/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.fitting.leastsquares;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.CholeskyDecomposition;
import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException;
import org.apache.commons.math3.linear.QRDecomposition;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.linear.SingularMatrixException;
import org.apache.commons.math3.linear.SingularValueDecomposition;
import org.apache.commons.math3.optim.ConvergenceChecker;
import org.apache.commons.math3.util.Incrementor;
import org.apache.commons.math3.util.Pair;
Gauss-Newton least-squares solver.
This class solve a least-square problem by
solving the normal equations of the linearized problem at each iteration. Either LU
decomposition or Cholesky decomposition can be used to solve the normal equations,
or QR decomposition or SVD decomposition can be used to solve the linear system. LU
decomposition is faster but QR decomposition is more robust for difficult problems,
and SVD can compute a solution for rank-deficient problems.
Since: 3.3
/**
* Gauss-Newton least-squares solver.
* <p> This class solve a least-square problem by
* solving the normal equations of the linearized problem at each iteration. Either LU
* decomposition or Cholesky decomposition can be used to solve the normal equations,
* or QR decomposition or SVD decomposition can be used to solve the linear system. LU
* decomposition is faster but QR decomposition is more robust for difficult problems,
* and SVD can compute a solution for rank-deficient problems.
* </p>
*
* @since 3.3
*/
public class GaussNewtonOptimizer implements LeastSquaresOptimizer {
The decomposition algorithm to use to solve the normal equations. /** The decomposition algorithm to use to solve the normal equations. */
//TODO move to linear package and expand options?
public enum Decomposition {
Solve by forming the normal equations (JTJx=JTr) and using the LUDecomposition
. Theoretically this method takes mn2/2 operations to compute the
normal matrix and n3/3 operations (m > n) to solve the system using
the LU decomposition.
/**
* Solve by forming the normal equations (J<sup>T</sup>Jx=J<sup>T</sup>r) and
* using the {@link LUDecomposition}.
*
* <p> Theoretically this method takes mn<sup>2</sup>/2 operations to compute the
* normal matrix and n<sup>3</sup>/3 operations (m > n) to solve the system using
* the LU decomposition. </p>
*/
LU {
@Override
protected RealVector solve(final RealMatrix jacobian,
final RealVector residuals) {
try {
final Pair<RealMatrix, RealVector> normalEquation =
computeNormalMatrix(jacobian, residuals);
final RealMatrix normal = normalEquation.getFirst();
final RealVector jTr = normalEquation.getSecond();
return new LUDecomposition(normal, SINGULARITY_THRESHOLD)
.getSolver()
.solve(jTr);
} catch (SingularMatrixException e) {
throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
}
}
},
Solve the linear least squares problem (Jx=r) using the QRDecomposition
. Theoretically this method takes mn2 - n3/3 operations
(m > n) and has better numerical accuracy than any method that forms the normal
equations.
/**
* Solve the linear least squares problem (Jx=r) using the {@link
* QRDecomposition}.
*
* <p> Theoretically this method takes mn<sup>2</sup> - n<sup>3</sup>/3 operations
* (m > n) and has better numerical accuracy than any method that forms the normal
* equations. </p>
*/
QR {
@Override
protected RealVector solve(final RealMatrix jacobian,
final RealVector residuals) {
try {
return new QRDecomposition(jacobian, SINGULARITY_THRESHOLD)
.getSolver()
.solve(residuals);
} catch (SingularMatrixException e) {
throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
}
}
},
Solve by forming the normal equations (JTJx=JTr) and using the CholeskyDecomposition
. Theoretically this method takes mn2/2 operations to compute the
normal matrix and n3/6 operations (m > n) to solve the system using
the Cholesky decomposition.
/**
* Solve by forming the normal equations (J<sup>T</sup>Jx=J<sup>T</sup>r) and
* using the {@link CholeskyDecomposition}.
*
* <p> Theoretically this method takes mn<sup>2</sup>/2 operations to compute the
* normal matrix and n<sup>3</sup>/6 operations (m > n) to solve the system using
* the Cholesky decomposition. </p>
*/
CHOLESKY {
@Override
protected RealVector solve(final RealMatrix jacobian,
final RealVector residuals) {
try {
final Pair<RealMatrix, RealVector> normalEquation =
computeNormalMatrix(jacobian, residuals);
final RealMatrix normal = normalEquation.getFirst();
final RealVector jTr = normalEquation.getSecond();
return new CholeskyDecomposition(
normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
.getSolver()
.solve(jTr);
} catch (NonPositiveDefiniteMatrixException e) {
throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
}
}
},
Solve the linear least squares problem using the SingularValueDecomposition
. This method is slower, but can provide a solution for rank deficient and
nearly singular systems.
/**
* Solve the linear least squares problem using the {@link
* SingularValueDecomposition}.
*
* <p> This method is slower, but can provide a solution for rank deficient and
* nearly singular systems.
*/
SVD {
@Override
protected RealVector solve(final RealMatrix jacobian,
final RealVector residuals) {
return new SingularValueDecomposition(jacobian)
.getSolver()
.solve(residuals);
}
};
Solve the linear least squares problem Jx=r.
Params: - jacobian – the Jacobian matrix, J. the number of rows >= the number or
columns.
- residuals – the computed residuals, r.
Throws: - ConvergenceException – if the matrix properties (e.g. singular) do not
permit a solution.
Returns: the solution x, to the linear least squares problem Jx=r.
/**
* Solve the linear least squares problem Jx=r.
*
* @param jacobian the Jacobian matrix, J. the number of rows >= the number or
* columns.
* @param residuals the computed residuals, r.
