/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.distribution;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Beta;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;
Implementation of Student's t-distribution.
See Also:
/**
* Implementation of Student's t-distribution.
*
* @see "<a href='http://en.wikipedia.org/wiki/Student's_t-distribution'>Student's t-distribution (Wikipedia)</a>"
* @see "<a href='http://mathworld.wolfram.com/Studentst-Distribution.html'>Student's t-distribution (MathWorld)</a>"
*/
public class TDistribution extends AbstractRealDistribution {
Default inverse cumulative probability accuracy.
Since: 2.1
/**
* Default inverse cumulative probability accuracy.
* @since 2.1
*/
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
Serializable version identifier /** Serializable version identifier */
private static final long serialVersionUID = -5852615386664158222L;
The degrees of freedom. /** The degrees of freedom. */
private final double degreesOfFreedom;
Inverse cumulative probability accuracy. /** Inverse cumulative probability accuracy. */
private final double solverAbsoluteAccuracy;
Static computation factor based on degreesOfFreedom. /** Static computation factor based on degreesOfFreedom. */
private final double factor;
Create a t distribution using the given degrees of freedom.
Note: this constructor will implicitly create an instance of Well19937c
as random generator to be used for sampling only (see AbstractRealDistribution.sample()
and AbstractRealDistribution.sample(int)
). In case no sampling is needed for the created distribution, it is advised to pass null
as random generator via the appropriate constructors to avoid the additional initialisation overhead.
Params: - degreesOfFreedom – Degrees of freedom.
Throws: - NotStrictlyPositiveException – if
degreesOfFreedom <= 0
/**
* Create a t distribution using the given degrees of freedom.
* <p>
* <b>Note:</b> this constructor will implicitly create an instance of
* {@link Well19937c} as random generator to be used for sampling only (see
* {@link #sample()} and {@link #sample(int)}). In case no sampling is
* needed for the created distribution, it is advised to pass {@code null}
* as random generator via the appropriate constructors to avoid the
* additional initialisation overhead.
*
* @param degreesOfFreedom Degrees of freedom.
* @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0}
*/
public TDistribution(double degreesOfFreedom)
throws NotStrictlyPositiveException {
this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
}
Create a t distribution using the given degrees of freedom and the
specified inverse cumulative probability absolute accuracy.
Note: this constructor will implicitly create an instance of Well19937c
as random generator to be used for sampling only (see AbstractRealDistribution.sample()
and AbstractRealDistribution.sample(int)
). In case no sampling is needed for the created distribution, it is advised to pass null
as random generator via the appropriate constructors to avoid the additional initialisation overhead.
Params: - degreesOfFreedom – Degrees of freedom.
- inverseCumAccuracy – the maximum absolute error in inverse cumulative probability estimates (defaults to
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
).
Throws: - NotStrictlyPositiveException – if
degreesOfFreedom <= 0
Since: 2.1
/**
* Create a t distribution using the given degrees of freedom and the
* specified inverse cumulative probability absolute accuracy.
* <p>
* <b>Note:</b> this constructor will implicitly create an instance of
* {@link Well19937c} as random generator to be used for sampling only (see
* {@link #sample()} and {@link #sample(int)}). In case no sampling is
* needed for the created distribution, it is advised to pass {@code null}
* as random generator via the appropriate constructors to avoid the
* additional initialisation overhead.
*
* @param degreesOfFreedom Degrees of freedom.
* @param inverseCumAccuracy the maximum absolute error in inverse
* cumulative probability estimates
* (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
* @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0}
* @since 2.1
*/
public TDistribution(double degreesOfFreedom, double inverseCumAccuracy)
throws NotStrictlyPositiveException {
this(new Well19937c(), degreesOfFreedom, inverseCumAccuracy);
}
Creates a t distribution.
Params: - rng – Random number generator.
- degreesOfFreedom – Degrees of freedom.
Throws: - NotStrictlyPositiveException – if
degreesOfFreedom <= 0
Since: 3.3
/**
* Creates a t distribution.
*
* @param rng Random number generator.
* @param degreesOfFreedom Degrees of freedom.
* @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0}
* @since 3.3
*/
public TDistribution(RandomGenerator rng, double degreesOfFreedom)
throws NotStrictlyPositiveException {
this(rng, degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
}
Creates a t distribution.
Params: - rng – Random number generator.
- degreesOfFreedom – Degrees of freedom.
- inverseCumAccuracy – the maximum absolute error in inverse cumulative probability estimates (defaults to
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
).
Throws: - NotStrictlyPositiveException – if
degreesOfFreedom <= 0
Since: 3.1
/**
* Creates a t distribution.
*
* @param rng Random number generator.
* @param degreesOfFreedom Degrees of freedom.
