/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.random;

import java.io.Serializable;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.util.Collection;

import org.apache.commons.math3.distribution.IntegerDistribution;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.exception.NotANumberException;
import org.apache.commons.math3.exception.NotFiniteNumberException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;

Generates random deviates and other random data using a RandomGenerator instance to generate non-secure data and a SecureRandom instance to provide data for the nextSecureXxx methods. If no RandomGenerator is provided in the constructor, the default is to use a Well19937c generator. To plug in a different implementation, either implement RandomGenerator directly or extend AbstractRandomGenerator.

Supports reseeding the underlying pseudo-random number generator (PRNG). The SecurityProvider and Algorithm used by the SecureRandom instance can also be reset.

For details on the default PRNGs, see Random and SecureRandom.

Usage Notes:

  • Instance variables are used to maintain RandomGenerator and SecureRandom instances used in data generation. Therefore, to generate a random sequence of values or strings, you should use just one RandomDataGenerator instance repeatedly.
  • The "secure" methods are *much* slower. These should be used only when a cryptographically secure random sequence is required. A secure random sequence is a sequence of pseudo-random values which, in addition to being well-dispersed (so no subsequence of values is an any more likely than other subsequence of the the same length), also has the additional property that knowledge of values generated up to any point in the sequence does not make it any easier to predict subsequent values.
  • When a new RandomDataGenerator is created, the underlying random number generators are not initialized. If you do not explicitly seed the default non-secure generator, it is seeded with the current time in milliseconds plus the system identity hash code on first use. The same holds for the secure generator. If you provide a RandomGenerator to the constructor, however, this generator is not reseeded by the constructor nor is it reseeded on first use.
  • The reSeed and reSeedSecure methods delegate to the corresponding methods on the underlying RandomGenerator and SecureRandom instances. Therefore, reSeed(long) fully resets the initial state of the non-secure random number generator (so that reseeding with a specific value always results in the same subsequent random sequence); whereas reSeedSecure(long) does not reinitialize the secure random number generator (so secure sequences started with calls to reseedSecure(long) won't be identical).
  • This implementation is not synchronized. The underlying RandomGenerator or SecureRandom instances are not protected by synchronization and are not guaranteed to be thread-safe. Therefore, if an instance of this class is concurrently utilized by multiple threads, it is the responsibility of client code to synchronize access to seeding and data generation methods.

Deprecated:to be removed in 4.0. Use RandomDataGenerator instead
/** * Generates random deviates and other random data using a {@link RandomGenerator} * instance to generate non-secure data and a {@link java.security.SecureRandom} * instance to provide data for the <code>nextSecureXxx</code> methods. If no * <code>RandomGenerator</code> is provided in the constructor, the default is * to use a {@link Well19937c} generator. To plug in a different * implementation, either implement <code>RandomGenerator</code> directly or * extend {@link AbstractRandomGenerator}. * <p> * Supports reseeding the underlying pseudo-random number generator (PRNG). The * <code>SecurityProvider</code> and <code>Algorithm</code> used by the * <code>SecureRandom</code> instance can also be reset. * </p> * <p> * For details on the default PRNGs, see {@link java.util.Random} and * {@link java.security.SecureRandom}. * </p> * <p> * <strong>Usage Notes</strong>: * <ul> * <li> * Instance variables are used to maintain <code>RandomGenerator</code> and * <code>SecureRandom</code> instances used in data generation. Therefore, to * generate a random sequence of values or strings, you should use just * <strong>one</strong> <code>RandomDataGenerator</code> instance repeatedly.</li> * <li> * The "secure" methods are *much* slower. These should be used only when a * cryptographically secure random sequence is required. A secure random * sequence is a sequence of pseudo-random values which, in addition to being * well-dispersed (so no subsequence of values is an any more likely than other * subsequence of the the same length), also has the additional property that * knowledge of values generated up to any point in the sequence does not make * it any easier to predict subsequent values.</li> * <li> * When a new <code>RandomDataGenerator</code> is created, the underlying random * number generators are <strong>not</strong> initialized. If you do not * explicitly seed the default non-secure generator, it is seeded with the * current time in milliseconds plus the system identity hash code on first use. * The same holds for the secure generator. If you provide a <code>RandomGenerator</code> * to the constructor, however, this generator is not reseeded by the constructor * nor is it reseeded on first use.</li> * <li> * The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the * corresponding methods on the underlying <code>RandomGenerator</code> and * <code>SecureRandom</code> instances. Therefore, <code>reSeed(long)</code> * fully resets the initial state of the non-secure random number generator (so * that reseeding with a specific value always results in the same subsequent * random sequence); whereas reSeedSecure(long) does <strong>not</strong> * reinitialize the secure random number generator (so secure sequences started * with calls to reseedSecure(long) won't be identical).</li> * <li> * This implementation is not synchronized. The underlying <code>RandomGenerator</code> * or <code>SecureRandom</code> instances are not protected by synchronization and * are not guaranteed to be thread-safe. Therefore, if an instance of this class * is concurrently utilized by multiple threads, it is the responsibility of * client code to synchronize access to seeding and data generation methods. * </li> * </ul> * </p> * @deprecated to be removed in 4.0. Use {@link RandomDataGenerator} instead */
@Deprecated public class RandomDataImpl implements RandomData, Serializable {
Serializable version identifier
/** Serializable version identifier */
private static final long serialVersionUID = -626730818244969716L;
RandomDataGenerator delegate
/** RandomDataGenerator delegate */
private final RandomDataGenerator delegate;
Construct a RandomDataImpl, using a default random generator as the source of randomness.

