/*
 * dk.brics.automaton
 * 
 * Copyright (c) 2001-2009 Anders Moeller
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

package org.apache.lucene.util.automaton;

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.BytesRefBuilder;
import org.apache.lucene.util.IntsRef;
import org.apache.lucene.util.IntsRefBuilder;
import org.apache.lucene.util.RamUsageEstimator;

Automata operations.
@lucene.experimental
/** * Automata operations. * * @lucene.experimental */
final public class Operations {
Default maximum number of states that determinize should create.
/** * Default maximum number of states that {@link Operations#determinize} should create. */
public static final int DEFAULT_MAX_DETERMINIZED_STATES = 10000;
Maximum level of recursion allowed in recursive operations.
/** * Maximum level of recursion allowed in recursive operations. */
public static final int MAX_RECURSION_LEVEL = 1000; private Operations() {}
Returns an automaton that accepts the concatenation of the languages of the given automata.

Complexity: linear in total number of states.

/** * Returns an automaton that accepts the concatenation of the languages of the * given automata. * <p> * Complexity: linear in total number of states. */
static public Automaton concatenate(Automaton a1, Automaton a2) { return concatenate(Arrays.asList(a1, a2)); }
Returns an automaton that accepts the concatenation of the languages of the given automata.

Complexity: linear in total number of states.

/** * Returns an automaton that accepts the concatenation of the languages of the * given automata. * <p> * Complexity: linear in total number of states. */
static public Automaton concatenate(List<Automaton> l) { Automaton result = new Automaton(); // First pass: create all states for(Automaton a : l) { if (a.getNumStates() == 0) { result.finishState(); return result; } int numStates = a.getNumStates(); for(int s=0;s<numStates;s++) { result.createState(); } } // Second pass: add transitions, carefully linking accept // states of A to init state of next A: int stateOffset = 0; Transition t = new Transition(); for(int i=0;i<l.size();i++) { Automaton a = l.get(i); int numStates = a.getNumStates(); Automaton nextA = (i == l.size()-1) ? null : l.get(i+1); for(int s=0;s<numStates;s++) { int numTransitions = a.initTransition(s, t); for(int j=0;j<numTransitions;j++) { a.getNextTransition(t); result.addTransition(stateOffset + s, stateOffset + t.dest, t.min, t.max); } if (a.isAccept(s)) { Automaton followA = nextA; int followOffset = stateOffset; int upto = i+1; while (true) { if (followA != null) { // Adds a "virtual" epsilon transition: numTransitions = followA.initTransition(0, t); for(int j=0;j<numTransitions;j++) { followA.getNextTransition(t); result.addTransition(stateOffset + s, followOffset + numStates + t.dest, t.min, t.max); } if (followA.isAccept(0)) { // Keep chaining if followA accepts empty string followOffset += followA.getNumStates(); followA = (upto == l.size()-1) ? null : l.get(upto+1); upto++; } else { break; } } else { result.setAccept(stateOffset + s, true); break; } } } } stateOffset += numStates; } if (result.getNumStates() == 0) { result.createState(); } result.finishState(); return result; }
Returns an automaton that accepts the union of the empty string and the language of the given automaton. This may create a dead state.

Complexity: linear in number of states.

/** * Returns an automaton that accepts the union of the empty string and the * language of the given automaton. This may create a dead state. * <p> * Complexity: linear in number of states. */
static public Automaton optional(Automaton a) { Automaton result = new Automaton(); result.createState(); result.setAccept(0, true); if (a.getNumStates() > 0) { result.copy(a); result.addEpsilon(0, 1); } result.finishState(); return result; }
Returns an automaton that accepts the Kleene star (zero or more concatenated repetitions) of the language of the given automaton. Never modifies the input automaton language.

Complexity: linear in number of states.

/** * Returns an automaton that accepts the Kleene star (zero or more * concatenated repetitions) of the language of the given automaton. Never * modifies the input automaton language. * <p> * Complexity: linear in number of states. */
static public Automaton repeat(Automaton a) { if (a.getNumStates() == 0) { // Repeating the empty automata will still only accept the empty automata. return a; } Automaton.Builder builder = new Automaton.Builder(); builder.createState(); builder.setAccept(0, true); builder.copy(a); Transition t = new Transition(); int count = a.initTransition(0, t); for(int i=0;i<count;i++) { a.getNextTransition(t); builder.addTransition(0, t.dest+1, t.min, t.max); } int numStates = a.getNumStates(); for(int s=0;s<numStates;s++) { if (a.isAccept(s)) { count = a.initTransition(0, t); for(int i=0;i<count;i++) { a.getNextTransition(t); builder.addTransition(s+1, t.dest+1, t.min, t.max); } } } return builder.finish(); }
Returns an automaton that accepts min or more concatenated repetitions of the language of the given automaton.

Complexity: linear in number of states and in min.

