/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import java.util.Arrays;

import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.ode.sampling.AbstractFieldStepInterpolator;
import org.apache.commons.math3.util.MathArrays;

This class implements an interpolator for Adams integrators using Nordsieck representation.

This interpolator computes dense output around the current point. The interpolation equation is based on Taylor series formulas.

Type parameters:
  • <T> – the type of the field elements
See Also:
Since:3.6
/** * This class implements an interpolator for Adams integrators using Nordsieck representation. * * <p>This interpolator computes dense output around the current point. * The interpolation equation is based on Taylor series formulas. * * @see AdamsBashforthFieldIntegrator * @see AdamsMoultonFieldIntegrator * @param <T> the type of the field elements * @since 3.6 */
class AdamsFieldStepInterpolator<T extends RealFieldElement<T>> extends AbstractFieldStepInterpolator<T> {
Step size used in the first scaled derivative and Nordsieck vector.
/** Step size used in the first scaled derivative and Nordsieck vector. */
private T scalingH;
Reference state.

Sometimes, the reference state is the same as globalPreviousState, sometimes it is the same as globalCurrentState, so we use a separate field to avoid any confusion.

/** Reference state. * <p>Sometimes, the reference state is the same as globalPreviousState, * sometimes it is the same as globalCurrentState, so we use a separate * field to avoid any confusion. * </p> */
private final FieldODEStateAndDerivative<T> reference;
First scaled derivative.
/** First scaled derivative. */
private final T[] scaled;
Nordsieck vector.
/** Nordsieck vector. */
private final Array2DRowFieldMatrix<T> nordsieck;
Simple constructor.
Params:
  • stepSize – step size used in the scaled and Nordsieck arrays
  • reference – reference state from which Taylor expansion are estimated
  • scaled – first scaled derivative
  • nordsieck – Nordsieck vector
  • isForward – integration direction indicator
  • globalPreviousState – start of the global step
  • globalCurrentState – end of the global step
  • equationsMapper – mapper for ODE equations primary and secondary components
/** Simple constructor. * @param stepSize step size used in the scaled and Nordsieck arrays * @param reference reference state from which Taylor expansion are estimated * @param scaled first scaled derivative * @param nordsieck Nordsieck vector * @param isForward integration direction indicator * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param equationsMapper mapper for ODE equations primary and secondary components */
AdamsFieldStepInterpolator(final T stepSize, final FieldODEStateAndDerivative<T> reference, final T[] scaled, final Array2DRowFieldMatrix<T> nordsieck, final boolean isForward, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldEquationsMapper<T> equationsMapper) { this(stepSize, reference, scaled, nordsieck, isForward, globalPreviousState, globalCurrentState, globalPreviousState, globalCurrentState, equationsMapper); }
Simple constructor.
Params:
  • stepSize – step size used in the scaled and Nordsieck arrays
  • reference – reference state from which Taylor expansion are estimated
  • scaled – first scaled derivative
  • nordsieck – Nordsieck vector
  • isForward – integration direction indicator
  • globalPreviousState – start of the global step
  • globalCurrentState – end of the global step
  • softPreviousState – start of the restricted step
  • softCurrentState – end of the restricted step
  • equationsMapper – mapper for ODE equations primary and secondary components
/** Simple constructor. * @param stepSize step size used in the scaled and Nordsieck arrays * @param reference reference state from which Taylor expansion are estimated * @param scaled first scaled derivative * @param nordsieck Nordsieck vector * @param isForward integration direction indicator * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param softPreviousState start of the restricted step * @param softCurrentState end of the restricted step * @param equationsMapper mapper for ODE equations primary and secondary components */
