on the ellipsoid.
Returns:the minimum magnitude for the planet.
/** Find the minimum magnitude of all points on the ellipsoid. * @return the minimum magnitude for the planet. */
public double getMinimumMagnitude() { return Math.min(this.ab, this.c); }
Find the maximum magnitude of all points on the ellipsoid.
Returns:the maximum magnitude for the planet.
/** Find the maximum magnitude of all points on the ellipsoid. * @return the maximum magnitude for the planet. */
public double getMaximumMagnitude() { return Math.max(this.ab, this.c); }
Find the minimum x value.
Returns:the minimum X value.
/** Find the minimum x value. *@return the minimum X value. */
public double getMinimumXValue() { return -this.ab; }
Find the maximum x value.
Returns:the maximum X value.
/** Find the maximum x value. *@return the maximum X value. */
public double getMaximumXValue() { return this.ab; }
Find the minimum y value.
Returns:the minimum Y value.
/** Find the minimum y value. *@return the minimum Y value. */
public double getMinimumYValue() { return -this.ab; }
Find the maximum y value.
Returns:the maximum Y value.
/** Find the maximum y value. *@return the maximum Y value. */
public double getMaximumYValue() { return this.ab; }
Find the minimum z value.
Returns:the minimum Z value.
/** Find the minimum z value. *@return the minimum Z value. */
public double getMinimumZValue() { return -this.c; }
Find the maximum z value.
Returns:the maximum Z value.
/** Find the maximum z value. *@return the maximum Z value. */
public double getMaximumZValue() { return this.c; }
Check if point is on surface.
Params:
  • v – is the point to check.
Returns:true if the point is on the planet surface.
/** Check if point is on surface. * @param v is the point to check. * @return true if the point is on the planet surface. */
public boolean pointOnSurface(final Vector v) { return pointOnSurface(v.x, v.y, v.z); }
Check if point is on surface.
Params:
  • x – is the x coord.
  • y – is the y coord.
  • z – is the z coord.
/** Check if point is on surface. * @param x is the x coord. * @param y is the y coord. * @param z is the z coord. */
public boolean pointOnSurface(final double x, final double y, final double z) { // Equation of planet surface is: // x^2 / a^2 + y^2 / b^2 + z^2 / c^2 - 1 = 0 return Math.abs(x * x * inverseAb * inverseAb + y * y * inverseAb * inverseAb + z * z * inverseC * inverseC - 1.0) < Vector.MINIMUM_RESOLUTION; }
Check if point is outside surface.
Params:
  • v – is the point to check.
Returns:true if the point is outside the planet surface.
/** Check if point is outside surface. * @param v is the point to check. * @return true if the point is outside the planet surface. */
public boolean pointOutside(final Vector v) { return pointOutside(v.x, v.y, v.z); }
Check if point is outside surface.
Params:
  • x – is the x coord.
  • y – is the y coord.
  • z – is the z coord.
/** Check if point is outside surface. * @param x is the x coord. * @param y is the y coord. * @param z is the z coord. */
public boolean pointOutside(final double x, final double y, final double z) { // Equation of planet surface is: // x^2 / a^2 + y^2 / b^2 + z^2 / c^2 - 1 = 0 return (x * x + y * y) * inverseAb * inverseAb + z * z * inverseC * inverseC - 1.0 > Vector.MINIMUM_RESOLUTION; }
Compute a GeoPoint that's scaled to actually be on the planet surface.
Params:
  • vector – is the vector.
Returns:the scaled point.
/** Compute a GeoPoint that's scaled to actually be on the planet surface. * @param vector is the vector. * @return the scaled point. */
public GeoPoint createSurfacePoint(final Vector vector) { return createSurfacePoint(vector.x, vector.y, vector.z); }
Compute a GeoPoint that's based on (x,y,z) values, but is scaled to actually be on the planet surface.
Params:
  • x – is the x value.
  • y – is the y value.
  • z – is the z value.
Returns:the scaled point.
/** Compute a GeoPoint that's based on (x,y,z) values, but is scaled to actually be on the planet surface. * @param x is the x value. * @param y is the y value. * @param z is the z value. * @return the scaled point. */
public GeoPoint createSurfacePoint(final double x, final double y, final double z) { // The equation of the surface is: // (x^2 / a^2 + y^2 / b^2 + z^2 / c^2) = 1 // We will need to scale the passed-in x, y, z values: // ((tx)^2 / a^2 + (ty)^2 / b^2 + (tz)^2 / c^2) = 1 // t^2 * (x^2 / a^2 + y^2 / b^2 + z^2 / c^2) = 1 // t = sqrt ( 1 / (x^2 / a^2 + y^2 / b^2 + z^2 / c^2)) final double t = Math.sqrt(1.0 / (x*x*inverseAbSquared + y*y*inverseAbSquared + z*z*inverseCSquared)); return new GeoPoint(t*x, t*y, t*z); }
Compute a GeoPoint that's a bisection between two other GeoPoints.