/** * Returns an automaton that accepts <code>min</code> or more concatenated * repetitions of the language of the given automaton. * <p> * Complexity: linear in number of states and in <code>min</code>. */
static public Automaton repeat(Automaton a, int count) { if (count == 0) { return repeat(a); } List<Automaton> as = new ArrayList<>(); while (count-- > 0) { as.add(a); } as.add(repeat(a)); return concatenate(as); }
Returns an automaton that accepts between min and max (including both) concatenated repetitions of the language of the given automaton.

Complexity: linear in number of states and in min and max.

/** * Returns an automaton that accepts between <code>min</code> and * <code>max</code> (including both) concatenated repetitions of the language * of the given automaton. * <p> * Complexity: linear in number of states and in <code>min</code> and * <code>max</code>. */
static public Automaton repeat(Automaton a, int min, int max) { if (min > max) { return Automata.makeEmpty(); } Automaton b; if (min == 0) { b = Automata.makeEmptyString(); } else if (min == 1) { b = new Automaton(); b.copy(a); } else { List<Automaton> as = new ArrayList<>(); for(int i=0;i<min;i++) { as.add(a); } b = concatenate(as); } Set<Integer> prevAcceptStates = toSet(b, 0); Automaton.Builder builder = new Automaton.Builder(); builder.copy(b); for(int i=min;i<max;i++) { int numStates = builder.getNumStates(); builder.copy(a); for(int s : prevAcceptStates) { builder.addEpsilon(s, numStates); } prevAcceptStates = toSet(a, numStates); } return builder.finish(); } private static Set<Integer> toSet(Automaton a, int offset) { int numStates = a.getNumStates(); BitSet isAccept = a.getAcceptStates(); Set<Integer> result = new HashSet<Integer>(); int upto = 0; while (upto < numStates && (upto = isAccept.nextSetBit(upto)) != -1) { result.add(offset+upto); upto++; } return result; }
Returns a (deterministic) automaton that accepts the complement of the language of the given automaton.

Complexity: linear in number of states if already deterministic and exponential otherwise.

Params:
  • maxDeterminizedStates – maximum number of states determinizing the automaton can result in. Set higher to allow more complex queries and lower to prevent memory exhaustion.
/** * Returns a (deterministic) automaton that accepts the complement of the * language of the given automaton. * <p> * Complexity: linear in number of states if already deterministic and * exponential otherwise. * @param maxDeterminizedStates maximum number of states determinizing the * automaton can result in. Set higher to allow more complex queries and * lower to prevent memory exhaustion. */
static public Automaton complement(Automaton a, int maxDeterminizedStates) { a = totalize(determinize(a, maxDeterminizedStates)); int numStates = a.getNumStates(); for (int p=0;p<numStates;p++) { a.setAccept(p, !a.isAccept(p)); } return removeDeadStates(a); }
Returns a (deterministic) automaton that accepts the intersection of the language of a1 and the complement of the language of a2. As a side-effect, the automata may be determinized, if not already deterministic.

Complexity: quadratic in number of states if a2 already deterministic and exponential in number of a2's states otherwise.

/** * Returns a (deterministic) automaton that accepts the intersection of the * language of <code>a1</code> and the complement of the language of * <code>a2</code>. As a side-effect, the automata may be determinized, if not * already deterministic. * <p> * Complexity: quadratic in number of states if a2 already deterministic and * exponential in number of a2's states otherwise. */
static public Automaton minus(Automaton a1, Automaton a2, int maxDeterminizedStates) { if (Operations.isEmpty(a1) || a1 == a2) { return Automata.makeEmpty(); } if (Operations.isEmpty(a2)) { return a1; } return intersection(a1, complement(a2, maxDeterminizedStates)); }
Returns an automaton that accepts the intersection of the languages of the given automata. Never modifies the input automata languages.

Complexity: quadratic in number of states.