* @return the solution x, to the linear least squares problem Jx=r.
* @throws ConvergenceException if the matrix properties (e.g. singular) do not
* permit a solution.
*/
protected abstract RealVector solve(RealMatrix jacobian,
RealVector residuals);
}
The singularity threshold for matrix decompositions. Determines when a ConvergenceException
is thrown. The current value was the default value for LUDecomposition
. /**
* The singularity threshold for matrix decompositions. Determines when a {@link
* ConvergenceException} is thrown. The current value was the default value for {@link
* LUDecomposition}.
*/
private static final double SINGULARITY_THRESHOLD = 1e-11;
Indicator for using LU decomposition. /** Indicator for using LU decomposition. */
private final Decomposition decomposition;
Creates a Gauss Newton optimizer.
The default for the algorithm is to solve the normal equations using QR
decomposition.
/**
* Creates a Gauss Newton optimizer.
* <p/>
* The default for the algorithm is to solve the normal equations using QR
* decomposition.
*/
public GaussNewtonOptimizer() {
this(Decomposition.QR);
}
Create a Gauss Newton optimizer that uses the given decomposition algorithm to
solve the normal equations.
Params: - decomposition – the
Decomposition
algorithm.
/**
* Create a Gauss Newton optimizer that uses the given decomposition algorithm to
* solve the normal equations.
*
* @param decomposition the {@link Decomposition} algorithm.
*/
public GaussNewtonOptimizer(final Decomposition decomposition) {
this.decomposition = decomposition;
}
Get the matrix decomposition algorithm used to solve the normal equations.
Returns: the matrix Decomposition
algoritm.
/**
* Get the matrix decomposition algorithm used to solve the normal equations.
*
* @return the matrix {@link Decomposition} algoritm.
*/
public Decomposition getDecomposition() {
return this.decomposition;
}
Configure the decomposition algorithm.
Params: - newDecomposition – the
Decomposition
algorithm to use.
Returns: a new instance.
/**
* Configure the decomposition algorithm.
*
* @param newDecomposition the {@link Decomposition} algorithm to use.
* @return a new instance.
*/
public GaussNewtonOptimizer withDecomposition(final Decomposition newDecomposition) {
return new GaussNewtonOptimizer(newDecomposition);
}
{@inheritDoc} /** {@inheritDoc} */
public Optimum optimize(final LeastSquaresProblem lsp) {
//create local evaluation and iteration counts
final Incrementor evaluationCounter = lsp.getEvaluationCounter();
final Incrementor iterationCounter = lsp.getIterationCounter();
final ConvergenceChecker<Evaluation> checker
= lsp.getConvergenceChecker();
// Computation will be useless without a checker (see "for-loop").
if (checker == null) {
throw new NullArgumentException();
}
RealVector currentPoint = lsp.getStart();
// iterate until convergence is reached
Evaluation current = null;
while (true) {
iterationCounter.incrementCount();
// evaluate the objective function and its jacobian
Evaluation previous = current;
// Value of the objective function at "currentPoint".
evaluationCounter.incrementCount();
current = lsp.evaluate(currentPoint);
final RealVector currentResiduals = current.getResiduals();
final RealMatrix weightedJacobian = current.getJacobian();
currentPoint = current.getPoint();
// Check convergence.
if (previous != null &&
checker.converged(iterationCounter.getCount(), previous, current)) {
return new OptimumImpl(current,
evaluationCounter.getCount(),
iterationCounter.getCount());
}
// solve the linearized least squares problem
final RealVector dX = this.decomposition.solve(weightedJacobian, currentResiduals);
// update the estimated parameters
currentPoint = currentPoint.add(dX);
}
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public String toString() {
return "GaussNewtonOptimizer{" +
"decomposition=" + decomposition +
'}';
}
Compute the normal matrix, JTJ.
Params: - jacobian – the m by n jacobian matrix, J. Input.
- residuals – the m by 1 residual vector, r. Input.
Returns: the n by n normal matrix and the n by 1 JTr vector.
/**
* Compute the normal matrix, J<sup>T</sup>J.
*
* @param jacobian the m by n jacobian matrix, J. Input.
* @param residuals the m by 1 residual vector, r. Input.
* @return the n by n normal matrix and the n by 1 J<sup>Tr vector.
*/
private static Pair<RealMatrix, RealVector> computeNormalMatrix(final RealMatrix jacobian,
final RealVector residuals) {
//since the normal matrix is symmetric, we only need to compute half of it.
final int nR = jacobian.getRowDimension();
final int nC = jacobian.getColumnDimension();
//allocate space for return values
final RealMatrix normal = MatrixUtils.createRealMatrix(nC, nC);
final RealVector jTr = new ArrayRealVector(nC);
//for each measurement
for (int i = 0; i < nR; ++i) {
//compute JTr for measurement i
for (int j = 0; j < nC; j++) {
jTr.setEntry(j, jTr.getEntry(j) +
residuals.getEntry(i) * jacobian.getEntry(i, j));
}
// add the the contribution to the normal matrix for measurement i
for (int k = 0; k < nC; ++k) {
//only compute the upper triangular part
for (int l = k; l < nC; ++l) {
normal.setEntry(k, l, normal.getEntry(k, l) +
jacobian.getEntry(i, k) * jacobian.getEntry(i, l));
}
}
}
//copy the upper triangular part to the lower triangular part.
for (int i = 0; i < nC; i++) {
for (int j = 0; j < i; j++) {
normal.setEntry(i, j, normal.getEntry(j, i));
}
}
return new Pair<RealMatrix, RealVector>(normal, jTr);
}
}