Params:
  • pt1 – is the first point.
  • pt2 – is the second point.
Returns:the bisection point, or null if a unique one cannot be found.
/** Compute a GeoPoint that's a bisection between two other GeoPoints. * @param pt1 is the first point. * @param pt2 is the second point. * @return the bisection point, or null if a unique one cannot be found. */
public GeoPoint bisection(final GeoPoint pt1, final GeoPoint pt2) { final double A0 = (pt1.x + pt2.x) * 0.5; final double B0 = (pt1.y + pt2.y) * 0.5; final double C0 = (pt1.z + pt2.z) * 0.5; final double denom = inverseAbSquared * A0 * A0 + inverseAbSquared * B0 * B0 + inverseCSquared * C0 * C0; if(denom < Vector.MINIMUM_RESOLUTION) { // Bisection is undefined return null; } final double t = Math.sqrt(1.0 / denom); return new GeoPoint(t * A0, t * B0, t * C0); }
Compute surface distance between two points.
Params:
  • pt1 – is the first point.
  • pt2 – is the second point.
Returns:the adjusted angle, when multiplied by the mean earth radius, yields a surface distance. This will differ from GeoPoint.arcDistance() only when the planet model is not a sphere. @see GeoPoint.arcDistance(Vector)
/** Compute surface distance between two points. * @param pt1 is the first point. * @param pt2 is the second point. * @return the adjusted angle, when multiplied by the mean earth radius, yields a surface distance. This will differ * from GeoPoint.arcDistance() only when the planet model is not a sphere. @see {@link GeoPoint#arcDistance(Vector)} */
public double surfaceDistance(final GeoPoint pt1, final GeoPoint pt2) { final double L = pt2.getLongitude() - pt1.getLongitude(); final double U1 = Math.atan((1.0-flattening) * Math.tan(pt1.getLatitude())); final double U2 = Math.atan((1.0-flattening) * Math.tan(pt2.getLatitude())); final double sinU1 = Math.sin(U1); final double cosU1 = Math.cos(U1); final double sinU2 = Math.sin(U2); final double cosU2 = Math.cos(U2); final double dCosU1CosU2 = cosU1 * cosU2; final double dCosU1SinU2 = cosU1 * sinU2; final double dSinU1SinU2 = sinU1 * sinU2; final double dSinU1CosU2 = sinU1 * cosU2; double lambda = L; double lambdaP = Math.PI * 2.0; int iterLimit = 0; double cosSqAlpha; double sinSigma; double cos2SigmaM; double cosSigma; double sigma; double sinAlpha; double C; double sinLambda, cosLambda; do { sinLambda = Math.sin(lambda); cosLambda = Math.cos(lambda); sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) + (dCosU1SinU2 - dSinU1CosU2 * cosLambda) * (dCosU1SinU2 - dSinU1CosU2 * cosLambda)); if (sinSigma==0.0) { return 0.0; } cosSigma = dSinU1SinU2 + dCosU1CosU2 * cosLambda; sigma = Math.atan2(sinSigma, cosSigma); sinAlpha = dCosU1CosU2 * sinLambda / sinSigma; cosSqAlpha = 1.0 - sinAlpha * sinAlpha; cos2SigmaM = cosSigma - 2.0 * dSinU1SinU2 / cosSqAlpha; if (Double.isNaN(cos2SigmaM)) cos2SigmaM = 0.0; // equatorial line: cosSqAlpha=0 C = flattening / 16.0 * cosSqAlpha * (4.0 + flattening * (4.0 - 3.0 * cosSqAlpha)); lambdaP = lambda; lambda = L + (1.0 - C) * flattening * sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1.0 + 2.0 * cos2SigmaM *cos2SigmaM))); } while (Math.abs(lambda-lambdaP) >= Vector.MINIMUM_RESOLUTION && ++iterLimit < 100); final double uSq = cosSqAlpha * this.squareRatio; final double A = 1.0 + uSq / 16384.0 * (4096.0 + uSq * (-768.0 + uSq * (320.0 - 175.0 * uSq))); final double B = uSq / 1024.0 * (256.0 + uSq * (-128.0 + uSq * (74.0 - 47.0 * uSq))); final double deltaSigma = B * sinSigma * (cos2SigmaM + B / 4.0 * (cosSigma * (-1.0 + 2.0 * cos2SigmaM * cos2SigmaM)- B / 6.0 * cos2SigmaM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SigmaM * cos2SigmaM))); return c * inverseScale * A * (sigma - deltaSigma); }
Compute new point given original point, a bearing direction, and an adjusted angle (as would be computed by the surfaceDistance() method above). The original point can be anywhere on the globe. The bearing direction ranges from 0 (due east at the equator) to pi/2 (due north) to pi (due west at the equator) to 3 pi/4 (due south) to 2 pi.