/** * Returns an automaton that accepts the intersection of the languages of the * given automata. Never modifies the input automata languages. * <p> * Complexity: quadratic in number of states. */
static public Automaton intersection(Automaton a1, Automaton a2) { if (a1 == a2) { return a1; } if (a1.getNumStates() == 0) { return a1; } if (a2.getNumStates() == 0) { return a2; } Transition[][] transitions1 = a1.getSortedTransitions(); Transition[][] transitions2 = a2.getSortedTransitions(); Automaton c = new Automaton(); c.createState(); ArrayDeque<StatePair> worklist = new ArrayDeque<>(); HashMap<StatePair,StatePair> newstates = new HashMap<>(); StatePair p = new StatePair(0, 0, 0); worklist.add(p); newstates.put(p, p); while (worklist.size() > 0) { p = worklist.removeFirst(); c.setAccept(p.s, a1.isAccept(p.s1) && a2.isAccept(p.s2)); Transition[] t1 = transitions1[p.s1]; Transition[] t2 = transitions2[p.s2]; for (int n1 = 0, b2 = 0; n1 < t1.length; n1++) { while (b2 < t2.length && t2[b2].max < t1[n1].min) b2++; for (int n2 = b2; n2 < t2.length && t1[n1].max >= t2[n2].min; n2++) if (t2[n2].max >= t1[n1].min) { StatePair q = new StatePair(t1[n1].dest, t2[n2].dest); StatePair r = newstates.get(q); if (r == null) { q.s = c.createState(); worklist.add(q); newstates.put(q, q); r = q; } int min = t1[n1].min > t2[n2].min ? t1[n1].min : t2[n2].min; int max = t1[n1].max < t2[n2].max ? t1[n1].max : t2[n2].max; c.addTransition(p.s, r.s, min, max); } } } c.finishState(); return removeDeadStates(c); }
Returns true if these two automata accept exactly the same language. This is a costly computation! Both automata must be determinized and have no dead states!
/** Returns true if these two automata accept exactly the * same language. This is a costly computation! Both automata * must be determinized and have no dead states! */
public static boolean sameLanguage(Automaton a1, Automaton a2) { if (a1 == a2) { return true; } return subsetOf(a2, a1) && subsetOf(a1, a2); } // TODO: move to test-framework?
Returns true if this automaton has any states that cannot be reached from the initial state or cannot reach an accept state. Cost is O(numTransitions+numStates).
/** Returns true if this automaton has any states that cannot * be reached from the initial state or cannot reach an accept state. * Cost is O(numTransitions+numStates). */
public static boolean hasDeadStates(Automaton a) { BitSet liveStates = getLiveStates(a); int numLive = liveStates.cardinality(); int numStates = a.getNumStates(); assert numLive <= numStates: "numLive=" + numLive + " numStates=" + numStates + " " + liveStates; return numLive < numStates; } // TODO: move to test-framework?
Returns true if there are dead states reachable from an initial state.
/** Returns true if there are dead states reachable from an initial state. */
public static boolean hasDeadStatesFromInitial(Automaton a) { BitSet reachableFromInitial = getLiveStatesFromInitial(a); BitSet reachableFromAccept = getLiveStatesToAccept(a); reachableFromInitial.andNot(reachableFromAccept); return reachableFromInitial.isEmpty() == false; } // TODO: move to test-framework?
Returns true if there are dead states that reach an accept state.
/** Returns true if there are dead states that reach an accept state. */
public static boolean hasDeadStatesToAccept(Automaton a) { BitSet reachableFromInitial = getLiveStatesFromInitial(a); BitSet reachableFromAccept = getLiveStatesToAccept(a); reachableFromAccept.andNot(reachableFromInitial); return reachableFromAccept.isEmpty() == false; }
Returns true if the language of a1 is a subset of the language of a2. Both automata must be determinized and must have no dead states.

Complexity: quadratic in number of states.

/** * Returns true if the language of <code>a1</code> is a subset of the language * of <code>a2</code>. Both automata must be determinized and must have no dead * states. * <p> * Complexity: quadratic in number of states. */
public static boolean subsetOf(Automaton a1, Automaton a2) { if (a1.isDeterministic() == false) { throw new IllegalArgumentException("a1 must be deterministic"); } if (a2.isDeterministic() == false) { throw new IllegalArgumentException("a2 must be deterministic"); } assert hasDeadStatesFromInitial(a1) == false; assert hasDeadStatesFromInitial(a2) == false; if (a1.getNumStates() == 0) { // Empty language is alwyas a subset of any other language return true; } else if (a2.getNumStates() == 0) { return isEmpty(a1); } // TODO: cutover to iterators instead Transition[][] transitions1 = a1.getSortedTransitions(); Transition[][] transitions2 = a2.getSortedTransitions(); ArrayDeque<StatePair> worklist = new ArrayDeque<>(); HashSet<StatePair> visited = new HashSet<>(); StatePair p = new StatePair(0, 0); worklist.add(p); visited.add(p); while (worklist.size() > 0) { p = worklist.removeFirst(); if (a1.isAccept(p.s1) && a2.isAccept(p.s2) == false) { return false; } Transition[] t1 = transitions1[p.s1]; Transition[] t2 = transitions2[p.s2]; for (int n1 = 0, b2 = 0; n1 < t1.length; n1++) { while (b2 < t2.length && t2[b2].max < t1[n1].min) { b2++; } int min1 = t1[n1].min, max1 = t1[n1].max; for (int n2 = b2; n2 < t2.length && t1[n1].max >= t2[n2].min; n2++) { if (t2[n2].min > min1) { return false; } if (t2[n2].max < Character.MAX_CODE_POINT) { min1 = t2[n2].max + 1; } else { min1 = Character.MAX_CODE_POINT; max1 = Character.MIN_CODE_POINT; } StatePair q = new StatePair(t1[n1].dest, t2[n2].dest); if (!visited.contains(q)) { worklist.add(q); visited.add(q); } } if (min1 <= max1) { return false; } } } return true; }
Returns an automaton that accepts the union of the languages of the given automata.