The default generator is a Well19937c seeded with System.currentTimeMillis() + System.identityHashCode(this)). The generator is initialized and seeded on first use.

/** * Construct a RandomDataImpl, using a default random generator as the source * of randomness. * * <p>The default generator is a {@link Well19937c} seeded * with {@code System.currentTimeMillis() + System.identityHashCode(this))}. * The generator is initialized and seeded on first use.</p> */
public RandomDataImpl() { delegate = new RandomDataGenerator(); }
Construct a RandomDataImpl using the supplied RandomGenerator as the source of (non-secure) random data.
Params:
  • rand – the source of (non-secure) random data (may be null, resulting in the default generator)
Since:1.1
/** * Construct a RandomDataImpl using the supplied {@link RandomGenerator} as * the source of (non-secure) random data. * * @param rand the source of (non-secure) random data * (may be null, resulting in the default generator) * @since 1.1 */
public RandomDataImpl(RandomGenerator rand) { delegate = new RandomDataGenerator(rand); }
Returns:the delegate object.
Deprecated:To be removed in 4.0.
/** * @return the delegate object. * @deprecated To be removed in 4.0. */
@Deprecated RandomDataGenerator getDelegate() { return delegate; }
{@inheritDoc}

Algorithm Description: hex strings are generated using a 2-step process.

  1. len / 2 + 1 binary bytes are generated using the underlying Random
  2. Each binary byte is translated into 2 hex digits

Params:
  • len – the desired string length.
Throws:
Returns:the random string.
/** * {@inheritDoc} * <p> * <strong>Algorithm Description:</strong> hex strings are generated using a * 2-step process. * <ol> * <li>{@code len / 2 + 1} binary bytes are generated using the underlying * Random</li> * <li>Each binary byte is translated into 2 hex digits</li> * </ol> * </p> * * @param len the desired string length. * @return the random string. * @throws NotStrictlyPositiveException if {@code len <= 0}. */
public String nextHexString(int len) throws NotStrictlyPositiveException { return delegate.nextHexString(len); }
{@inheritDoc}
/** {@inheritDoc} */
public int nextInt(int lower, int upper) throws NumberIsTooLargeException { return delegate.nextInt(lower, upper); }
{@inheritDoc}
/** {@inheritDoc} */
public long nextLong(long lower, long upper) throws NumberIsTooLargeException { return delegate.nextLong(lower, upper); }
{@inheritDoc}

Algorithm Description: hex strings are generated in 40-byte segments using a 3-step process.

  1. 20 random bytes are generated using the underlying SecureRandom.
  2. SHA-1 hash is applied to yield a 20-byte binary digest.
  3. Each byte of the binary digest is converted to 2 hex digits.

