/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.util;


import java.math.BigInteger;

Math static utility methods.
/** * Math static utility methods. */
public final class MathUtil { // No instance: private MathUtil() { }
Returns x <= 0 ? 0 : Math.floor(Math.log(x) / Math.log(base))
Params:
  • base – must be > 1
/** * Returns {@code x <= 0 ? 0 : Math.floor(Math.log(x) / Math.log(base))} * @param base must be {@code > 1} */
public static int log(long x, int base) { if (base <= 1) { throw new IllegalArgumentException("base must be > 1"); } int ret = 0; while (x >= base) { x /= base; ret++; } return ret; }
Calculates logarithm in a given base with doubles.
/** * Calculates logarithm in a given base with doubles. */
public static double log(double base, double x) { return Math.log(x) / Math.log(base); }
Return the greatest common divisor of a and b, consistently with BigInteger.gcd(BigInteger).

NOTE: A greatest common divisor must be positive, but 2^64 cannot be expressed as a long although it is the GCD of Long.MIN_VALUE and 0 and the GCD of Long.MIN_VALUE and Long.MIN_VALUE. So in these 2 cases, and only them, this method will return Long.MIN_VALUE.

/** Return the greatest common divisor of <code>a</code> and <code>b</code>, * consistently with {@link BigInteger#gcd(BigInteger)}. * <p><b>NOTE</b>: A greatest common divisor must be positive, but * <code>2^64</code> cannot be expressed as a long although it * is the GCD of {@link Long#MIN_VALUE} and <code>0</code> and the GCD of * {@link Long#MIN_VALUE} and {@link Long#MIN_VALUE}. So in these 2 cases, * and only them, this method will return {@link Long#MIN_VALUE}. */
// see http://en.wikipedia.org/wiki/Binary_GCD_algorithm#Iterative_version_in_C.2B.2B_using_ctz_.28count_trailing_zeros.29 public static long gcd(long a, long b) { a = Math.abs(a); b = Math.abs(b); if (a == 0) { return b; } else if (b == 0) { return a; } final int commonTrailingZeros = Long.numberOfTrailingZeros(a | b); a >>>= Long.numberOfTrailingZeros(a); while (true) { b >>>= Long.numberOfTrailingZeros(b); if (a == b) { break; } else if (a > b || a == Long.MIN_VALUE) { // MIN_VALUE is treated as 2^64 final long tmp = a; a = b; b = tmp; } if (a == 1) { break; } b -= a; } return a << commonTrailingZeros; }
Calculates inverse hyperbolic sine of a double value.

Special cases:

  • If the argument is NaN, then the result is NaN.
  • If the argument is zero, then the result is a zero with the same sign as the argument.
  • If the argument is infinite, then the result is infinity with the same sign as the argument.
/** * Calculates inverse hyperbolic sine of a {@code double} value. * <p> * Special cases: * <ul> * <li>If the argument is NaN, then the result is NaN. * <li>If the argument is zero, then the result is a zero with the same sign as the argument. * <li>If the argument is infinite, then the result is infinity with the same sign as the argument. * </ul> */
public static double asinh(double a) { final double sign; // check the sign bit of the raw representation to handle -0 if (Double.doubleToRawLongBits(a) < 0) { a = Math.abs(a); sign = -1.0d; } else { sign = 1.0d; } return sign * Math.log(Math.sqrt(a * a + 1.0d) + a); }
Calculates inverse hyperbolic cosine of a double value.

Special cases:

  • If the argument is NaN, then the result is NaN.
  • If the argument is +1, then the result is a zero.
  • If the argument is positive infinity, then the result is positive infinity.
  • If the argument is less than 1, then the result is NaN.
/** * Calculates inverse hyperbolic cosine of a {@code double} value. * <p> * Special cases: * <ul> * <li>If the argument is NaN, then the result is NaN. * <li>If the argument is +1, then the result is a zero. * <li>If the argument is positive infinity, then the result is positive infinity. * <li>If the argument is less than 1, then the result is NaN. * </ul> */
public static double acosh(double a) { return Math.log(Math.sqrt(a * a - 1.0d) + a); }
Calculates inverse hyperbolic tangent of a double value.

Special cases:

  • If the argument is NaN, then the result is NaN.
  • If the argument is zero, then the result is a zero with the same sign as the argument.
  • If the argument is +1, then the result is positive infinity.
  • If the argument is -1, then the result is negative infinity.
  • If the argument's absolute value is greater than 1, then the result is NaN.
/** * Calculates inverse hyperbolic tangent of a {@code double} value. * <p> * Special cases: * <ul> * <li>If the argument is NaN, then the result is NaN. * <li>If the argument is zero, then the result is a zero with the same sign as the argument. * <li>If the argument is +1, then the result is positive infinity. * <li>If the argument is -1, then the result is negative infinity. * <li>If the argument's absolute value is greater than 1, then the result is NaN. * </ul> */
public static double atanh(double a) { final double mult; // check the sign bit of the raw representation to handle -0 if (Double.doubleToRawLongBits(a) < 0) { a = Math.abs(a); mult = -0.5d; } else { mult = 0.5d; } return mult * Math.log((1.0d + a) / (1.0d - a)); }
Return a relative error bound for a sum of numValues positive doubles, computed using recursive summation, ie. sum = x1 + ... + xn. NOTE: This only works if all values are POSITIVE so that Σ |xi| == |Σ xi|. This uses formula 3.5 from Higham, Nicholas J. (1993), "The accuracy of floating point summation", SIAM Journal on Scientific Computing.
/** * Return a relative error bound for a sum of {@code numValues} positive doubles, * computed using recursive summation, ie. sum = x1 + ... + xn. * NOTE: This only works if all values are POSITIVE so that Σ |xi| == |Σ xi|. * This uses formula 3.5 from Higham, Nicholas J. (1993), * "The accuracy of floating point summation", SIAM Journal on Scientific Computing. */
public static double sumRelativeErrorBound(int numValues) { if (numValues <= 1) { return 0; } // u = unit roundoff in the paper, also called machine precision or machine epsilon double u = Math.scalb(1.0, -52); return (numValues - 1) * u; } }