Complexity: linear in number of states.

/** * Returns an automaton that accepts the union of the languages of the given * automata. * <p> * Complexity: linear in number of states. */
public static Automaton union(Automaton a1, Automaton a2) { return union(Arrays.asList(a1, a2)); }
Returns an automaton that accepts the union of the languages of the given automata.

Complexity: linear in number of states.

/** * Returns an automaton that accepts the union of the languages of the given * automata. * <p> * Complexity: linear in number of states. */
public static Automaton union(Collection<Automaton> l) { Automaton result = new Automaton(); // Create initial state: result.createState(); // Copy over all automata for(Automaton a : l) { result.copy(a); } // Add epsilon transition from new initial state int stateOffset = 1; for(Automaton a : l) { if (a.getNumStates() == 0) { continue; } result.addEpsilon(0, stateOffset); stateOffset += a.getNumStates(); } result.finishState(); return removeDeadStates(result); } // Simple custom ArrayList<Transition> private final static class TransitionList { // dest, min, max int[] transitions = new int[3]; int next; public void add(Transition t) { if (transitions.length < next+3) { transitions = ArrayUtil.grow(transitions, next+3); } transitions[next] = t.dest; transitions[next+1] = t.min; transitions[next+2] = t.max; next += 3; } } // Holds all transitions that start on this int point, or // end at this point-1 private final static class PointTransitions implements Comparable<PointTransitions> { int point; final TransitionList ends = new TransitionList(); final TransitionList starts = new TransitionList(); @Override public int compareTo(PointTransitions other) { return point - other.point; } public void reset(int point) { this.point = point; ends.next = 0; starts.next = 0; } @Override public boolean equals(Object other) { return ((PointTransitions) other).point == point; } @Override public int hashCode() { return point; } } private final static class PointTransitionSet { int count; PointTransitions[] points = new PointTransitions[5]; private final static int HASHMAP_CUTOVER = 30; private final HashMap<Integer,PointTransitions> map = new HashMap<>(); private boolean useHash = false; private PointTransitions next(int point) { // 1st time we are seeing this point if (count == points.length) { final PointTransitions[] newArray = new PointTransitions[ArrayUtil.oversize(1+count, RamUsageEstimator.NUM_BYTES_OBJECT_REF)]; System.arraycopy(points, 0, newArray, 0, count); points = newArray; } PointTransitions points0 = points[count]; if (points0 == null) { points0 = points[count] = new PointTransitions(); } points0.reset(point); count++; return points0; } private PointTransitions find(int point) { if (useHash) { final Integer pi = point; PointTransitions p = map.get(pi); if (p == null) { p = next(point); map.put(pi, p); } return p; } else { for(int i=0;i<count;i++) { if (points[i].point == point) { return points[i]; } } final PointTransitions p = next(point); if (count == HASHMAP_CUTOVER) { // switch to HashMap on the fly assert map.size() == 0; for(int i=0;i<count;i++) { map.put(points[i].point, points[i]); } useHash = true; } return p; } } public void reset() { if (useHash) { map.clear(); useHash = false; } count = 0; } public void sort() { // Tim sort performs well on already sorted arrays: if (count > 1) ArrayUtil.timSort(points, 0, count); } public void add(Transition t) { find(t.min).starts.add(t); find(1+t.max).ends.add(t); } @Override public String toString() { StringBuilder s = new StringBuilder(); for(int i=0;i<count;i++) { if (i > 0) { s.append(' '); } s.append(points[i].point).append(':').append(points[i].starts.next/3).append(',').append(points[i].ends.next/3); } return s.toString(); } }
Determinizes the given automaton.

Worst case complexity: exponential in number of states.