Params:
  • from – is the starting point.
  • dist – is the adjusted angle.
  • bearing – is the direction to proceed.
Returns:the new point, consistent with the bearing direction and distance.
/** Compute new point given original point, a bearing direction, and an adjusted angle (as would be computed by * the surfaceDistance() method above). The original point can be anywhere on the globe. The bearing direction * ranges from 0 (due east at the equator) to pi/2 (due north) to pi (due west at the equator) to 3 pi/4 (due south) * to 2 pi. * @param from is the starting point. * @param dist is the adjusted angle. * @param bearing is the direction to proceed. * @return the new point, consistent with the bearing direction and distance. */
public GeoPoint surfacePointOnBearing(final GeoPoint from, final double dist, final double bearing) { // Algorithm using Vincenty's formulae (https://en.wikipedia.org/wiki/Vincenty%27s_formulae) // which takes into account that planets may not be spherical. //Code adaptation from http://www.movable-type.co.uk/scripts/latlong-vincenty.html double lat = from.getLatitude(); double lon = from.getLongitude(); double sinα1 = Math.sin(bearing); double cosα1 = Math.cos(bearing); double tanU1 = (1.0 - flattening) * Math.tan(lat); double cosU1 = 1.0 / Math.sqrt((1.0 + tanU1 * tanU1)); double sinU1 = tanU1 * cosU1; double σ1 = Math.atan2(tanU1, cosα1); double sinα = cosU1 * sinα1; double cosSqα = 1.0 - sinα * sinα; double uSq = cosSqα * squareRatio; double A = 1.0 + uSq / 16384.0 * (4096.0 + uSq * (-768.0 + uSq * (320.0 - 175.0 * uSq))); double B = uSq / 1024.0 * (256.0 + uSq * (-128.0 + uSq * (74.0 - 47.0 * uSq))); double cos2σM; double sinσ; double cosσ; double Δσ; double σ = dist / (c * inverseScale * A); double σʹ; double iterations = 0; do { cos2σM = Math.cos(2.0 * σ1 + σ); sinσ = Math.sin(σ); cosσ = Math.cos(σ); Δσ = B * sinσ * (cos2σM + B / 4.0 * (cosσ * (-1.0 + 2.0 * cos2σM * cos2σM) - B / 6.0 * cos2σM * (-3.0 + 4.0 * sinσ * sinσ) * (-3.0 + 4.0 * cos2σM * cos2σM))); σʹ = σ; σ = dist / (c * inverseScale * A) + Δσ; } while (Math.abs(σ - σʹ) >= Vector.MINIMUM_RESOLUTION && ++iterations < 100); double x = sinU1 * sinσ - cosU1 * cosσ * cosα1; double φ2 = Math.atan2(sinU1 * cosσ + cosU1 * sinσ * cosα1, (1.0 - flattening) * Math.sqrt(sinα * sinα + x * x)); double λ = Math.atan2(sinσ * sinα1, cosU1 * cosσ - sinU1 * sinσ * cosα1); double C = flattening / 16.0 * cosSqα * (4.0 + flattening * (4.0 - 3.0 * cosSqα)); double L = λ - (1.0 - C) * flattening * sinα * (σ + C * sinσ * (cos2σM + C * cosσ * (-1.0 + 2.0 * cos2σM * cos2σM))); double λ2 = (lon + L + 3.0 * Math.PI) % (2.0 * Math.PI) - Math.PI; // normalise to -180..+180 return new GeoPoint(this, φ2, λ2); } @Override public boolean equals(final Object o) { if (!(o instanceof PlanetModel)) return false; final PlanetModel other = (PlanetModel)o; return ab == other.ab && c == other.c; } @Override public int hashCode() { return Double.hashCode(ab) + Double.hashCode(c); } @Override public String toString() { if (this.equals(SPHERE)) { return "PlanetModel.SPHERE"; } else if (this.equals(WGS84)) { return "PlanetModel.WGS84"; } else { return "PlanetModel(ab="+ab+" c="+c+")"; } } }