/** * {@inheritDoc} * <p> * <strong>Algorithm Description:</strong> hex strings are generated in * 40-byte segments using a 3-step process. * <ol> * <li> * 20 random bytes are generated using the underlying * <code>SecureRandom</code>.</li> * <li> * SHA-1 hash is applied to yield a 20-byte binary digest.</li> * <li> * Each byte of the binary digest is converted to 2 hex digits.</li> * </ol> * </p> */
public String nextSecureHexString(int len) throws NotStrictlyPositiveException { return delegate.nextSecureHexString(len); }
{@inheritDoc}
/** {@inheritDoc} */
public int nextSecureInt(int lower, int upper) throws NumberIsTooLargeException { return delegate.nextSecureInt(lower, upper); }
{@inheritDoc}
/** {@inheritDoc} */
public long nextSecureLong(long lower, long upper) throws NumberIsTooLargeException { return delegate.nextSecureLong(lower,upper); }
{@inheritDoc}

Algorithm Description:

  • For small means, uses simulation of a Poisson process using Uniform deviates, as described here. The Poisson process (and hence value returned) is bounded by 1000 * mean.
  • For large means, uses the rejection algorithm described in
    Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables Computing vol. 26 pp. 197-207.

/** * {@inheritDoc} * <p> * <strong>Algorithm Description</strong>: * <ul><li> For small means, uses simulation of a Poisson process * using Uniform deviates, as described * <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a> * The Poisson process (and hence value returned) is bounded by 1000 * mean.</li> * * <li> For large means, uses the rejection algorithm described in <br/> * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i> * <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p> */
public long nextPoisson(double mean) throws NotStrictlyPositiveException { return delegate.nextPoisson(mean); }
{@inheritDoc}
/** {@inheritDoc} */
public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException { return delegate.nextGaussian(mu,sigma); }
{@inheritDoc}

Algorithm Description: Uses the Algorithm SA (Ahrens) from p. 876 in: [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the exponential and normal distributions. Communications of the ACM, 15, 873-882.

/** * {@inheritDoc} * * <p> * <strong>Algorithm Description</strong>: Uses the Algorithm SA (Ahrens) * from p. 876 in: * [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for * sampling from the exponential and normal distributions. * Communications of the ACM, 15, 873-882. * </p> */
public double nextExponential(double mean) throws NotStrictlyPositiveException { return delegate.nextExponential(mean); }
{@inheritDoc}

Algorithm Description: scales the output of Random.nextDouble(), but rejects 0 values (i.e., will generate another random double if Random.nextDouble() returns 0). This is necessary to provide a symmetric output interval (both endpoints excluded).

/** * {@inheritDoc} * * <p> * <strong>Algorithm Description</strong>: scales the output of * Random.nextDouble(), but rejects 0 values (i.e., will generate another * random double if Random.nextDouble() returns 0). This is necessary to * provide a symmetric output interval (both endpoints excluded). * </p> */
public double nextUniform(double lower, double upper) throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException { return delegate.nextUniform(lower, upper); }
{@inheritDoc}

Algorithm Description: if the lower bound is excluded, scales the output of Random.nextDouble(), but rejects 0 values (i.e., will generate another random double if Random.nextDouble() returns 0). This is necessary to provide a symmetric output interval (both endpoints excluded).