Params:
  • maxDeterminizedStates – Maximum number of states created when determinizing. Higher numbers allow this operation to consume more memory but allow more complex automatons. Use DEFAULT_MAX_DETERMINIZED_STATES as a decent default if you don't know how many to allow.
Throws:
/** * Determinizes the given automaton. * <p> * Worst case complexity: exponential in number of states. * @param maxDeterminizedStates Maximum number of states created when * determinizing. Higher numbers allow this operation to consume more * memory but allow more complex automatons. Use * DEFAULT_MAX_DETERMINIZED_STATES as a decent default if you don't know * how many to allow. * @throws TooComplexToDeterminizeException if determinizing a creates an * automaton with more than maxDeterminizedStates */
public static Automaton determinize(Automaton a, int maxDeterminizedStates) { if (a.isDeterministic()) { // Already determinized return a; } if (a.getNumStates() <= 1) { // Already determinized return a; } // subset construction Automaton.Builder b = new Automaton.Builder(); //System.out.println("DET:"); //a.writeDot("/l/la/lucene/core/detin.dot"); SortedIntSet.FrozenIntSet initialset = new SortedIntSet.FrozenIntSet(0, 0); // Create state 0: b.createState(); ArrayDeque<SortedIntSet.FrozenIntSet> worklist = new ArrayDeque<>(); Map<SortedIntSet.FrozenIntSet,Integer> newstate = new HashMap<>(); worklist.add(initialset); b.setAccept(0, a.isAccept(0)); newstate.put(initialset, 0); // like Set<Integer,PointTransitions> final PointTransitionSet points = new PointTransitionSet(); // like SortedMap<Integer,Integer> final SortedIntSet statesSet = new SortedIntSet(5); Transition t = new Transition(); while (worklist.size() > 0) { SortedIntSet.FrozenIntSet s = worklist.removeFirst(); //System.out.println("det: pop set=" + s); // Collate all outgoing transitions by min/1+max: for(int i=0;i<s.values.length;i++) { final int s0 = s.values[i]; int numTransitions = a.getNumTransitions(s0); a.initTransition(s0, t); for(int j=0;j<numTransitions;j++) { a.getNextTransition(t); points.add(t); } } if (points.count == 0) { // No outgoing transitions -- skip it continue; } points.sort(); int lastPoint = -1; int accCount = 0; final int r = s.state; for(int i=0;i<points.count;i++) { final int point = points.points[i].point; if (statesSet.upto > 0) { assert lastPoint != -1; statesSet.computeHash(); Integer q = newstate.get(statesSet); if (q == null) { q = b.createState(); if (q >= maxDeterminizedStates) { throw new TooComplexToDeterminizeException(a, maxDeterminizedStates); } final SortedIntSet.FrozenIntSet p = statesSet.freeze(q); //System.out.println(" make new state=" + q + " -> " + p + " accCount=" + accCount); worklist.add(p); b.setAccept(q, accCount > 0); newstate.put(p, q); } else { assert (accCount > 0 ? true:false) == b.isAccept(q): "accCount=" + accCount + " vs existing accept=" + b.isAccept(q) + " states=" + statesSet; } // System.out.println(" add trans src=" + r + " dest=" + q + " min=" + lastPoint + " max=" + (point-1)); b.addTransition(r, q, lastPoint, point-1); } // process transitions that end on this point // (closes an overlapping interval) int[] transitions = points.points[i].ends.transitions; int limit = points.points[i].ends.next; for(int j=0;j<limit;j+=3) { int dest = transitions[j]; statesSet.decr(dest); accCount -= a.isAccept(dest) ? 1:0; } points.points[i].ends.next = 0; // process transitions that start on this point // (opens a new interval) transitions = points.points[i].starts.transitions; limit = points.points[i].starts.next; for(int j=0;j<limit;j+=3) { int dest = transitions[j]; statesSet.incr(dest); accCount += a.isAccept(dest) ? 1:0; } lastPoint = point; points.points[i].starts.next = 0; } points.reset(); assert statesSet.upto == 0: "upto=" + statesSet.upto; } Automaton result = b.finish(); assert result.isDeterministic(); return result; }
Returns true if the given automaton accepts no strings.
/** * Returns true if the given automaton accepts no strings. */
public static boolean isEmpty(Automaton a) { if (a.getNumStates() == 0) { // Common case: no states return true; } if (a.isAccept(0) == false && a.getNumTransitions(0) == 0) { // Common case: just one initial state return true; } if (a.isAccept(0) == true) { // Apparently common case: it accepts the damned empty string return false; } ArrayDeque<Integer> workList = new ArrayDeque<>(); BitSet seen = new BitSet(a.getNumStates()); workList.add(0); seen.set(0); Transition t = new Transition(); while (workList.isEmpty() == false) { int state = workList.removeFirst(); if (a.isAccept(state)) { return false; } int count = a.initTransition(state, t); for(int i=0;i<count;i++) { a.getNextTransition(t); if (seen.get(t.dest) == false) { workList.add(t.dest); seen.set(t.dest); } } } return true; }
Returns true if the given automaton accepts all strings. The automaton must be minimized.
/** * Returns true if the given automaton accepts all strings. The automaton must be minimized. */
public static boolean isTotal(Automaton a) { return isTotal(a, Character.MIN_CODE_POINT, Character.MAX_CODE_POINT); }
Returns true if the given automaton accepts all strings for the specified min/max range of the alphabet. The automaton must be minimized.
/** * Returns true if the given automaton accepts all strings for the specified min/max * range of the alphabet. The automaton must be minimized. */
public static boolean isTotal(Automaton a, int minAlphabet, int maxAlphabet) { if (a.isAccept(0) && a.getNumTransitions(0) == 1) { Transition t = new Transition(); a.getTransition(0, 0, t); return t.dest == 0 && t.min == minAlphabet && t.max == maxAlphabet; } return false; }
Returns true if the given string is accepted by the automaton. The input must be deterministic.