private AdamsFieldStepInterpolator(final T stepSize, final FieldODEStateAndDerivative<T> reference, final T[] scaled, final Array2DRowFieldMatrix<T> nordsieck, final boolean isForward, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldODEStateAndDerivative<T> softPreviousState, final FieldODEStateAndDerivative<T> softCurrentState, final FieldEquationsMapper<T> equationsMapper) { super(isForward, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, equationsMapper); this.scalingH = stepSize; this.reference = reference; this.scaled = scaled.clone(); this.nordsieck = new Array2DRowFieldMatrix<T>(nordsieck.getData(), false); }
Create a new instance.
Params:
  • newForward – integration direction indicator
  • newGlobalPreviousState – start of the global step
  • newGlobalCurrentState – end of the global step
  • newSoftPreviousState – start of the restricted step
  • newSoftCurrentState – end of the restricted step
  • newMapper – equations mapper for the all equations
Returns:a new instance
/** Create a new instance. * @param newForward integration direction indicator * @param newGlobalPreviousState start of the global step * @param newGlobalCurrentState end of the global step * @param newSoftPreviousState start of the restricted step * @param newSoftCurrentState end of the restricted step * @param newMapper equations mapper for the all equations * @return a new instance */
@Override protected AdamsFieldStepInterpolator<T> create(boolean newForward, FieldODEStateAndDerivative<T> newGlobalPreviousState, FieldODEStateAndDerivative<T> newGlobalCurrentState, FieldODEStateAndDerivative<T> newSoftPreviousState, FieldODEStateAndDerivative<T> newSoftCurrentState, FieldEquationsMapper<T> newMapper) { return new AdamsFieldStepInterpolator<T>(scalingH, reference, scaled, nordsieck, newForward, newGlobalPreviousState, newGlobalCurrentState, newSoftPreviousState, newSoftCurrentState, newMapper); }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> equationsMapper, final T time, final T theta, final T thetaH, final T oneMinusThetaH) { return taylor(reference, time, scalingH, scaled, nordsieck); }
Estimate state by applying Taylor formula.
Params:
  • reference – reference state
  • time – time at which state must be estimated
  • stepSize – step size used in the scaled and Nordsieck arrays
  • scaled – first scaled derivative
  • nordsieck – Nordsieck vector
Type parameters:
  • <S> – the type of the field elements
Returns:estimated state
/** Estimate state by applying Taylor formula. * @param reference reference state * @param time time at which state must be estimated * @param stepSize step size used in the scaled and Nordsieck arrays * @param scaled first scaled derivative * @param nordsieck Nordsieck vector * @return estimated state * @param <S> the type of the field elements */
public static <S extends RealFieldElement<S>> FieldODEStateAndDerivative<S> taylor(final FieldODEStateAndDerivative<S> reference, final S time, final S stepSize, final S[] scaled, final Array2DRowFieldMatrix<S> nordsieck) { final S x = time.subtract(reference.getTime()); final S normalizedAbscissa = x.divide(stepSize); S[] stateVariation = MathArrays.buildArray(time.getField(), scaled.length); Arrays.fill(stateVariation, time.getField().getZero()); S[] estimatedDerivatives = MathArrays.buildArray(time.getField(), scaled.length); Arrays.fill(estimatedDerivatives, time.getField().getZero()); // apply Taylor formula from high order to low order, // for the sake of numerical accuracy final S[][] nData = nordsieck.getDataRef(); for (int i = nData.length - 1; i >= 0; --i) { final int order = i + 2; final S[] nDataI = nData[i]; final S power = normalizedAbscissa.pow(order); for (int j = 0; j < nDataI.length; ++j) { final S d = nDataI[j].multiply(power); stateVariation[j] = stateVariation[j].add(d); estimatedDerivatives[j] = estimatedDerivatives[j].add(d.multiply(order)); } } S[] estimatedState = reference.getState(); for (int j = 0; j < stateVariation.length; ++j) { stateVariation[j] = stateVariation[j].add(scaled[j].multiply(normalizedAbscissa)); estimatedState[j] = estimatedState[j].add(stateVariation[j]); estimatedDerivatives[j] = estimatedDerivatives[j].add(scaled[j].multiply(normalizedAbscissa)).divide(x); } return new FieldODEStateAndDerivative<S>(time, estimatedState, estimatedDerivatives); } }