Since:3.0
/** * {@inheritDoc} * * <p> * <strong>Algorithm Description</strong>: if the lower bound is excluded, * scales the output of Random.nextDouble(), but rejects 0 values (i.e., * will generate another random double if Random.nextDouble() returns 0). * This is necessary to provide a symmetric output interval (both * endpoints excluded). * </p> * @since 3.0 */
public double nextUniform(double lower, double upper, boolean lowerInclusive) throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException { return delegate.nextUniform(lower, upper, lowerInclusive); }
Generates a random value from the Beta Distribution. This implementation uses inversion to generate random values.
Params:
  • alpha – first distribution shape parameter
  • beta – second distribution shape parameter
Returns:random value sampled from the beta(alpha, beta) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.BetaDistribution Beta Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param alpha first distribution shape parameter * @param beta second distribution shape parameter * @return random value sampled from the beta(alpha, beta) distribution * @since 2.2 */
public double nextBeta(double alpha, double beta) { return delegate.nextBeta(alpha, beta); }
Generates a random value from the Binomial Distribution. This implementation uses inversion to generate random values.
Params:
  • numberOfTrials – number of trials of the Binomial distribution
  • probabilityOfSuccess – probability of success of the Binomial distribution
Returns:random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.BinomialDistribution Binomial Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param numberOfTrials number of trials of the Binomial distribution * @param probabilityOfSuccess probability of success of the Binomial distribution * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution * @since 2.2 */
public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) { return delegate.nextBinomial(numberOfTrials, probabilityOfSuccess); }
Generates a random value from the Cauchy Distribution. This implementation uses inversion to generate random values.
Params:
  • median – the median of the Cauchy distribution
  • scale – the scale parameter of the Cauchy distribution
Returns:random value sampled from the Cauchy(median, scale) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.CauchyDistribution Cauchy Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param median the median of the Cauchy distribution * @param scale the scale parameter of the Cauchy distribution * @return random value sampled from the Cauchy(median, scale) distribution * @since 2.2 */
public double nextCauchy(double median, double scale) { return delegate.nextCauchy(median, scale); }
Generates a random value from the ChiSquare Distribution. This implementation uses inversion to generate random values.
Params:
  • df – the degrees of freedom of the ChiSquare distribution
Returns:random value sampled from the ChiSquare(df) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.ChiSquaredDistribution ChiSquare Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param df the degrees of freedom of the ChiSquare distribution * @return random value sampled from the ChiSquare(df) distribution * @since 2.2 */
public double nextChiSquare(double df) { return delegate.nextChiSquare(df); }
Generates a random value from the F Distribution. This implementation uses inversion to generate random values.
Params:
  • numeratorDf – the numerator degrees of freedom of the F distribution
  • denominatorDf – the denominator degrees of freedom of the F distribution
Throws:
Returns:random value sampled from the F(numeratorDf, denominatorDf) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.FDistribution F Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param numeratorDf the numerator degrees of freedom of the F distribution * @param denominatorDf the denominator degrees of freedom of the F distribution * @return random value sampled from the F(numeratorDf, denominatorDf) distribution * @throws NotStrictlyPositiveException if * {@code numeratorDf <= 0} or {@code denominatorDf <= 0}. * @since 2.2 */
public double nextF(double numeratorDf, double denominatorDf) throws NotStrictlyPositiveException { return delegate.nextF(numeratorDf, denominatorDf); }

Generates a random value from the Gamma Distribution.

This implementation uses the following algorithms:

For 0 < shape < 1:
Ahrens, J. H. and Dieter, U., Computer methods for sampling from gamma, beta, Poisson and binomial distributions. Computing, 12, 223-246, 1974.

For shape >= 1:
Marsaglia and Tsang, A Simple Method for Generating Gamma Variables. ACM Transactions on Mathematical Software, Volume 26 Issue 3, September, 2000.