Complexity: linear in the length of the string.

Note: for full performance, use the RunAutomaton class.

/** * Returns true if the given string is accepted by the automaton. The input must be deterministic. * <p> * Complexity: linear in the length of the string. * <p> * <b>Note:</b> for full performance, use the {@link RunAutomaton} class. */
public static boolean run(Automaton a, String s) { assert a.isDeterministic(); int state = 0; for (int i = 0, cp = 0; i < s.length(); i += Character.charCount(cp)) { int nextState = a.step(state, cp = s.codePointAt(i)); if (nextState == -1) { return false; } state = nextState; } return a.isAccept(state); }
Returns true if the given string (expressed as unicode codepoints) is accepted by the automaton. The input must be deterministic.

Complexity: linear in the length of the string.

Note: for full performance, use the RunAutomaton class.

/** * Returns true if the given string (expressed as unicode codepoints) is accepted by the automaton. The input must be deterministic. * <p> * Complexity: linear in the length of the string. * <p> * <b>Note:</b> for full performance, use the {@link RunAutomaton} class. */
public static boolean run(Automaton a, IntsRef s) { assert a.isDeterministic(); int state = 0; for (int i=0;i<s.length;i++) { int nextState = a.step(state, s.ints[s.offset+i]); if (nextState == -1) { return false; } state = nextState; } return a.isAccept(state); }
Returns the set of live states. A state is "live" if an accept state is reachable from it and if it is reachable from the initial state.
/** * Returns the set of live states. A state is "live" if an accept state is * reachable from it and if it is reachable from the initial state. */
private static BitSet getLiveStates(Automaton a) { BitSet live = getLiveStatesFromInitial(a); live.and(getLiveStatesToAccept(a)); return live; }
Returns bitset marking states reachable from the initial state.
/** Returns bitset marking states reachable from the initial state. */
private static BitSet getLiveStatesFromInitial(Automaton a) { int numStates = a.getNumStates(); BitSet live = new BitSet(numStates); if (numStates == 0) { return live; } ArrayDeque<Integer> workList = new ArrayDeque<>(); live.set(0); workList.add(0); Transition t = new Transition(); while (workList.isEmpty() == false) { int s = workList.removeFirst(); int count = a.initTransition(s, t); for(int i=0;i<count;i++) { a.getNextTransition(t); if (live.get(t.dest) == false) { live.set(t.dest); workList.add(t.dest); } } } return live; }
Returns bitset marking states that can reach an accept state.
/** Returns bitset marking states that can reach an accept state. */
private static BitSet getLiveStatesToAccept(Automaton a) { Automaton.Builder builder = new Automaton.Builder(); // NOTE: not quite the same thing as what SpecialOperations.reverse does: Transition t = new Transition(); int numStates = a.getNumStates(); for(int s=0;s<numStates;s++) { builder.createState(); } for(int s=0;s<numStates;s++) { int count = a.initTransition(s, t); for(int i=0;i<count;i++) { a.getNextTransition(t); builder.addTransition(t.dest, s, t.min, t.max); } } Automaton a2 = builder.finish(); ArrayDeque<Integer> workList = new ArrayDeque<>(); BitSet live = new BitSet(numStates); BitSet acceptBits = a.getAcceptStates(); int s = 0; while (s < numStates && (s = acceptBits.nextSetBit(s)) != -1) { live.set(s); workList.add(s); s++; } while (workList.isEmpty() == false) { s = workList.removeFirst(); int count = a2.initTransition(s, t); for(int i=0;i<count;i++) { a2.getNextTransition(t); if (live.get(t.dest) == false) { live.set(t.dest); workList.add(t.dest); } } } return live; }
Removes transitions to dead states (a state is "dead" if it is not reachable from the initial state or no accept state is reachable from it.)
/** * Removes transitions to dead states (a state is "dead" if it is not * reachable from the initial state or no accept state is reachable from it.) */
public static Automaton removeDeadStates(Automaton a) { int numStates = a.getNumStates(); BitSet liveSet = getLiveStates(a); int[] map = new int[numStates]; Automaton result = new Automaton(); //System.out.println("liveSet: " + liveSet + " numStates=" + numStates); for(int i=0;i<numStates;i++) { if (liveSet.get(i)) { map[i] = result.createState(); result.setAccept(map[i], a.isAccept(i)); } } Transition t = new Transition(); for (int i=0;i<numStates;i++) { if (liveSet.get(i)) { int numTransitions = a.initTransition(i, t); // filter out transitions to dead states: for(int j=0;j<numTransitions;j++) { a.getNextTransition(t); if (liveSet.get(t.dest)) { result.addTransition(map[i], map[t.dest], t.min, t.max); } } } } result.finishState(); assert hasDeadStates(result) == false; return result; }
Returns true if the language of this automaton is finite. The automaton must not have any dead states.
/** * Returns true if the language of this automaton is finite. The * automaton must not have any dead states. */