* @param inverseCumAccuracy the maximum absolute error in inverse
* cumulative probability estimates
* (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
* @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0}
* @since 3.1
*/
public TDistribution(RandomGenerator rng,
double degreesOfFreedom,
double inverseCumAccuracy)
throws NotStrictlyPositiveException {
super(rng);
if (degreesOfFreedom <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM,
degreesOfFreedom);
}
this.degreesOfFreedom = degreesOfFreedom;
solverAbsoluteAccuracy = inverseCumAccuracy;
final double n = degreesOfFreedom;
final double nPlus1Over2 = (n + 1) / 2;
factor = Gamma.logGamma(nPlus1Over2) -
0.5 * (FastMath.log(FastMath.PI) + FastMath.log(n)) -
Gamma.logGamma(n / 2);
}
Access the degrees of freedom.
Returns: the degrees of freedom.
/**
* Access the degrees of freedom.
*
* @return the degrees of freedom.
*/
public double getDegreesOfFreedom() {
return degreesOfFreedom;
}
{@inheritDoc} /** {@inheritDoc} */
public double density(double x) {
return FastMath.exp(logDensity(x));
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public double logDensity(double x) {
final double n = degreesOfFreedom;
final double nPlus1Over2 = (n + 1) / 2;
return factor - nPlus1Over2 * FastMath.log(1 + x * x / n);
}
{@inheritDoc} /** {@inheritDoc} */
public double cumulativeProbability(double x) {
double ret;
if (x == 0) {
ret = 0.5;
} else {
double t =
Beta.regularizedBeta(
degreesOfFreedom / (degreesOfFreedom + (x * x)),
0.5 * degreesOfFreedom,
0.5);
if (x < 0.0) {
ret = 0.5 * t;
} else {
ret = 1.0 - 0.5 * t;
}
}
return ret;
}
{@inheritDoc} /** {@inheritDoc} */
@Override
protected double getSolverAbsoluteAccuracy() {
return solverAbsoluteAccuracy;
}
{@inheritDoc} For degrees of freedom parameter df
, the mean is
- if
df > 1
then 0
,
- else undefined (
Double.NaN
).
/**
* {@inheritDoc}
*
* For degrees of freedom parameter {@code df}, the mean is
* <ul>
* <li>if {@code df > 1} then {@code 0},</li>
* <li>else undefined ({@code Double.NaN}).</li>
* </ul>
*/
public double getNumericalMean() {
final double df = getDegreesOfFreedom();
if (df > 1) {
return 0;
}
return Double.NaN;
}
{@inheritDoc} For degrees of freedom parameter df
, the variance is
- if
df > 2
then df / (df - 2)
,
- if
1 < df <= 2
then positive infinity (Double.POSITIVE_INFINITY
),
- else undefined (
Double.NaN
).
/**
* {@inheritDoc}
*
* For degrees of freedom parameter {@code df}, the variance is
* <ul>
* <li>if {@code df > 2} then {@code df / (df - 2)},</li>
* <li>if {@code 1 < df <= 2} then positive infinity
* ({@code Double.POSITIVE_INFINITY}),</li>
* <li>else undefined ({@code Double.NaN}).</li>
* </ul>
*/
public double getNumericalVariance() {
final double df = getDegreesOfFreedom();
if (df > 2) {
return df / (df - 2);
}
if (df > 1 && df <= 2) {
return Double.POSITIVE_INFINITY;
}
return Double.NaN;
}
{@inheritDoc}
The lower bound of the support is always negative infinity no matter the
parameters.
Returns: lower bound of the support (always Double.NEGATIVE_INFINITY
)
/**
* {@inheritDoc}
*
* The lower bound of the support is always negative infinity no matter the
* parameters.
*
* @return lower bound of the support (always
* {@code Double.NEGATIVE_INFINITY})
*/
public double getSupportLowerBound() {
return Double.NEGATIVE_INFINITY;
}
{@inheritDoc}
The upper bound of the support is always positive infinity no matter the
parameters.
Returns: upper bound of the support (always Double.POSITIVE_INFINITY
)
/**
* {@inheritDoc}
*
* The upper bound of the support is always positive infinity no matter the
* parameters.
*
* @return upper bound of the support (always
* {@code Double.POSITIVE_INFINITY})
*/
public double getSupportUpperBound() {
return Double.POSITIVE_INFINITY;
}
{@inheritDoc} /** {@inheritDoc} */
public boolean isSupportLowerBoundInclusive() {
return false;
}
{@inheritDoc} /** {@inheritDoc} */
public boolean isSupportUpperBoundInclusive() {
return false;
}
{@inheritDoc}
The support of this distribution is connected.
Returns: true
/**
* {@inheritDoc}
*
* The support of this distribution is connected.
*
* @return {@code true}
*/
public boolean isSupportConnected() {
return true;
}
}