Params:
  • shape – the median of the Gamma distribution
  • scale – the scale parameter of the Gamma distribution
Throws:
Returns:random value sampled from the Gamma(shape, scale) distribution
Since:2.2
/** * <p>Generates a random value from the * {@link org.apache.commons.math3.distribution.GammaDistribution Gamma Distribution}.</p> * * <p>This implementation uses the following algorithms: </p> * * <p>For 0 < shape < 1: <br/> * Ahrens, J. H. and Dieter, U., <i>Computer methods for * sampling from gamma, beta, Poisson and binomial distributions.</i> * Computing, 12, 223-246, 1974.</p> * * <p>For shape >= 1: <br/> * Marsaglia and Tsang, <i>A Simple Method for Generating * Gamma Variables.</i> ACM Transactions on Mathematical Software, * Volume 26 Issue 3, September, 2000.</p> * * @param shape the median of the Gamma distribution * @param scale the scale parameter of the Gamma distribution * @return random value sampled from the Gamma(shape, scale) distribution * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. * @since 2.2 */
public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException { return delegate.nextGamma(shape, scale); }
Generates a random value from the Hypergeometric Distribution. This implementation uses inversion to generate random values.
Params:
  • populationSize – the population size of the Hypergeometric distribution
  • numberOfSuccesses – number of successes in the population of the Hypergeometric distribution
  • sampleSize – the sample size of the Hypergeometric distribution
Throws:
Returns:random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.HypergeometricDistribution Hypergeometric Distribution}. * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion} * to generate random values. * * @param populationSize the population size of the Hypergeometric distribution * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution * @param sampleSize the sample size of the Hypergeometric distribution * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, * or {@code sampleSize > populationSize}. * @throws NotStrictlyPositiveException if {@code populationSize <= 0}. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. * @since 2.2 */
public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException { return delegate.nextHypergeometric(populationSize, numberOfSuccesses, sampleSize); }
Generates a random value from the Pascal Distribution. This implementation uses inversion to generate random values.
Params:
  • r – the number of successes of the Pascal distribution
  • p – the probability of success of the Pascal distribution
Throws:
Returns:random value sampled from the Pascal(r, p) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.PascalDistribution Pascal Distribution}. * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion} * to generate random values. * * @param r the number of successes of the Pascal distribution * @param p the probability of success of the Pascal distribution * @return random value sampled from the Pascal(r, p) distribution * @since 2.2 * @throws NotStrictlyPositiveException if the number of successes is not positive * @throws OutOfRangeException if the probability of success is not in the * range {@code [0, 1]}. */
public int nextPascal(int r, double p) throws NotStrictlyPositiveException, OutOfRangeException { return delegate.nextPascal(r, p); }
Generates a random value from the T Distribution. This implementation uses inversion to generate random values.
Params:
  • df – the degrees of freedom of the T distribution
Throws:
Returns:random value from the T(df) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.TDistribution T Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param df the degrees of freedom of the T distribution * @return random value from the T(df) distribution * @since 2.2 * @throws NotStrictlyPositiveException if {@code df <= 0} */
public double nextT(double df) throws NotStrictlyPositiveException { return delegate.nextT(df); }
Generates a random value from the Weibull Distribution. This implementation uses inversion to generate random values.
Params:
  • shape – the shape parameter of the Weibull distribution
  • scale – the scale parameter of the Weibull distribution
Throws:
Returns:random value sampled from the Weibull(shape, size) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.WeibullDistribution Weibull Distribution}. * This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} * to generate random values. * * @param shape the shape parameter of the Weibull distribution * @param scale the scale parameter of the Weibull distribution * @return random value sampled from the Weibull(shape, size) distribution * @since 2.2 * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. */
public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException { return delegate.nextWeibull(shape, scale); }
Generates a random value from the Zipf Distribution. This implementation uses inversion to generate random values.
Params:
  • numberOfElements – the number of elements of the ZipfDistribution
  • exponent – the exponent of the ZipfDistribution
Throws:
Returns:random value sampled from the Zipf(numberOfElements, exponent) distribution
Since:2.2
/** * Generates a random value from the {@link org.apache.commons.math3.distribution.ZipfDistribution Zipf Distribution}. * This implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion} * to generate random values. * * @param numberOfElements the number of elements of the ZipfDistribution * @param exponent the exponent of the ZipfDistribution * @return random value sampled from the Zipf(numberOfElements, exponent) distribution * @since 2.2 * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0} * or {@code exponent <= 0}. */
public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException { return delegate.nextZipf(numberOfElements, exponent); }
Reseeds the random number generator with the supplied seed.

Will create and initialize if null.

Params:
  • seed – the seed value to use
/** * Reseeds the random number generator with the supplied seed. * <p> * Will create and initialize if null. * </p> * * @param seed * the seed value to use */
public void reSeed(long seed) { delegate.reSeed(seed); }
Reseeds the secure random number generator with the current time in milliseconds.

Will create and initialize if null.

/** * Reseeds the secure random number generator with the current time in * milliseconds. * <p> * Will create and initialize if null. * </p> */
public void reSeedSecure() { delegate.reSeedSecure(); }
Reseeds the secure random number generator with the supplied seed.