public static boolean isFinite(Automaton a) { if (a.getNumStates() == 0) { return true; } return isFinite(new Transition(), a, 0, new BitSet(a.getNumStates()), new BitSet(a.getNumStates()), 0); }
Checks whether there is a loop containing state. (This is sufficient since there are never transitions to dead states.)
/** * Checks whether there is a loop containing state. (This is sufficient since * there are never transitions to dead states.) */
// TODO: not great that this is recursive... in theory a // large automata could exceed java's stack so the maximum level of recursion is bounded to 1000 private static boolean isFinite(Transition scratch, Automaton a, int state, BitSet path, BitSet visited, int level) { if (level > MAX_RECURSION_LEVEL) { throw new IllegalArgumentException("input automaton is too large: " + level); } path.set(state); int numTransitions = a.initTransition(state, scratch); for(int t=0;t<numTransitions;t++) { a.getTransition(state, t, scratch); if (path.get(scratch.dest) || (!visited.get(scratch.dest) && !isFinite(scratch, a, scratch.dest, path, visited, level+1))) { return false; } } path.clear(state); visited.set(state); return true; }
Returns the longest string that is a prefix of all accepted strings and visits each state at most once. The automaton must be deterministic.
Returns:common prefix, which can be an empty (length 0) String (never null)
/** * Returns the longest string that is a prefix of all accepted strings and * visits each state at most once. The automaton must be deterministic. * * @return common prefix, which can be an empty (length 0) String (never null) */
public static String getCommonPrefix(Automaton a) { if (a.isDeterministic() == false) { throw new IllegalArgumentException("input automaton must be deterministic"); } StringBuilder b = new StringBuilder(); HashSet<Integer> visited = new HashSet<>(); int s = 0; boolean done; Transition t = new Transition(); do { done = true; visited.add(s); if (a.isAccept(s) == false && a.getNumTransitions(s) == 1) { a.getTransition(s, 0, t); if (t.min == t.max && !visited.contains(t.dest)) { b.appendCodePoint(t.min); s = t.dest; done = false; } } } while (!done); return b.toString(); } // TODO: this currently requites a determinized machine, // but it need not -- we can speed it up by walking the // NFA instead. it'd still be fail fast.
Returns the longest BytesRef that is a prefix of all accepted strings and visits each state at most once. The automaton must be deterministic.
Returns:common prefix, which can be an empty (length 0) BytesRef (never null)
/** * Returns the longest BytesRef that is a prefix of all accepted strings and * visits each state at most once. The automaton must be deterministic. * * @return common prefix, which can be an empty (length 0) BytesRef (never null) */
public static BytesRef getCommonPrefixBytesRef(Automaton a) { BytesRefBuilder builder = new BytesRefBuilder(); HashSet<Integer> visited = new HashSet<>(); int s = 0; boolean done; Transition t = new Transition(); do { done = true; visited.add(s); if (a.isAccept(s) == false && a.getNumTransitions(s) == 1) { a.getTransition(s, 0, t); if (t.min == t.max && !visited.contains(t.dest)) { builder.append((byte) t.min); s = t.dest; done = false; } } } while (!done); return builder.get(); }
If this automaton accepts a single input, return it. Else, return null. The automaton must be deterministic.
/** If this automaton accepts a single input, return it. Else, return null. * The automaton must be deterministic. */
public static IntsRef getSingleton(Automaton a) { if (a.isDeterministic() == false) { throw new IllegalArgumentException("input automaton must be deterministic"); } IntsRefBuilder builder = new IntsRefBuilder(); HashSet<Integer> visited = new HashSet<>(); int s = 0; Transition t = new Transition(); while (true) { visited.add(s); if (a.isAccept(s) == false) { if (a.getNumTransitions(s) == 1) { a.getTransition(s, 0, t); if (t.min == t.max && !visited.contains(t.dest)) { builder.append(t.min); s = t.dest; continue; } } } else if (a.getNumTransitions(s) == 0) { return builder.get(); } // Automaton accepts more than one string: return null; } }
Returns the longest BytesRef that is a suffix of all accepted strings. Worst case complexity: exponential in number of states (this calls determinize).
Params:
  • maxDeterminizedStates – maximum number of states determinizing the automaton can result in. Set higher to allow more complex queries and lower to prevent memory exhaustion.
Returns:common suffix, which can be an empty (length 0) BytesRef (never null)
/** * Returns the longest BytesRef that is a suffix of all accepted strings. * Worst case complexity: exponential in number of states (this calls * determinize). * @param maxDeterminizedStates maximum number of states determinizing the * automaton can result in. Set higher to allow more complex queries and * lower to prevent memory exhaustion. * @return common suffix, which can be an empty (length 0) BytesRef (never null) */