Will create and initialize if null.

Params:
  • seed – the seed value to use
/** * Reseeds the secure random number generator with the supplied seed. * <p> * Will create and initialize if null. * </p> * * @param seed * the seed value to use */
public void reSeedSecure(long seed) { delegate.reSeedSecure(seed); }
Reseeds the random number generator with System.currentTimeMillis() + System.identityHashCode(this)).
/** * Reseeds the random number generator with * {@code System.currentTimeMillis() + System.identityHashCode(this))}. */
public void reSeed() { delegate.reSeed(); }
Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider API. The Security Provider API is defined in Java Cryptography Architecture API Specification & Reference.

USAGE NOTE: This method carries significant overhead and may take several seconds to execute.

Params:
  • algorithm – the name of the PRNG algorithm
  • provider – the name of the provider
Throws:
/** * Sets the PRNG algorithm for the underlying SecureRandom instance using * the Security Provider API. The Security Provider API is defined in <a * href = * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA"> * Java Cryptography Architecture API Specification & Reference.</a> * <p> * <strong>USAGE NOTE:</strong> This method carries <i>significant</i> * overhead and may take several seconds to execute. * </p> * * @param algorithm * the name of the PRNG algorithm * @param provider * the name of the provider * @throws NoSuchAlgorithmException * if the specified algorithm is not available * @throws NoSuchProviderException * if the specified provider is not installed */
public void setSecureAlgorithm(String algorithm, String provider) throws NoSuchAlgorithmException, NoSuchProviderException { delegate.setSecureAlgorithm(algorithm, provider); }
{@inheritDoc}

Uses a 2-cycle permutation shuffle. The shuffling process is described here.

/** * {@inheritDoc} * * <p> * Uses a 2-cycle permutation shuffle. The shuffling process is described <a * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html"> * here</a>. * </p> */
public int[] nextPermutation(int n, int k) throws NotStrictlyPositiveException, NumberIsTooLargeException { return delegate.nextPermutation(n, k); }
{@inheritDoc}

Algorithm Description: Uses a 2-cycle permutation shuffle to generate a random permutation of c.size() and then returns the elements whose indexes correspond to the elements of the generated permutation. This technique is described, and proven to generate random samples here

/** * {@inheritDoc} * * <p> * <strong>Algorithm Description</strong>: Uses a 2-cycle permutation * shuffle to generate a random permutation of <code>c.size()</code> and * then returns the elements whose indexes correspond to the elements of the * generated permutation. This technique is described, and proven to * generate random samples <a * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html"> * here</a> * </p> */
public Object[] nextSample(Collection<?> c, int k) throws NotStrictlyPositiveException, NumberIsTooLargeException { return delegate.nextSample(c, k); }
Generate a random deviate from the given distribution using the inversion method.
Params:
  • distribution – Continuous distribution to generate a random value from
Throws:
Returns:a random value sampled from the given distribution
Since:2.2
Deprecated:use the distribution's sample() method
/** * Generate a random deviate from the given distribution using the * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a> * * @param distribution Continuous distribution to generate a random value from * @return a random value sampled from the given distribution * @throws MathIllegalArgumentException if the underlynig distribution throws one * @since 2.2 * @deprecated use the distribution's sample() method */
@Deprecated public double nextInversionDeviate(RealDistribution distribution) throws MathIllegalArgumentException { return distribution.inverseCumulativeProbability(nextUniform(0, 1)); }
Generate a random deviate from the given distribution using the inversion method.
Params:
  • distribution – Integer distribution to generate a random value from
Throws:
Returns:a random value sampled from the given distribution
Since:2.2
Deprecated:use the distribution's sample() method
/** * Generate a random deviate from the given distribution using the * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a> * * @param distribution Integer distribution to generate a random value from * @return a random value sampled from the given distribution * @throws MathIllegalArgumentException if the underlynig distribution throws one * @since 2.2 * @deprecated use the distribution's sample() method */
@Deprecated public int nextInversionDeviate(IntegerDistribution distribution) throws MathIllegalArgumentException { return distribution.inverseCumulativeProbability(nextUniform(0, 1)); } }