public static BytesRef getCommonSuffixBytesRef(Automaton a, int maxDeterminizedStates) { // reverse the language of the automaton, then reverse its common prefix. Automaton r = Operations.determinize(reverse(a), maxDeterminizedStates); BytesRef ref = getCommonPrefixBytesRef(r); reverseBytes(ref); return ref; } private static void reverseBytes(BytesRef ref) { if (ref.length <= 1) return; int num = ref.length >> 1; for (int i = ref.offset; i < ( ref.offset + num ); i++) { byte b = ref.bytes[i]; ref.bytes[i] = ref.bytes[ref.offset * 2 + ref.length - i - 1]; ref.bytes[ref.offset * 2 + ref.length - i - 1] = b; } }
Returns an automaton accepting the reverse language.
/** Returns an automaton accepting the reverse language. */
public static Automaton reverse(Automaton a) { return reverse(a, null); }
Reverses the automaton, returning the new initial states.
/** Reverses the automaton, returning the new initial states. */
static Automaton reverse(Automaton a, Set<Integer> initialStates) { if (Operations.isEmpty(a)) { return new Automaton(); } int numStates = a.getNumStates(); // Build a new automaton with all edges reversed Automaton.Builder builder = new Automaton.Builder(); // Initial node; we'll add epsilon transitions in the end: builder.createState(); for(int s=0;s<numStates;s++) { builder.createState(); } // Old initial state becomes new accept state: builder.setAccept(1, true); Transition t = new Transition(); for (int s=0;s<numStates;s++) { int numTransitions = a.getNumTransitions(s); a.initTransition(s, t); for(int i=0;i<numTransitions;i++) { a.getNextTransition(t); builder.addTransition(t.dest+1, s+1, t.min, t.max); } } Automaton result = builder.finish(); int s = 0; BitSet acceptStates = a.getAcceptStates(); while (s < numStates && (s = acceptStates.nextSetBit(s)) != -1) { result.addEpsilon(0, s+1); if (initialStates != null) { initialStates.add(s+1); } s++; } result.finishState(); return result; }
Returns a new automaton accepting the same language with added transitions to a dead state so that from every state and every label there is a transition.
/** Returns a new automaton accepting the same language with added * transitions to a dead state so that from every state and every label * there is a transition. */
static Automaton totalize(Automaton a) { Automaton result = new Automaton(); int numStates = a.getNumStates(); for(int i=0;i<numStates;i++) { result.createState(); result.setAccept(i, a.isAccept(i)); } int deadState = result.createState(); result.addTransition(deadState, deadState, Character.MIN_CODE_POINT, Character.MAX_CODE_POINT); Transition t = new Transition(); for(int i=0;i<numStates;i++) { int maxi = Character.MIN_CODE_POINT; int count = a.initTransition(i, t); for(int j=0;j<count;j++) { a.getNextTransition(t); result.addTransition(i, t.dest, t.min, t.max); if (t.min > maxi) { result.addTransition(i, deadState, maxi, t.min-1); } if (t.max + 1 > maxi) { maxi = t.max + 1; } } if (maxi <= Character.MAX_CODE_POINT) { result.addTransition(i, deadState, maxi, Character.MAX_CODE_POINT); } } result.finishState(); return result; }
Returns the topological sort of all states reachable from the initial state. Behavior is undefined if this automaton has cycles. CPU cost is O(numTransitions), and the implementation is recursive so an automaton matching long strings may exhaust the java stack.
/** Returns the topological sort of all states reachable from * the initial state. Behavior is undefined if this * automaton has cycles. CPU cost is O(numTransitions), * and the implementation is recursive so an automaton * matching long strings may exhaust the java stack. */
public static int[] topoSortStates(Automaton a) { if (a.getNumStates() == 0) { return new int[0]; } int numStates = a.getNumStates(); int[] states = new int[numStates]; final BitSet visited = new BitSet(numStates); int upto = topoSortStatesRecurse(a, visited, states, 0, 0, 0); if (upto < states.length) { // There were dead states int[] newStates = new int[upto]; System.arraycopy(states, 0, newStates, 0, upto); states = newStates; } // Reverse the order: for(int i=0;i<states.length/2;i++) { int s = states[i]; states[i] = states[states.length-1-i]; states[states.length-1-i] = s; } return states; } // TODO: not great that this is recursive... in theory a // large automata could exceed java's stack so the maximum level of recursion is bounded to 1000 private static int topoSortStatesRecurse(Automaton a, BitSet visited, int[] states, int upto, int state, int level) { if (level > MAX_RECURSION_LEVEL) { throw new IllegalArgumentException("input automaton is too large: " + level); } Transition t = new Transition(); int count = a.initTransition(state, t); for (int i=0;i<count;i++) { a.getNextTransition(t); if (!visited.get(t.dest)) { visited.set(t.dest); upto = topoSortStatesRecurse(a, visited, states, upto, t.dest, level+1); } } states[upto] = state; upto++; return upto; } }